
Breaking out of the Box of Recommendations: From Items
to Packages

Min Xie
Dept. of Computer Science,

Univ. of British Columbia
minxie@cs.ubc.ca

Laks V.S. Lakshmanan
Dept. of Computer Science,

Univ. of British Columbia
laks@cs.ubc.ca

Peter T. Wood
Dept. of CS and Inf. Syst.,

Birkbeck, U. of London
ptw@dcs.bbk.ac.uk

ABSTRACT
Classical recommender systems provide users with a list of
recommendations where each recommendation consists of a
single item, e.g., a book or DVD. However, several applica-
tions can benefit from a system capable of recommending
packages of items, in the form of sets. Sample applications
include travel planning with a limited budget (price or time)
and twitter users wanting to select worthwhile tweeters to
follow given that they can deal with only a bounded number
of tweets. In these contexts, there is a need for a system that
can recommend top-k packages for the user to choose from.

Motivated by these applications, we consider composite
recommendations, where each recommendation comprises a
set of items. Each item has both a value (rating) and a cost
associated with it, and the user specifies a maximum total
cost (budget) for any recommended set of items. Our com-
posite recommender system has access to one or more com-
ponent recommender systems focusing on different domains,
as well as to information sources which can provide the cost
associated with each item. Because the problem of generat-
ing the top recommendation (package) is NP-complete, we
devise several approximation algorithms for generating top-
k packages as recommendations. We analyze their efficiency
as well as approximation quality. Finally, using two real and
two synthetic data sets, we subject our algorithms to thor-
ough experimentation and empirical analysis. Our findings
attest to the efficiency and quality of our approximation al-
gorithms for top-k packages compared to exact algorithms.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval - Information Filtering

General Terms
Algorithms, Theory

Keywords
Recommendation Algorithms, Optimization, Top-k Query
Processing

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
RecSys2010, September 26–30, 2010, Barcelona, Spain.
Copyright 2010 ACM 978-1-60558-906-0/10/09 ...$10.00.

1. INTRODUCTION
Recommender systems (RecSys) have become popular and

have become an essential driver of many applications in-
cluding web services [2]. However, classical RecSys provide
recommendations consisting of single items, e.g., books or
DVDs. Several applications can benefit from a system ca-
pable of recommending packages of items, in the form of
sets. For example, in trip planning, a user is interested in
suggestions for places to visit, or points of interest (POI).
There may be a cost to visiting each place (time, price, etc.).
Optionally, there may be a notion of compatibility among
items in a set, modeled in the form of constraints: e.g., “no
more than 3 museums in a package”, “not more than two
parks”, “the total distance covered in visiting all POIs in a
package should be ≤ 10 km.” etc. The user may have a
limited budget and is interested in suggestions of compat-
ible sets of POIs such that the cost of each set is under
budget and its value (as judged from ratings) is as high as
possible. In these applications, there is a natural need for
top-k recommendation packages for the user to choose from.
Some so-called “third generation” travel planning web sites,
such as NileGuide1 and YourTour2, are starting to provide
certain of these features, although in a limited form.

As another application, in social networks like twitter,
one of the important challenges is helping users with rec-
ommendations for tweeters to follow, based on the topics of
their interest3. Tweeters are ranked based on how influen-
tial they are [20] and currently any new user is presented
with a list of influential tweeters on each topic from which
they manually choose tweeters they would like to follow3.
To automate tweeter recommendation, a tweeter’s influence
score can be treated as their value and the frequency with
which they tweet as their cost. Compatibility may corre-
spond to the constraint that a given set of topics should be
covered. Since a user can only deal with a bounded number
of tweets in a day, given a user’s topics of interest, it would
be useful to select compatible sets of tweeters to follow such
that their total influence score is maximized and the total
cost is below a budget. Once again, it would be beneficial
to give the user choice by presenting them with the top-k
sets of recommended tweeters to follow. We also note that
some newly founded startups like Followformation4 are be-
ginning to provide services on recommending to users the
top-k influential tweeters in a specific domain.

1
http://www.nileguide.com

2
http://www.yourtour.com

3
http://blog.twitter.com/2010/01/power-of-suggestions.html

4
http://followformation.com

Motivated by these applications, we consider composite
recommendations, where each recommendation comprises a
set of items. Each item has both a value (rating or score)
and a cost associated with it, and the user specifies a maxi-
mum total cost (budget) for any recommended set of items.
Our composite recommender system consists of one or more
recommender systems focusing on different domains. These
component RecSys serve (i.e., recommend) top items in non-
increasing order of their value (explicit or predicted ratings).
In addition, our composite system also has access to infor-
mation sources (which could be databases or web services)
which provide the cost associated with each item.

In our setting, the problem of generating the top recom-
mendation (package) is NP-complete as it models the Knap-
sack problem [10]. Because of this and the fact that we
expect the component recommender systems to provide rat-
ings for large numbers of items and access to these ratings
can be relatively expensive,5 we devise approximation algo-
rithms for generating top-k packages as recommendations.

Other researchers have considered complex or composite
recommendations. CARD [4] and FlexRecs [12] are com-
prehensive frameworks in which users can specify their rec-
ommendation preferences using relational query languages
extended with additional features or operators. In contrast,
we are concerned with developing efficient algorithms for
combining recommendations from RecSys that provide only
ratings for items. Closer to our work is [3] which is concerned
with finding packages of entities, such as holiday packages,
where the entities are associated in some way. However,
their packages are of fixed size, whereas we allow packages
of variable size. CourseRank [16, 17] is a system for pro-
viding course recommendations to students, based on the
ratings given to courses by past students and subject to the
constraints of degree requirements. While we do not capