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ABSTRACT
We show aggregation constraints that naturally arise in several ap-
plications can enrich the semantics of rank join queries, by al-
lowing users to impose their application-specific preferences in a
declarative way. By analyzing the properties of aggregation con-
straints, we develop efficient deterministic and probabilistic algo-
rithms which can push the aggregation constraints inside the rank
join framework. Through extensive experiments on various datasets,
we show that in many cases our proposed algorithms can signifi-
cantly outperform the naive approach of applying the state-of-the-
art rank join algorithm followed by post-filtering to discard results
violating the constraints.

1. INTRODUCTION
In the last several years, there has been tremendous interest in

rank join queries and their efficient processing [6, 20, 4]. In a rank
join query, you are given a number of relations, each containing
one or more value attributes, a monotone score aggregation func-
tion that combines the individual values, and a number k. The ob-
jective is to find the top-k join results, i.e., the join results with the
k highest overall scores. Rank join can be seen as a generalization
of classic top-k queries where one searches for the top-k objects
w.r.t. a number of criteria or features [3]. For classic top-k queries,
assuming that objects are stored in score-sorted inverted lists for
each feature, the top-k objects w.r.t. a monotone score aggregation
function can be computed efficiently using algorithms such as TA,
NRA and their variants [3]. These algorithms satisfy a property
called instance optimality, which intuitively says that no algorithm
in a reasonable class can perform more than a constant times better,
for some fixed constant.

Ilyas et al. [6] were the first to develop an instance-optimal algo-
rithm for rank join queries involving the join of two relations. Their
algorithm employs the so-called corner-bounding scheme. Polyzo-
tis et al. [20] showed that whenever more than two relations are
joined or relations are allowed to contain multiple value-attributes,
the corner bounding scheme is no longer instance optimal. They
proposed a tight bounding scheme based on maintaining a “cover
set” for each relation, and using this bounding scheme results in
instance optimal algorithms [20, 4].
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In many applications such as database queries, data mining, and
optimization, constraints can add considerable value [10, 18, 14,
17] in two ways. First, they allow the relevant application seman-
tics to be abstracted and allow users to impose their application-
specific preferences on the query (or mining task) at hand. Sec-
ond, constraints can often be leveraged in optimizing the query or
mining task at hand. In this paper, we argue that aggregation con-
straints can enrich the framework of rank join queries by including
such application semantics. We next illustrate this with examples.
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Figure 1: Example for rank join with aggregation constraints.

Example 1. [Travel Packages] A tourist is looking for a week-
end travel package comprising a visit to one museum and one restau-
rant. A local information website such as Yelp.com can provide us
with lists of museums and restaurants along with information about
their location, cost and rating, sorted by the rating (see Fig. 1). The
tourist may wish to impose some constraints on the package she is
looking for, e.g., the overall cost should be at most $20, the maxi-
mum cost of any visit should be less than $15, etc.

Example 2. [Course Recommendations] A university student
wishes to choose courses that are both highly rated by past stu-
dents and satisfy certain degree requirements. Assume each course
is assigned a level, a category, and a number of credits. In order
to obtain an MSc degree, students must take 8 modules, subject to
the following further constraints: (i) at least 75 credits must come
from courses in the “database” category, (ii) the minimum level of
any course taken is 6, and (iii) the maximum number of credits
taken at level 6 is 30. The requirements above can be expressed as
a conjunction of aggregation constraints on a rank join.

In both examples above, we saw the utility of aggregation con-
straints in letting a user specify her requirements as part of a rank
join query. Notice that as discussed in previous work [18, 14, 17],
these hard constraints based on aggregation naturally arise in many
situations. We should highlight the fact that, in our constraints, ag-
gregation is applied to values appearing in each tuple resulting from
a join, rather than in the traditional sense where aggregation is over
sets of tuples. In this sense, aggregation constraints exhibit some
similarity to selections applied to a join.

A natural question is how to process rank joins with aggrega-
tion constraints efficiently. A naive approach is to perform the



rank join, then apply post-filtering, dropping all results that vio-
late the constraints, and finally report the top-k among the remain-
ing results. We show that rank joins with aggregate constraints can
be processed much faster than this post-filtering approach. First,
we develop techniques for pushing constraint processing within the
rank join framework, allowing irrelevant and “unpromising” tuples
to be pruned as early as possible. As a result, we show that tu-
ples that will not contribute to the top-k answers can be detected
and avoided. Second, based on the observation that such an opti-
mized algorithm still needs to access many tuples, we propose a
probabilistic algorithm which accesses far fewer tuples while guar-
anteeing the quality of the results returned.

Specifically, we make the following contributions in this work:
(1) we introduce the problem of efficient processing of rank join
queries with aggregation constraints (Sec. 2), showing the limi-
tations of the post-filtering approach (Sec. 3); (2) we analyze the
properties of aggregation constraints and develop an efficient algo-
rithm for processing rank joins with aggregation constraints, based
on two strategies for pruning tuples (Sec. 4); (3) we also develop
a probabilistic algorithm that terminates processing in a more ag-
gressive manner than the deterministic approach while guarantee-
ing high quality answers (Sec. 5); (4) we report on a detailed set of
experiments which show that the execution times of our algorithms
can be orders of magnitude better than those of the post-filtering
approach (Sec. 6).

2. PROBLEM DEFINITION
Consider a set R of n relations {R1,R2, . . . ,Rn}, with Ri having

the schema schema(Ri), 1 ≤ i ≤ n. For each tuple t ∈ Ri, the set
of attributes over which ti is defined is schema(t) = schema(Ri).
We assume each relation has a single value attribute V , and (for
simplicity) a single join attribute J.1 Given a tuple t ∈ Ri and an
attribute A ∈ schema(t), t.A denotes t’s value on A. We typically
consider join conditions jc corresponding to equi-joins, i.e., J = J.

Let R′ = {R j1 ,R j2 , . . . ,R jm } ⊆ R. Given a join condition jc,
we define s = {t1, . . . , tm} to be a joinable set (JS) if ti ∈ R ji ,
i = 1, . . . ,m, and ./ jc m

i=1{ti} , ∅. If m = n, we call s a full joinable
set (FJS), while if m < n we call s a partial joinable set (PJS). We
denote by JS the set of all possible (partial) joinable sets. Further-
more, for a JS s which comes from R′, we define Rel(s) = R′.

2.1 Language for Aggregation Constraints
Aggregation Constraints can be defined over joinable sets. Let

AGG ∈ {MIN,MAX, S UM,COUNT , AVG} be an aggregation fun-
ction, and let the binary operator θ be ≤, ≥ or =.2 Let p ::= A θ λ
be an attribute value predicate, where A is an attribute of some re-
lation, θ is as above, and λ is a constant. We say tuple t satisfies p,
t |= p, if A ∈ schema(t) and t.A θ λ is true. An attribute value pred-
icate p can be the constant true in which case every tuple satisfies
it. A set of tuples s satisfies p, s |= p, if ∀t ∈ s, t |= p.

We now consider aggregation constraints which are applied to
tuples resulting from a join. A primitive aggregation constraint
(PAC) is of the form pc ::= AGG(A, p) θ λ, where AGG is an
aggregation function, A is an attribute (called the aggregated at-
tribute), p is an attribute value predicate (called the selection pred-
icate) as defined above, and θ and λ are defined as above. Given a
joinable set s, we define

Evalpc(s) = AGG([t.A | t ∈ s ∧ t |= p])
1Our results and algorithms easily extend to more general cases of
multiple value-attributes and/or multiple join attributes, following
previous work such as [4].
2Operators < and > can be treated similarly to ≤ and ≥.

where we use [. . .] to denote a multiset. Then we say s satisfies the
primitive aggregation constraint pc, s |= pc, if Evalpc(s) θ λ holds.

The language for (full) aggregation constraints can now be de-
fined as follows:

Predicates: p ::= true | A θ λ | p ∧ p

Aggregation Constraints: ac ::= pc | pc ∧ ac

pc ::= AGG(A, p) θ λ

The meaning of a full aggregation constraint ac is defined in the
obvious way, as are the notions of joinable sets satisfying ac and
the satisfying subset Rac of a relation R resulting from a join.

Let R be a relation resulting from a (multi-way) join R1 Z jc

· · · Z jc Rm. Each tuple t ∈ R can also be viewed as a joinable set st

of tuples from the relations Ri. Given an aggregation constraint ac,
we define Rac as {t | t ∈ R ∧ st |= ac}.

Note that by adding a special attribute C to each relation and set-
ting the value of each tuple on C to be 1, COUNT can be simulated
by S UM. Similarly, when the number of relations under consider-
ation is fixed, AVG can also simulated by S UM. So to simplify the
presentation, we will not discuss COUNT and AVG further.

We now illustrate how the examples in the introduction can be
expressed in our framework. Example 1 can be expressed by im-
posing the constraint S UM(Cost, true) ≤ 20∧MAX(Cost, true) ≤
15 on the rank join between relations Museum and Restaurant.
Example 2 can be expressed by imposing, on the rank join of 8
copies of the relation Course, the conjunction of the constraints:
(i) S UM(Credits, Category = “database”) ≥ 75,
(ii) MIN(Level, true) ≥ 6,
(iii) S UM(Credits, Level = 6) ≤ 30.

2.2 Problem Studied
We assume the domain of each attribute is normalized to [0, 1].

Let R denote the set of reals and S : Rn → R be the score func-
tion, defined over the value attributes of the joined relations. Fol-
lowing common practice, we assume S is monotone, which means
S (x1, ..., xn) ≤ S (y1, ..., yn) whenever ∀i, xi ≤ yi. To simplify the
presentation, we will mostly focus on S being SUM, so given a
joinable set s, the overall value of s, denoted as v(s), can be cal-
culated as v(s) =

∑
t∈s t.V . Furthermore, in this paper we assume

that the join condition jc is equi-join, which means that given two
tuples t1 and t2 from two relations, {t1} ./ jc {t2} , ∅ iff t1.J = t2.J.
For brevity we will omit the join condition jc from the join operator
when there is no ambiguity.

Let ac be a user-specified aggregation constraint (which may be
a conjunction of PACs) and jc be the join condition. We study the
problem of Rank Join with Aggregation Constraints (RJAC):

Definition 1. Rank Join with Aggregation Constraints: Giv-
en a set of relations R = {R1, . . . ,Rn} and a join condition jc, let RS
denote ./ n

i=1Ri. Now given a score function S and an aggregation
constraint ac, find the top-k join results RS ac

k ⊆ RS ac, that is, ∀s ∈
RS ac

k and ∀s′ ∈ RS ac − RS ac
k , we have v(s) ≥ v(s′).

We denote an instance of the RJAC problem by a 5-tuple I =

(R, S , jc, ac, k). Because we are usually only interested in exactly
k join results, we will discard potential join results which have the
same value as the kth join result in RS ac

k ; however, the proposed
technique can be easily modified to return these as well if needed.
Our goal is to devise algorithms for finding the top-k answers to
RJAC as efficiently as possible.

We will discuss in Appendix C.3 about extending rank joins to
rank outer-joins, which might be useful for some applications.



3. RELATED WORK

3.1 Rank Join and Post-Filtering
The standard rank join algorithm with no aggregation constraints

works as follows [6, 20]. Given a set of relations R = {R1, . . . ,Rn},
assume the tuples of each relation are sorted in the non-increasing
order of their value. The algorithm iteratively picks some relation
Ri ∈ R and retrieves the next tuple t from Ri. Each seen tuple t ∈ Ri

is stored in a corresponding buffer HRi, and t is joined with tuples
seen from HR j, j , i. The join result is placed in an output buffer
O which is organized as a priority queue. To allow the algorithm
to stop early, the value of t is used to update a stopping threshold
τ, which is an upperbound on the value that can be achieved using
any unseen tuple. It can be shown that if there are at least k join
results in the output buffer O which have value no less than τ, the
algorithm can stop, and the first k join results in O are guaranteed
to be the top-k results. We give the pseudo-code of this standard
rank join algorithm in Appendix A.1.

To characterize the efficiency of a rank join algorithm, previous
work has used the notion of instance optimalilty, proposed by Fagin
et al. [3]. The basic idea is that, given a cost function cost (which is
a monotone function of the total number of tuples retrieved), with
respect to a classA of algorithms and a classD of data instances, a
top-k algorithm A is instance optimal if, for some constants c0 and
c1, for all algorithms B ∈ A and data instances D ∈ D, we have
cost(A,D) ≤ c0 × cost(B,D) + c1.

Instance optimality of a rank join algorithm is closely related to
the bounding scheme of the algorithm, which derives the stopping
threshold at each iteration. It has been shown in [20] that an al-
gorithm using the corner-bounding scheme [6] is instance optimal
if and only if the underlying join is a binary join and each rela-
tion contains one value attribute. To ensure instance optimality in
the case of multiple value attributes per relation and multi-way rank
join, Schnaitter et al. [20] proposed the feasible region (FR) bound-
ing scheme. This FR bound was later improved by Finger and Poly-
zotis [4] using the fast feasible region (FR*) bounding scheme.

Suppose each relation has m value attributes, then the basic idea
of FR/FR* bounding scheme is to maintain a cover set CRi for each
relation Ri. CRi stores a set of points that represents the m-dimens-
ional boundary of the values of all unseen tuples in Ri. Given
an n-way rank join over R = {R1, . . . ,Rn}, to derive the stopping
threshold τ, we first enumerate all possible subsets of R. Then for
each subset R′, we derive the maximum possible join result value
by joining the HRs of relations in R′ with the CRs of relations in
R − R′. The threshold τ is the maximum of all such values. We
note that although FR/FR* bounding scheme is tight, its complexity
grows exponentially with the number of relations involved [20]. In-
deed, following Finger and Polyzotis [4], we mainly consider rank
joins with a small number of relations.

In addition to the bounding scheme, the accessing strategy (whi-
ch determines which relation to explore next) may also affect the
performance of the rank join algorithm. For example, a simple
accessing strategy such as round-robin often results in accessing
more tuples than necessary. More efficient accessing strategies
include the corner-bound-adaptive strategy [6] for binary, single
value-attribute rank join and the potential adaptive strategy [4] for
multi-way, multiple value-attribute rank join.

As shown in the introduction, there are many situations where it
is very natural to have aggregation constraints along with rank join.
While previous work on rank join algorithms has devoted much
effort to optimizing the bounding scheme and accessing strategy,
little work has been done on opportunities for improving runtime
efficiency by using constraints that may be present in a query.

One way to handle aggregation constraints in the standard rank
join algorithm is by post-filtering each join result using the aggre-
gation constraints. It can be shown that an algorithm based on post-
filtering remains instance optimal (see Appendix A.2). However, as
we will demonstrate in the next section, this naı̈ve algorithm misses
many optimization opportunities by not taking full advantage of the
properties of the aggregation constraints, and, as we will show in
Sec. 6, can have poor empirical performance as a result. This ob-
servation coincides with recent findings that instance optimal algo-
rithms are not always computationally the most efficient [4].

3.2 Other Related Work
As described in the introduction, rank join can be seen as a gener-

alization of classic top-k querying where one searches for the top-k
objects w.r.t. a number of criteria or features [3]. Ilyas et al. [8]
discussed how to incorporate binary rank join operator into rela-
tional query engines. The query optimization framework used in
[8] follows System R’s dynamic programming-based approach, and
in order to estimate the cost of the rank join operator, a novel prob-
abilistic model is proposed. In [11], Li et al. extended [8] by pro-
viding a systematic algebraic support for relational ranking queries.
Tsaparas et al. proposed in [22] a novel indexing structure for an-
swering rank join queries. In this work, various tuple pruning tech-
niques are studied to reduce the size of the index structure. In [13],
Martinenghi et al. proposed a novel proximity rank join operator
in which the join condition can be based on a nontrivial proxim-
ity score between different tuples. A more detailed survey of top-k
query processing and rank join can be found in [7], We note that no
previous work on rank join has considered aggregation constraints.

Our work is also closely related to recent efforts on package rec-
ommendation [1, 16, 2, 19, 23]. Though some of these works [2,
23] discuss finding high-quality packages under certain aggregation
constraints such as budgetary constraints, none of them provide a
systematic study of aggregation constraints. A detailed comparison
with these works can be found in Appendix C.3.1.

4. DETERMINISTIC ALGORITHM
We begin by illustrating rank joins with aggregation constraints.
Example 3. [Rank Join with Aggregation Constraints] Consider

two relations, Museum and Restaurant, each with three attributes,
Location, Cost and Rating, where Rating is the value attribute
and Location is the join attribute (see Fig. 2). Assume we are
looking for the top-2 results subject to the aggregation constraint
S UM(Cost, true) ≤ 20. Under the corner bounding scheme and
round-robin accessing strategy, the algorithm will stop after access-
ing 5 tuples in Museum and 4 tuples in Restaurant. Note that even
though the joinable set {t3, t7} has a high value, it is not a top-2 re-
sult because it does not satisfy the constraint.
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Figure 2: Post-filtering rank join with aggregation constraints.
Our motivation in this section is to develop efficient pruning

techniques for computing rank joins with aggregation constraints
fast. Thereto, we first present a number of properties of aggrega-
tion constraints and show how these properties can be leveraged to
prune seen tuples from the in-memory buffers. We then propose
an efficient rank join algorithm supporting aggregation constraints
that minimizes the number of tuples that are kept in the in-memory
buffers, which in turn helps cut down on useless joins.



4.1 Properties of Aggregation Constraints
Let pc ::= AGG(A, p) θ λ be a primitive aggregation constraint

(PAC). In order to use pc to prune seen tuples, we first study proper-
ties of the various forms of pc, i.e., for AGG ∈ {MIN,MAX, S UM}
and θ ∈ {≤,≥,=}.

First consider the cases when AGG is MIN and θ is ≥, or AGG
is MAX and θ is ≤. These cases are the simplest because pc need
only be evaluated on each seen tuple individually rather than on a
full joinable set. When accessing a new tuple t, if A ∈ schema(t)
and t satisfies p, we can simply check whether t.A θ λ holds. If not,
we can prune t from future consideration as pc will not be satisfied
by any join result including t. After this filtering process, all join
results obtained by the algorithm must satisfy the constraint pc. We
name this property the direct-pruning property.

When AGG ∈ {MAX, S UM} and θ is ≥, or AGG is MIN and θ
is ≤, the corresponding aggregation constraint pc is monotone.

Definition 2. (Monotone Aggregation Constraint) A PAC pc
is monotone if ∀t ∈ R, ∀s ∈ JS, where R < Rel(s): if {t} |= pc and
{t} ./ s , ∅, then {t} ./ s |= pc.

For the case when AGG is SUM and θ is ≤, the PAC is anti-
monotone. This means that if a tuple t does not satisfy pc, no join
result of t with any partial joinable set will satisfy PAC either.3

Definition 3. (Anti-Monotone Aggregation Constraint) A P-
AC pc is anti-monotone if ∀t ∈ R, ∀s ∈ JS, where R < Rel(s): if
{t} 6|= pc, then either {t} ./ s = ∅ or {t} ./ s 6|= pc.

As a special case, when AGG ∈ {MIN,MAX} and θ is =, we
can efficiently check whether all the joinable sets considered satisfy
AGG(A, p) ≥ λ and AGG(A, p) ≤ λ, using a combination of direct
pruning and anti-monotonicity pruning.

Finally, for the case when AGG is S UM and θ is =, it is easy to
see that pc is neither monotone nor anti-monotone. However as dis-
cussed in [14], pc can be treated as a special constraint in which the
evaluation value of a tuple t on pc, Evalpc({t}), determines whether
or not the anti-monotonic property holds. For example, let pc ::=
S UM(A, p) = λ and t be a tuple. If t |= p and {t} 6|= pc, then
either Evalpc({t}) > λ or Evalpc({t}) < λ. In the first case, the
anti-monotonic property still holds. We call this conditional anti-
monotonic property c-anti-monotone. Table 1 summarizes these
properties.
AGG\θ ≤ ≥ =

MIN monotone direct-pruning monotone after pruning
MAX direct-pruning monotone monotone after pruning
SUM anti-monotone monotone c-anti-monotone

Table 1: Properties of primitive aggregation constraints.
Properties like direct-pruning, anti-monotonicity and c-anti-mon-

otonicity can be used to filter out tuples that do not need to be
maintained in buffers. However, this pruning considers each tuple
individually. In the next subsection, we develop techniques for de-
termining when tuples are “dominated” by other tuples. This helps
in pruning even more tuples.

4.2 Subsumption-based Pruning
Consider Example 3 again. After accessing four tuples from

Museum and three tuples from Restaurant (see Figure 3), the al-
gorithm cannot stop as it has found only one join result. Further-
more we cannot prune any seen Museum tuple since each satisfies
the constraint. However, it turns out that we can safely prune t4

(from Museum) because, for any unseen tuple t′ from Restaurant,
3The cases where AGG is MAX and θ is ≤ and AGG is MIN and
θ is ≥ are also anti-monotone, but they can be handled using direct
pruning, discussed above.

if t′ could join with t4 to become a top-2 result, t′ could also join
with t1 and t2 without violating the constraint and giving a larger
score.
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Figure 3: Tuple pruning using aggregation constraints.

The above example shows that, in addition to the pruning that
is directly induced by the properties of the aggregation constraints,
we can also prune a tuple by comparing it to other seen tuples from
the same relation. As we discuss in the next section, this pruning
can help to reduce the number of in-memory join operations. The
key intuition behind pruning a tuple t ∈ R in this way is the follow-
ing. Call a join result feasible if it satisfies all applicable aggrega-
tion constraints. To prune a seen tuple t ∈ R, we should establish
that whenever t joins with tuples (joinable set) s from other rela-
tions to produce a feasible join result ρ, then there is another seen
tuple t′ ∈ R that joins with s and produces a feasible result whose
overall value is more than that of ρ. Whenever this condition holds
for a seen tuple t ∈ R, we say t′ beats t. If there are k distinct seen
tuples t′1, ..., t

′
k ∈ R such that each of them beats t, then we call t

beaten. Clearly, a seen tuple that is beaten is useless and can be
safely pruned. In the rest of this section, we establish necessary
and sufficient conditions for detecting (and pruning) beaten tuples
among those seen. Thereto, we need the following notion of tuple
domination.

Definition 4. (pc-Dominance Relationship) Given two tuples
t1, t2 ∈ R , t1 pc-dominates t2, denoted t1 �pc t2, if for all s ∈ JS,
s.t. R < Rel(s), {t2} ./ s , ∅ and {t2} ./ s |= pc, we have {t1} ./ s , ∅
and {t1} ./ s |= pc.

Intuitively, a tuple t1 pc-dominates another tuple t2 from the
same relation (for some given PAC pc) if for any possible partial
joinable set s which can join with t2 and satisfy pc, s can also join
with t1 without violating pc.

Note that the pc-dominance relationship defines a quasi-order
over tuples from the same relation since it is reflexive and transitive
but not anti-symmetric: there may exist two tuples t1 and t2, such
that t1 �pc t2, t2 �pc t1, but t1 , t2.

For the various PACs studied in this paper, we can characterize
precisely when the pc-dominance relationship holds between tu-
ples. The conditions depend on the type of the PAC.

First of all, consider a monotone PAC pc. Because pc is mono-
tone, given a tuple t, if t |= pc, then the join result of t with
any other joinable set will also satisfy pc, as long as t is join-
able with s. So we have the following lemma4 in the case where
pc ::= S UM(A, p) ≥ λ.

Lemma 1. Let pc ::= S UM (A, p) ≥ λ be a primitive aggrega-
tion constraint and t1, t2 be tuples in R. Then t1 �pc t2 iff t1.J = t2.J
and either t1 |= pc or t1.A ≥ t2.A.

We can prove a similar lemma for the other monotonic aggre-
gation constraints, where AGG is MIN and θ ∈ {≤,=}, or AGG is
MAX and θ ∈ {≥,=}.

Lemma 2. Let pc be a primitive aggregation constraint in which
AGG is MIN and θ ∈ {≤,=}, or AGG is MAX and θ ∈ {≥,=}. Given
two tuples t1 and t2, t1 �pc t2 iff t1.J = t2.J and either t1 |= pc or
t2 6|= pc.
4Proofs are given in Appendix B.



For the anti-monotone constraint pc ::= S UM(A, p) ≤ λ, we can
directly prune any tuple t such that t 6|= pc; however, for tuples that
do satisfy pc, we have the following lemma.

Lemma 3. Let pc ::= S UM (A, p) ≤ λ be a primitive aggrega-
tion constraint and t1, t2 be two tuples such that t1 |= pc and t2 |= pc.
Then t1 �pc t2 iff t1.J = t2.J and t1.A ≤ t2.A.

Similarly, for the c-anti-monotone constraint S UM(A, p) = λ,
we have the following lemma.

Lemma 4. Let pc ::= S UM (A, p) = λ be a primitive aggrega-
tion constraint and t1, t2 be two tuples such that t1 |= S UM(A, p) ≤
λ and t2 |= S UM(A, p) ≤ λ. Then t1 �pc t2 iff t1.J = t2.J and
t1.A = t2.A.

Given the pc-dominance relationship for each individual aggre-
gation constraint, we can now define an overall subsumption rela-
tionship between two tuples.

Definition 5. (Tuple Subsumption)Let t1, t2 be seen tuples in
R and ac ::= pc1 ∧ · · · ∧ pcm be an aggregation constraint. We say
that t1 subsumes t2, denoted t1 � t2, if t1.J = t2.J, t1.V ≥ t2.V and,
for all pc ∈ {pc1, . . . , pcm}, t1 �pc t2

5.

Recall, the main goal of this section is to recognize and prune
beaten tuples. The next theorem says how this can be done.

Theorem 1. Given an RJAC problem instance I = {R, S , jc,
ac, k}, let T be the set of seen tuples from relation Ri. Tuple t ∈ T
is beaten iff t is subsumed by at least k other tuples in T .

4.3 Efficient Algorithm for Top-k RJAC
Given an instance of RJAC, I = (R, S , jc, ac, k), our algorithm

kRJAC (see Algorithm 1) follows the standard rank join template [6,
20] as described in Section 3.1. However, it utilizes the pruning
techniques developed in Sec. 4.1 and 4.2 to leverage the power of
aggregation constraints.

Algorithm 1: kRJAC(R, S , jc, ac, k)

1 τ←∞;
2 O← Join result buffer;
3 while |O| < k ∨ v(O.kthResult) < τ do
4 i← ChooseInput();
5 ti ← Ri.next();
6 if Promising(ti, ac) /* (c-)Anti-monotone pruning */
7 if ¬(Prune(ti,HRi,ac,k)) /* Subsumption pruning */
8 ConstrainedJoin(ti, HR, ac, O);

9 τ← UpdateBound(ti, HR, ac);

Below, we first explore the pruning opportunities in the kRJAC
algorithm using aggregation constraints (lines 6–8), and then dis-
cuss how the presence of aggregation constraints can affect the ac-
cessing strategy (line 4) and the stopping criterion (line 9).

4.3.1 Optimizing In-Memory Join Processing
First of all, to leverage the (c-)anti-monotonicity property of the

aggregation constraints, in line 6 of Algorithm 1, whenever a new
tuple ti is retrieved from relation Ri, we invoke the procedure Promis-
ing (see Algorithm 2) which prunes tuples that do not satisfy the
corresponding aggregation constraint. In Appendix C we describe
how we can potentially filter further tuples if additional informa-
tion, such as a histogram, is available for each attribute,
5Let rk be the kth join result in RS ac

k . To handle the case where all
join results which have the same score as rk need to be returned, we
can change the condition t1.V ≥ t2.V in Definition 5 to t1.V > t2.V
and report all such results.

Let HR = {HR1, . . . ,HRn} be the in-memory buffers for all seen
tuples from each relation. Similar to previous work [6], in line 8
of Algorithm 1, when a new tuple ti is seen from Ri, we perform
an in-memory hash join of ti with seen tuples from all HR j, j , i.
The idea of this hash join process is that we break each HRi into
hash buckets based on the join attribute value. Note that for an
RJAC problem instance in which no join condition is present or
jc = true, all seen tuples from the same relation will be put into the
same hash bucket.

Algorithm 3 shows the pseudo-code for the aggregate-constrained
hash join process. We first locate all relevant hash buckets from
each relation (lines 1–2), then join these buckets together and fi-
nally check, for each join result found, whether it satisfies the ag-
gregation constraints or not (lines 3–5).

Algorithm 2: Promising(ti, ac)

1 foreach pc in ac do
2 if pc ::= MIN(A, p) ≥ (=) λ return Evalpc({ti}) ≥ λ;
3 else if pc ::= MAX(A, p) ≤ (=) λ return Evalpc({ti}) ≤ λ;
4 else if (pc ::= S UM(A, p) ≤ λ) ∨ (pc ::= S UM(A, p) = λ)
5 return Evalpc({ti}) > λ;

6 return true

Algorithm 3: ConstrainedJoin(ti, HR, ac, O)

1 for j = 1, . . . , i − 1, i + 1, . . . , n do
2 B j = LocateHashBuckets(ti.J, HR);

3 foreach s ∈ B1 ./ · · · ./ Bi−1 ./ {ti} ./ Bi+1 ./ · · · Bn do
4 if s |= ac and v(s) > v(O.kthResult)
5 Replace O.kthResult with s.

One important observation about this hash join process is that
the worst case complexity for each iteration is O(|HR1| × · · · ×

|HRi−1| × |HRi+1| × · · · × |HRn|), which can result in a huge per-
formance penalty if we leave all seen tuples in the corresponding
buffers. As a result, it is crucial to minimize the number of tuples
retained in the HR’s. Next we will show how our subsumption-
based pruning, as discussed in Section 4.2, can be used to remove
tuples safely from HR.

Consider a hash bucket B in HRi and a newly seen tuple ti. We
assume every tuple in a bucket B has the same join attribute value,
so according to Theorem 1, if we find that there are at least k tuples
in B which subsume ti, we no longer need to place ti in HRi. This
is because we already have at least k tuples in B that are at least as
good as ti. We call this pruning subsumption-based pruning (SP).
Furthermore, ti does not need to be joined with HR j, j , i, as
shown in line 7 of Algorithm 1. We will show in Sec.6 that this
subsumption-based pruning can significantly improve the perfor-
mance of the kRJAC algorithm.

Algorithms 4 and 5 give the pseudo-code for the subsumption-
based pruning process. We maintain for each tuple t a count t.scount
of the number of seen tuples that subsume t. Note that, although in
the pseudo-code we invoke the Subsume procedure twice for each
tuple t in the current hash bucket B, the two invocations can in fact
be merged into one in the implementation.

So given the basic subsumption-based pruning algorithm as pre-
sented in Algorithm 4, a natural question to ask is whether can we
prune more tuples from the buffer? The answer is “yes”. Assume
we are looking for the top-k join results. As we consume more tu-
ples from the underlying relations, the value of the stopping thresh-
old τ may continue to decrease, which means some join results in
the output buffer O may have a value larger than τ. These join
results are guaranteed to be among the top-k and can be output.



Algorithm 4: Prune(ti, HRi, ac, k)

1 B← LocateBucket(ti, HRi);
2 foreach t ∈ B do
3 if Subsume(t, ti, ac) ti.scount ← ti.scount + 1;
4 if Subsume(ti, t, ac)
5 t.scount ← t.scount + 1;
6 if t.scount ≥ k Remove t from B;

7 return ti.scount ≥ k;

Algorithm 5: Subsume(t1, t2, ac)

1 if t1.V < t2.V return f alse;
2 Dominate← true;
3 foreach pc in ac do
4 switch pc do
5 case MIN(A, p) ≤ (=)λ and MAX(A, p) ≥ (=)λ
6 Dominate = Dominate ∧ (t1 |= pc or t2 6|= pc);

7 case S UM(A, p) ≥ λ
8 Dominate = Dominate ∧ (t1 |= pc or t1.A ≥ t2.A);

9 case S UM(A, p) ≤ λ
10 Dominate = Dominate ∧ (t1.A ≥ t2.A);

11 case S UM(A, p) = λ /* {t1}, {t2} |= S UM(A, p) ≤ λ */
12 Dominate = Dominate ∧ (t1.A = t2.A);

13 return Dominate;

Now suppose that the top k′ results, for some k′ < k, have been
found so far. Then it is clear that we need only look for the next top
k − k′ results among the remaining tuples. So when applying our
subsumption-based pruning, we could revise k to k − k′, i.e., in a
hash bucket B of a buffer HRi, if a new tuple ti is subsumed by k−k′

other tuples in HRi, we can safely prune ti from that buffer. We call
this optimization adaptive subsumption-based pruning (ASP).

Consider the example of Figure 4. After retrieving four tuples
in the Museum relation and three tuples in the Restaurant relation,
we find one joinable set {t3, t8} which is guaranteed to be the top-1
result, and we have pruned t4. Using adaptive subsumption-based
pruning, we can now also prune t2 as it is subsumed by t1.
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Figure 4: Adaptive subsumption-based pruning.

If adaptive subsumption-based pruning is utilized, from the cor-
rectness and completeness proof of Theorem 1, we can derive the
following corollary.

Corollary 1. At the end of each iteration of the kRJAC algo-
rithm, the number of accessed tuples retained in memory for each
relation is minimal.

In the worst case, the overhead of the rank join algorithm using
subsumption-based pruning compared to one which does not per-
form any pruning (both algorithms will stop at the same depth d)
will be O(d2 · cdom), where cdom is the time for one subsumption
test. This worst case situation will happen when no tuples seen
from a relation subsume any other tuples. However, as we show in
Section 6, this seldom happens, and often d is very small after our
pruning process.

4.3.2 Bounding Scheme and Accessing Strategy
When rank join involves more than two relations, the corner-

bounding strategy should be replaced by a bounding strategy based
on cover sets [4, 20]. As described in Section 3, for the optimal
bounding scheme, to derive the stopping threshold τ, we need to
consider each subset R′ of R, and join the HRs of relations in R′
with the CRs of relations in R − R′. Because the cover set CRi of
each relation Ri considers only the value of an unseen item, data
points in CRi can be joined with any other tuple from a tuple buffer
HR j, where i , j. So the presence of aggregation constraints does
not affect the operations in the bounding scheme that are related
to the cover set, which means when joining CRs of R − R′, and
when joining the join results of CRs of R − R′ and join results
of HRs of R′, we don’t need to consider aggregation constraints.
However, when joining HRs of R′, in order for the derived bound to
be tight, we need to make sure that each partial join result satisfies
the aggregation constraints.

Similarly, for the accessing strategy that decides which relation
to access a tuple from next, because the potential value of each
relation is determined by the bounding scheme as discussed in [4,
6, 20], the existing accessing strategy can be directly used by taking
the modified bounding scheme as described above into account.

5. PROBABILISTIC ALGORITHM
Our kRJAC algorithm in Section 4 returns the exact top-k re-

sults. However, similar to the standard NRA [3] algorithm, this
deterministic approach may be conservative in terms of its stop-
ping criterion, which means that it still needs to access many tuples
even though many of them will be eventually pruned. Theobald et
al. [21] first investigated this problem and proposed a probabilistic
NRA algorithm; however, their algorithm and analysis cannot be
directly used to handle rank join (with aggregation constraints). In
the rest of this section, we will describe a probabilistic algorithm,
based on the framework of [21], which accesses far fewer tuples
while guaranteeing the quality of the results returned.

Let I = (R, S , jc, ac, k) be a RJAC problem instance, where
R = {R1, . . . ,Rn}. The main problem we need to solve is, at any
stage of the algorithm, to estimate the probability that an unseen
tuple can achieve a value better than the value of the kth tuple in
the top-k buffer. This probability will clearly depend on the selec-
tivity of the join condition jc and on the aggregation constraint ac.
We assume the join selectivity of jc over R can be estimated using
some existing techniques such as adaptive sampling [12]. We de-
note the resulting join selectivity by δ jc(R), which is defined as the
estimated number of join results divided by the size of the cartesian
product of all relations in R. Given a set s = {t1, . . . , tn} of n tuples,
where ti ∈ Ri, by making the uniform distribution assumption, we
set the probability P jc of s satisfying jc as δ jc(R). Similarly, con-
sidering each primitive aggregation constraint pc in ac, we can also
estimate the probability Ppc of s satisfying pc as the selectivity of
pc over R, denoted as δpc(R). We discuss in Sec. 5.1 how δpc(R)
can be estimated under common data distribution assumptions. The
probability Pac of s satisfying ac can then be estimated as Pac =∏

pc∈ac Ppc.
Given a set of tuples s = {t1, . . . , tn}, ti ∈ Ri, assuming the join

condition and the aggregation constraints are independent, we can
estimate the probability of s satisfying the join condition jc and the
aggregation constraints ac as P jc∧ac = P jc × Pac.

After some fixed number of iterations of the kRJAC algorithm,
let the value of the kth best join result in the output buffer O be
mink. We can estimate the probability P>mink (Ri) that an unseen tu-
ple ti from Ri can achieve a better result than mink. Suppose the



current maximum value for an unseen item in Ri is vi. To esti-
mate P>mink (Ri), similarly to [21], we assume a histogram HV

j for
the value attribute V of each relation R j ∈ R is available. Then
using the histograms we can estimate the number Ni of tuple sets
{t1, . . . , ti−1, ti+1, . . . , tn}, t j ∈ R j s.t. vi +

∑
j∈{1...n}−{i} v(t j) > mink. We

omit the obvious detail. Then the probability that ti can join with
any of these Ni tuple sets to become one of the top-k results can be
estimated as P>mink (Ri) = 1 − (1 − P jc∧ac)Ni .

Given a user specified threshold ε, we can stop our kRJAC algo-
rithm when ∀i ∈ {1, . . . , n}, P>mink (Ri) ≤ ε.

5.1 Estimating Constraint Selectivity
Given a PAC pc ::= AGG(A, p) θ λ, and n relations R1, . . . ,Rn, to

simplify the analysis, we assume p = true and that attribute values
of different relations are independent.

Consider an example of the binary RJAC problem: given a set
s = {t1, t2}, with t1 ∈ R1, t2 ∈ R2. For the aggregation con-
straint pc ::= S UM(A, true) ≤ λ, it is clear from Figure 5(a) that s
can satisfy pc only when t1.A and t2.A fall into the gray region.
We call this gray region the valid region for pc, denoted VRpc.
Similarly Figure 5(b) illustrates the valid region for the constraint
pc ::= MIN(A, true) ≤ λ.

t1.A

t2.A

0 1

1

λ

λ

t1.A

t2.A

0 1

1

λ

λ

(a) SUM(A,true)≤ λ (b) MIN(A,true)≤ λ 

Figure 5: Selectivity of aggregation constraints.

Based on the valid region VRpc for pc, we can estimate the se-
lectivity of pc by calculating the probability of a tuple set s falling
inside VRpc.

Given a set s = {t1, . . . , tn} of n tuples, ti ∈ Ri, and given a
PAC pc ::= AGG(A, true) θ λ, if we assume t1.A, . . . , tn.A are n in-
dependent random variables following a uniform distribution, we
can calculate the closed formula for the probability P(VRpc) of
t1.A, . . . , tn.A falling inside VRpc as follows:

• If pc ::= S UM(A, true) ≤ λ: P(VRpc) = λn

n! .

• If pc ::= MIN(A, true) ≤ λ: P(VRpc) = 1 − (1 − λ)n.

These facts are easily verified. Because of symmetry, for pc ::=
S UM(A, true) ≥ λ and pc ::= MAX(A, true) ≥ λ, the correspond-
ing probabilities are very similar to pc ::= S UM(A, true) ≤ λ and
pc ::= MIN(A, true) ≤ λ respectively: we only need to replace λ
by 1 − λ in the corresponding formulas. And for a PAC pc where θ
is =, note that the probability is 0 under continuous distributions, so
in practice, we will set these probabilities to a small constant which
is estimated by sampling the database.

Similarly, if we assume that each ti.A follows other distributions
such as exponential distribution, similar formulas can be derived
(see Appendix D).

6. EXPERIMENTS
In this section, we study the performance of our proposed algo-

rithms based on two synthetic datasets. The goals of our experi-
ments are to study: (i) the performance of various pruning tech-
niques, (ii) the performance of the probabilistic method, and (iii)
the result quality of probabilistic method. All experiments were
done on a Intel Core 2 Duo machine with 4GB RAM and 250GB
SCSI hard disk. All code is in C++ and compiled using GCC 4.2.
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Figure 6: Uniform dataset: (a), (b) S UM(A, true) ≥ λ, selectiv-
ity 10−5 ; (c), (d) MIN(A, true) ≤ λ, selectivity 10−5.
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Figure 7: Uniform dataset, S UM(A, true) ≤ λ, selectivity 10−5.

We call the synthetic datasets we generated the uniform dataset
and the exponential dataset. For both datasets, the join selectivity
between two relations is fixed at 0.01 by randomly selecting the
join attribute value from a set of 100 predefined values. The value
and other attributes are set as follows. For the uniform dataset,
the value of each attribute follows a uniform distribution within the
range [0,1]; for the exponential dataset, the value of each attribute
follows an exponential distribution with mean 0.5. Note that in or-
der to ensure values from the exponential distribution fall inside the
range [0,1], we first uniformly pick 1000000 values from [0,1], and
then resample these values following the exponential distribution.
Values of each attribute are independently selected. Results on the
exponential dataset can be found in Appendix E.

We implemented four algorithms: (a) the post-filtering based
rank join algorithm (Post Filtering); (b) the deterministic algorithm
with subsumption based pruning (SubS-Pruning); (c) the determin-
istic algorithm with adaptive subsumption based pruning (Adaptive
SubS-Pruning); (d) the probabilistic algorithm with subsumption
based pruning.

6.1 Efficiency Study
We first compare the algorithms in a binary RJAC setting. As can

be seen from Figure 6, subsumption based pruning works very well
for monotonic constraints. One interesting observation from Fig-
ure 6(d) is that, adaptive subsumption based pruning does not prune
significantly more tuples than non-adaptive subsumption based pru-
ning. By inspecting the dataset, we found out this is because there
are k tuples which subsume every other tuple, so the adaptive prun-
ing strategy has no effect in this case.



Figure 7 shows another example of one aggregation constraint,
S UM(A, true) ≤ λ, under the selectivity of 10−5. As discussed in
previous sections, such a constraint can result in both anti-monoton-
icity based pruning and subsumption based pruning. However, as
can be seen from Figure 7, the anti-monotonicity based pruning can
be very powerful which, in turn, renders the subsumption based
pruning less effective.

We also tested our algorithms in settings where we have binary
RJAC and multiple aggregation constraints (see Figure 8). For
the case of S UM(A, true) ≥ λ and S UM(B, true) ≤ λ and over-
all selectivity is 10−5 ((a) and (b)), because of the presence of an
anti-monotone constraint, many tuples can be pruned so the sub-
sumption based algorithm outperforms the post-filtering algorithm.
However, as can be seen from Figure 8(c) and (d), when the selec-
tivity of aggregation constraints is very high and no anti-monotonic
or direct-pruning aggregation constraint is present, the overhead of
subsumption testing causes the execution time of the subsumption
based algorithms almost to match that of the post-filtering based
algorithm. As future work, we would like to study cost-based opti-
mization techniques which can be used to help decide which strat-
egy should be used.
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Figure 8: Uniform dataset: (a), (b) S UM(A, true) ≥

λ, S UM(B, true) ≤ λ, overall selectivity 10−5 ; (c), (d)
S UM(A, true) ≥ λ, S UM(B, true) ≥ λ, overall selectivity 10−5.

6.2 Probabilistic Algorithm
Similar to previous work on a probabilistic NRA algorithm, Fig-

ures 6, 7 and 8 show that our probabilistic algorithm will stop ear-
lier than the deterministic and post-filtering based algorithms. In
most experiments, the probabilistic algorithm accesses far fewer
tuples from the underlying database than the other algorithms. We
note that this property can be very important for scenarios where
tuples are retrieved using web services [3], for example, as a mon-
etary cost might be associated with each access and the latency of
retrieving the next tuple might be very high.

In terms of the quality of results returned, as Figure 9 shows
for binary RJAC with several different aggregation constraints, the
value of the join results returned by the probabilistic algorithm at
each position k is very close to the exact solution. The percent-
age of value difference at each position k is calculated as

v(sk)−v(s′k)
v(sk) ,

where sk is the exact kth result and s′k is the kth result returned by
the probabilistic algorithm.
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Figure 9: Quality of the probabilistic algorithm.

7. CONCLUSION
In this paper, we motivated the use of aggregation constraints

in rank join queries. By analyzing their properties, we developed
deterministic and probabilistic algorithms for their efficient pro-
cessing. In addition to showing that the deterministic algorithm
retains the minimum number of accessed tuples in memory at each
iteration, we empirically showed both our deterministic and proba-
bilistic algorithms significantly outperform the obvious alternative
of rank join followed by post-filtering in many cases and that the
probabilistic algorithm produces results of high quality.
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APPENDIX
A. RANK JOIN ALGORITHM

A.1 Algorithm Template for Rank Join

Algorithm 6: RJ(R, S , jc, k)

1 τ←∞;
2 O← Join result buffer;
3 while |O| < k ∨ v(O.kthResult) < τ do
4 i← ChooseInput();
5 ti ← Ri.next();
6 R← HR1 ./ ... ./ HRi−1 ./ {ti} ./ HRi+1 ./ ... ./ HRn;
7 Add R to O, retain top-k join results;
8 HR.insert(ti);
9 τ← UpdateBound(ti, HR);

A.2 Post-Filtering based Algorithm
Given an instance optimal algorithm RJ for the rank join prob-

lem, we will show in this section that some simple modifications
based on post-filtering can make the resulting algorithm, denoted
RJPF, instance optimal for the RJAC problem.

RJPF differs from RJ in the following two respects: (1) Each
newly generated candidate join result will be filtered using the ag-
gregation constraints; (2) When deriving the upperbound τ on the
value that can be achieved using any unseen tuple, in order to make
the upperbound τ tight, each “potential” join result which involves
an unseen item also needs to be filtered using the aggregation con-
straints; this can be done by assuming that each attribute of an un-
seen item can take an arbitrary value in the range of [0,1]. Similar
to RJ, RJPF will stop once there are at least k join results in the
output buffer O which satisfy the aggregation constraints and have
value no less than τ.

Now consider a class A of algorithms which access tuples in
non-increasing order of their value and a class D of data instances
for rank join with aggregation constraints. We will show that RJPF
with a round-robin accessing strategy 6 is instance optimal.

Theorem 2. RJPF with round-robin accessing strategy is in-
stance optimal within the class of algorithms A and instances D
with an optimality ratio of n, where n is the number of relations
involved.

Proof. Given an RJAC instance I = (R, S , jc, ac, k), I ∈ D, let
A be an arbitrary algorithm from A. Assume A needs to access pi

tuples from each relation Ri ∈ R and let pmax = max({p1, . . . , p|R|}).
We claim that the algorithm RJPF will not access more than pmax

tuples from each relation Ri ∈ R. We prove this claim by contradic-
tion. W.l.o.g., assume there are at least k join results satisfying ac.
At the time when A stops, because RJPF cannot stop, it must be
true that the kth join result which satisfies ac has value smaller than
the upperbound τ. However, because the bounding scheme is tight,
we can find a configuration of the unseen items in I such that the
current top-k join results are not the actual top-k join results, which
contradicts the assumption that A can return the correct top-k join
results when it stops. So RJPF need not access more than pmax

tuples from each relation, and thus, cost(RJPF, I) ≤ n × cost(A, I),
n = |R|.
6Similar to [20], it can be shown that RJPF with an adaptive ac-
cessing strategy never accesses more tuples than RJPF with the
round-robin accessing strategy, so is also instance optimal.

B. PROOFS FOR SECTION 4.2

B.1 Proof of Lemma 1
Proof. (If) Consider t1.J = t2.J, if {t1} |= pc, because pc is

monotone, for any joinable set s s.t. {R} ∩ Rel(s) = ∅ and {t1} ./
s , ∅, we will have {t1} ./ s |= pc. Then ∀s ∈ JS, if {t2} ./ s , ∅,
because t1.J = t2.J, we know {t1} ./ s , ∅, so {t1} ./ s |= pc,
and t1 �pc t2. On the other hand, if t1.A ≥ t2.A, for all s ∈ JS, if
{t2} ./ s , ∅ and {t2} ./ s |= pc: first, we know {t1} ./ s , ∅; second,
because {t2} ./ s |= pc, t2.A +

∑
t∈s t.A ≥ λ, then t1.A +

∑
t∈s t.A ≥ λ,

so {t1} ./ s |= pc, so again we have t1 �pc t2.
(Only if) Because t1 �pc t2, for all s ∈ JS s.t. {R} ∩ Rel(s) = ∅,

{t2} ./ s , ∅ and {t2} ./ s |= pc, according to the definition of
pc-dominance: first, we have {t1} ./ s , ∅; second, {t1} ./ s |= pc
must be true. Consider the second point where {t1} ./ s |= pc, if
{t1} |= pc, because pc is monotonic this obviously hold. If {t1} 6|=

pc, assume to the contrary that t1.A < t2.A, consider a tuple t′ ∈ R′

s.t., {R} ∩ {R′} , ∅ and t′.A = λ − t2.A, it is clear {t2} ./ {t′} |= pc,
however {t1} ./ {t′} 6|= pc, so t1 �pc t2 which contradict with the
assumption that t1 �pc t2.

B.2 Proof of Lemma 2
The proof is similar to that of Lemma 1, so omitted here for

brevity.

B.3 Proof of Lemma 3
Proof. (If) Consider t1.J = t2.J, ∀s ∈ JS, if {t2} ./ s , ∅ and

{t2} ./ s |= pc: first, we know {t1} ./ s , ∅; second, we know
t2.A+

∑
t∈s t.A ≤ λ, because t1.A ≤ t2.A, we have t1.A+

∑
t∈s t.A ≤ λ,

so {t1} ./ s |= pc and t1 �pc t2.
(Only if) Because t1 �pc t2, for all s ∈ JS s.t. {R} ∩ Rel(s) = ∅,

{t2} ./ s , ∅ and {t2} ./ s |= pc, according to the definition of
pc-dominance: first, we have {t1} ./ s , ∅; second, {t1} ./ s |= pc
must be true. Consider the second point where {t1} ./ s |= pc,
assume to the contrary that t1.A > t2.A, consider a tuple t′ ∈ R′

s.t., {R} ∩ {R′} , ∅ and t′.A = λ − t2.A, it is clear {t2} ./ {t′} |= pc,
however {t1} ./ {t′} 6|= pc, so t1 �pc t2 which contradict with the
assumption that t1 �pc t2.

B.4 Proof of Lemma 4
The proof is similar to that of Lemma 3, so is omitted here for

brevity.

B.5 Proof of Theorem 1
Proof. (If) Let t be subsumed by k tuples t1, ..., tk, let s be the

best full joinable set which contains t, i.e., t ∈ s, s |= ac and ∀s′ ∈
JS, if t ∈ s′ and s′ |= ac, we have v(s) ≥ v(s′). Now assume
we cannot find k other full joinable sets s1, ..., sk, s.t., si |= ac, t <
si, and v(si) ≥ v(s). Because ti � t, i = 1...k, according to the
subsumption definition, we know {ti} ./ s−{t} , ∅, {ti} ./ s−{t} |= ac
and furthermore ti.V ≥ t.V , which means v({ti} ./ s−{t}) ≥ v(s). So
this contradicts with the assumption that we cannot found k other
full joinable sets that don’t contain t.

(Only If) We will show that if t cannot be subsumed by k other
seen tuples, there must be a configuration of the remain unseen tu-
ples such that t can join with some unseen tuples to become the
top-k results. Without loss of generality, assume t cannot be sub-
sumed by any other tuples, and we will prove that t may become
the top-1 result.7 And to simplify the presentation, we consider the
7For the general case where t is subsumed by k′ tuples, where k′ <
k, we can first remove the k′ tuples that dominate t, and prove t can
become the top-1 result among the remaining ones.



join performed here is a binary join, but note that the result here
can be easily extended the case of multi-way rank join.

Assume to the contrary that for all possible unseen tuple t′ from
another relation R′ s.t. {t} ./ {t′} , ∅, there exists a tuple ti ∈ T , s.t.
ti , t, {ti} ./ {t′} , ∅, {ti} ./ {t′} |= ac, and either {t} ./ {t′} 6|= ac or
v({ti} ./ {t′}) ≥ v({t} ./ {t′}).

First of all there must exist ti ∈ T , ti , t and ti.J = t.J, because
otherwise, we can assume there is only one unseen tuple t′ ∈ R′, s.t.
t′.J = t.J and {t} ./ {t′} |= ac. Then obviously, t will join with t′ to
become top-1 result which contradicts with the assumption. So we
assume that there exist seen tuples in T which have the same join
attribute value as t.

Because no tuple in T can subsume t, for each ti ∈ T , ti , t and
ti.J = t.J, it must be true that either ti.V < t.V or there exists pc in
ac s.t. ti �pc t. We first consider each tuple ti ∈ T s.t. ti.V ≥ t.V
and exists pc in ac s.t. ti �pc t.

Let ac′ be the set of primitive aggregation constraints in ac s.t. if
pc ∈ ac′, then ∃ti ∈ T , ti , t, ti.J = t.J, ti.V ≥ t.V and ti �pc t. And
for each pc ∈ ac′, we set T pc = {ti | ti ∈ T, ti , t, ti.J = t.J, ti.V ≥
t.V and ti �pc t}.

In the following, we consider each pc ∈ ac′ separately and try
to find a configuration of an unseen tuple t′ ∈ R′ s.t. ∀ti ∈ T pc,
{t} ./ {t′} |= pc whereas {ti} ./ {t′} 6|= pc8:

1. pc ::= S UM(A, p) ≥ λ:

(a) If t |= pc, because ∀ti ∈ T pc, ti �pc t, from Lemma 1, it
must be true that ti 6|= pc. Assume ∀ti ∈ T pc, ti.A ≤ Ā,
then we set t′.A < λ − Ā. So ∀ti ∈ T pc, {t} ./ {t′} |= pc
whereas {ti} ./ {t′} 6|= pc.

(b) If t 6|= pc, because ∀ti ∈ T pc, ti �pc t, from Lemma 1, it
must be true that ti.A < t.A. We can set t′.A = λ − t.A,
then ∀ti ∈ T pc, {t} ./ {t′} |= pc whereas {ti} ./ {t′} 6|= pc.

2. pc ::= MIN(A, p) ≤ λ or pc ::= MIN(A, p) = λ: Because
∀ti ∈ T pc, ti �pc t, from Lemma 2, we know that it must
be true that t |= pc and ti 6|= pc, because otherwise ti will
dominate t. So we can simply set the value of t′ on attribute
A s.t. t′.A > λ, then ∀ti ∈ T pc, {t} ./ {t′} |= pc whereas
{ti} ./ {t′} 6|= pc.

3. pc ::= MAX(A, p) ≥ λ and pc ::= MAX(A, p) = λ: Similar
to case 1, except that we set t′.A < λ.

4. pc ::= S UM(A, p) ≤ λ: because ∀ti ∈ T pc, ti �pc t, from
Lemma 3, we know t.A < ti.A, so we can set t′.A = λ − t.A,
then ∀ti ∈ T pc, {t} ./ {t′} |= pc whereas {ti} ./ {t′} 6|= pc.

5. pc ::= S UM(A, p) = λ: We only need to consider the case
where t |= S UM(A, p) ≤ λ and ti |= S UM(A, p) ≤ λ, as oth-
erwise, t and/or ti will be filtered using the c-anti-monotone
property. Then from Lemma 4, we know ti.A , t.A, so when
set t′.A = λ − t.A, ∀ti ∈ T pc, {t} ./ {t′} |= pc whereas
{ti} ./ {t′} 6|= pc.

Consider the unseen item t′ ∈ R′ is configured as in the above
process, now for each tuple ti ∈ T s.t. ti.J = t.J and ti.V < t.V , it is
clear, either {ti} ./ {t′} 6|= ac or v({ti} ./ {t′}) < {t} ./ {t′}, so {t} ./ {t′}
is still a better join result.

So to sum, we find an unseen item t′ from R′ s.t. ∀ti ∈ T , ti , t,
we will have {ti} ./ {t′} = ∅, or v({t} ./ {t′}) > v({ti} ./ {t′}), or
exists pc in ac, {t} ./ {t′} |= ac and {ti} ./ {t′}) 6|= ac. So we find a
configuration of unseen items such that t will become top-1 result,
this contradicts the assumption.

8Note that we don’t need to consider direct-pruning aggregation
constraints as they will always hold after the filtering process.

C. DISCUSSION
In this section, we discuss several extensions to this work and

briefly sketch the main ideas for realizing the extensions.

C.1 Multi-Constraints per Attribute
Given a set of relations R = {R1, . . . ,Rn}, consider an aggrega-

tion constraint ac = pc1 ∧ ...∧ pcn is imposed on the same attribute
A. Then before initiating any algorithm, we need first to ensure that
the n PACs in ac are satisfiable, which means there exists a joinable
set s from R, such that all the n PACs are satisfied by s from R. E.g.,
if pci ::= MIN(A, true) ≥ 20 and pc j ::= MAX(A, true) ≤ 10, we
should identify that the two aggregation constraints are not satisfi-
able by any joinable set. Some previous work [18] on satisfiability
of aggregation constraints can be leveraged to handle this problem.

In addition, the presence of multiple constraints on one attribute
can also affect our necessary condition of determining whether a
tuple t can be pruned. Recall in Theorem 1, a tuple t is beaten only
if t is subsumed by at least k other tuples in the corresponding seen
tuple buffer. Now consider a binary RJAC problem and assume we
are looking for the top-1 result. Let A ∈ schema(t) be an attribute
and assume we have two PACs, pc1 ::= MIN(A, true) ≤ 100 and
pc2 ::= MAX(A, true) ≥ 10. Assume further that t1 and t2 are
tuples from the same relation s.t. t.V = t1.V = t2.V , t.A = 50,
t1.A = 120 and t2.A = 5. It is clear that {t} |= pc1, {t} |= pc2,
{t1} 6|= pc1 and {t2} 6|= pc2. So we can derive from our pc-dominate
relationship that t cannot be subsumed by either t1 or t2. However,
consider an arbitrary tuple t′ from the other relation which can join
with t, and so can also join with t1 and t2. Because either t′.A ≤ 100
or t′.A ≥ 10 must be true, it means either {t′, t1} or {t′, t2} can satisfy
both aggregation constraints. So for all possible t′, we will always
have a joinable set s which satisfy all aggregation constraints and
has at least the same value as the the join result of t and t′, which
means we can prune t.

C.2 Further Optimization using Background
Information

The properties of aggregation constraints discussed in Section 4
are general rules which mean they can be applied to all possible
data instances. However, this generality also limits their pruning
ability as the information about the data itself is ignored.

In practice, because data are often stored in a database, simple
statistics like boundary values or a histogram of each attribute often
come for free, and this information can be used to reason whether
a tuple t can potentially satisfy an aggregation constraint or not.

Given a relation R and an attribute A, assume statistical infor-
mation about the values of A is stored in a single dimensional his-
togram [9], denoted R.HA, or HA if there is no ambiguity. An equi-
depth histogram [9], in which tuples are divided into a number of
buckets and each bucket holds statistical information for the same
number of tuples, is a popular choice among single dimensional
histograms.

For a histogram HA, we denote the number of buckets in HA as
|HA|, and let the set of buckets in HA be {B1, ..., B|HA |}. For each
bucket Bi, the number of tuples in Bi is |Bi|, and attribute values
of these tuples are bounded by Bi.lb and Bi.ub. We assume a copy
of HA can be obtained when performing top-k query processing, so
the value of |Bi| can be easily adjusted as we access new items.

Given the histogram information for each relation, we can easily
derive rules for determining whether a tuple t can potentially satisfy
the aggregation constraint ac.

Considering a PAC pc ::= AGG(A, p) θ λ in which AGG ∈
{MIN,MAX} and a tuple t, then t can potentially satisfy pc if there
exists a relation R s.t. for the corresponding histogram HA of R, we



can find a non-empty bucket which contains a value that satisfies
pc.

Similarly, for a PAC pc in which AGG = S UM, θ ∈ {≤,≥} and
a tuple t, we can check the histograms of the remaining relations
R′ = R − Rel({t}) and verify whether the maximum/minimum sum
of the tuples from R′ can satisfy pc along with t.

For a PAC pc ::= AGG(A, p) = λ, note that the problem of
determining whether a subset of values from the histograms can
add up to a constant λ resembles the classical Subset Sum prob-
lem [5], which means that under query complexity, the problem
is NP-Complete. However, in practice, the total number of rela-
tions to be joined is often bounded by a small number, and un-
der data complexity, this problem is polynomial-time solvable. Let
R′ = R − Rel({t}) be the set of remaining relations for a tuple t, we
can check whether t may potentially satisfy pc by enumerating all
possible combinations of entries in the corresponding histograms
of relations in R′.

So in Algorithm2 of Section 4, in addition to pruning tuples us-
ing the basic aggregation constraint properties, if histogram infor-
mation is given, we can also check for each PAC pc ∈ ac whether
ti may potentially satisfy pc or not.

C.3 Rank Outer-joins with Aggregation Con-
straints

For some applications like package recommendation [23, 2], use-
rs may benefit from further flexibility in the schema of the rank join
result, e.g., we may want to join as many tuples together as possi-
ble as long as the overall cost of all tuples does not exceed the cost
budget.

For such requests, we need to extend the current semantics of
the rank join operator to rank outer-join. We note that some of
the pruning techniques proposed in this work, such as direct prun-
ing, can be simply applied to outer rank-join with aggregation con-
straints. Other pruning techniques, such as subsumption-based prun-
ing, can also be adapted to prune tuples which come from the same
relation. However, a systematic study of aggregation constraints
over rank outer-joins is beyond the scope of the current paper, so
we will leave it to be explored as future work.

Next we will give a summary of previous work on package rec-
ommendation.
C.3.1 Related Work on Package Recommendation

Angel et al. [1] proposed an interesting way of finding top-k tu-
ples of entities. Examples of entities include cities, hotels and air-
lines. In this work, they query documents using keywords in order
to determine entity scores. This work leverages the existing rank
join algorithm, but it does not consider aggregation constraints that
a user might impose on the join results.

In CourseRank [16], items need to satisfy complex constraints.
The problem is motivated by a course planning application for stu-
dents, where constraints are of the form “take ki courses from S i”,
where ki is a non-negative integer and S i is a set of courses. Each
course in this system is associated with a score which is calculated
using an underlying recommendation engine. Given a number of
constraints of the form above (and others), the system finds a min-
imal set of courses that satisfies the requirements and has the high-
est score, where one course can satisfy one or more requirements.
Later work [15] extends CourseRank with prerequisite constraints,
and proposes several approximation algorithms that return high-
quality course recommendations which satisfy all the prerequisites.
However, [15, 16] are orthogonal to the problem studied here and
do not consider aggregation constraints on join results. Further-
more, they do not consider the scenario where data can only be
accessed in non-increasing value order.

Motivated by online shopping applications, [19] studies the prob-
lem of recommending “satellite items” related to a given “central
item” subject to a cost budget. The aggregation constraints consid-
ered in this work are quite restricted, and item values are not taken
into account.

Budgetary constraints in package recommendation are studied
in [2] and [23]. In [2], a novel framework is proposed to automati-
cally generate travel itineraries from online user-generated data like
picture uploads, and the authors formulate the problem of recom-
mending travel itineraries of high quality where the travel time is
under a given time budget. The algorithm studied in [2] can find
high quality packages, but it needs to access all items in the system.
In [23], an alternative framework is proposed to find high quality
packages under budgetary constraints. The algorithms proposed in
[23] can optimize the number of items accessed while guaranteeing
the quality of the top-k packages returned.

D. SELECTIVITY ESTIMATION UNDER
EXPONENTIAL DISTRIBUTION

If we assume that each ti.A follows an exponential distribution
with mean 1

µ
, which is relevant when the values of attribute A come

from a Poisson process, we can derive the following formulas. Se-
lectivity for other aggregation functions can be derived similarly.

• If pc ::= S UM(A, true) ≤ λ: P(VRpc) = 1 − e−µλ−∑n
i=2

(µλ)i−1

(i−1)! e−µλ.

• If pc ::= MIN(A, true) ≤ λ: P(VRpc) = (1 − e−µ)n − (e−µλ −
e−µ)n.

To prove the correctness of the above two formulas, consider
x1, . . . , xn as n independent random variables, where each xi fol-
lows the exponential distribution with the probability density func-
tion of p(x) = µe−µx and value range of [0, 1].

Lemma 5. P(
∑

i xi ≤ λ) = 1 − e−µλ −
∑n

i=2
(µλ)i−1

(i−1)! e−µλ

Proof. We prove the lemma by induction. For the base case,
consider n = 1, then:

P(x1 ≤ λ) =

∫ λ

0
µe−µx1 dx1 = −e−µx1 |λ0 = 1 − e−µλ

Now assume when n = i, P(
∑i

j=1 x j ≤ λ) = 1−e−µλ−
∑i

j=2
(µλ) j−1

( j−1)! e−µλ,
then for n = i + 1, we have P(

∑i+1
j=1 x j ≤ λ) = P(

∑i
j=1 x j ≤ λ − xi+1),

so we have:

P(
i+1∑
j=1

x j ≤ λ) = P(
i∑

j=1

x j ≤ λ − xi+1)

=

∫ λ

0
(µe−µxi+1 )(1 − e−µ(λ−xi+1) −

i∑
j=2

(µ(λ − xi+1)) j−1

( j − 1)!
e−µ(λ−xi+1) dxi+1)

=

∫ λ

0
µe−µxi+1 − µe−µλ −

i∑
j=2

µ j((λ − xi+1)) j−1

( j − 1)!
e−µλ dxi+1

= 1 − e−µλ − µλe−µλ −
i∑

j=2

µ jλ j

j!
e−µλ

= 1 − e−µλ −
i+1∑
j=2

(µλ) j−1

( j − 1)!
e−µλ

Lemma 6. P(mini xi ≤ λ) = (1 − e−µ)n − (e−µλ − e−µ)n



Proof.

P(min
i

xi ≤ λ) =
∏

i

(P(0 ≤ xi ≤ 1)) −
∏

i

(P(1 ≥ xi > λ))

= P(0 ≤ xi ≤ 1)n − (P(1 ≥ xi > λ))n

= (
∫ 1

0
µe−µxi dxi)n − (

∫ 1

λ

µe−µxi dxi)n

= (1 − e−µ)n − (−e−µxi |1λ)
n

= (1 − e−µ)n − (e−µλ − e−µ)n

E. EXPONENTIAL DATASET EXPERIME-
NT

For the exponential dataset, first consider the binary RJAC set-
ting. From Figure 10, similar to the uniform dataset, subsumption
based pruning works very well for monotonic constraints. And
for Figure 10(d), the adaptive subsumption based pruning prunes
the same number of tuples compared with the non-adaptive sub-
sumption based pruning. The reason is the same as for the uniform
dataset, there are k tuples which subsume every other tuple, so the
adaptive pruning strategy has no effect in this case.
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Figure 10: Exponential dataset: (a), (b) S UM(A, true) ≥ λ, se-
lectivity 10−5 ; (c), (d) MIN(A, true) ≤ λ, selectivity 10−5.

Figure 11 shows the experimental results for S UM(A, true) ≤ λ,
with selectivity of 10−5. Similar to the uniform dataset, the anti-
monotonicity based pruning can still be very powerful; however,
from Figure 11, it can be observed that our proposed algorithm for
this case may incur slightly more time cost compared with the post
filtering based algorithm. The reason for this is because the value
λ derived from the selectivity using our estimation is not very tight
for the exponential dataset, and all algorithms stop after accessing
a few hundred tuples in total, which means there are not many tu-
ples left in each hash bucket for the algorithm to prune, and our
algorithms still need to pay the penalty of doing some extra sub-
sumption checking.

10 20 30 40 50
0

2

4

6

8

10

k

M
ill

is
e
c
o
n
d
s

(a)Execution Time

 

 
Post Filtering

SubS−Pruning

Adaptive SubS−Pruning

Probabilitic

10 20 30 40 50
0

2

4

6

8

10

k

#
 o

f 
tu

p
le

s

(b)# of Tuples Pruned

 

 
SubS−Pruning

Adaptive SubS−Pruning

Probabilitic

Figure 11: Exponential dataset for S UM(A, true) ≤ λ, selectiv-
ity 10−5.

Consider the settings where we have binary RJAC and multiple
aggregation constraints (see Figure 12). For the case of S UM(A, tr-
ue) ≥ λ and S UM(B, true) ≤ λ and overall selectivity 10−5 ((c) and
(d)), because of the presence of an anti-monotone constraint, many
tuples can be pruned so the subsumption based algorithm outper-
forms the post-filtering algorithm. However, the performance gain
is not great for this case simply because the presence of S UM(A, t-
rue) ≥ λ makes all algorithms stop early with the estimated λ. In
Figure 12(a) and (b), consider two aggregation constraints S UM(A,
true) ≥ λ and S UM(B, true) ≥ λ. Similar to the above case with
one S UM(A, true) ≥ λ, because the estimated λ value for the given
selectivity is not very tight, all algorithms stop very soon after ac-
cessing a few hundred tuples.
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Figure 12: Exponential dataset: (a), (b) S UM(A, true) ≥
λ and S UM(B, true) ≥ λ, overall selectivity 10−5; (c), (d)
S UM(A, true) ≥ λ and S UM(B, true) ≤ λ, overall selectivity
10−5.

Similar to the uniform dataset, for the exponential dataset, the
probabilistic algorithm stops earlier than the deterministic and post-
filtering based algorithms most of the time. The only exception
is for the cases discussed above where all algorithms stop very
quickly. For the quality of results returned, similar to the uniform
dataset, the value of the join results returned at each position k by
the probabilistic algorithm is very close to the exact solution.


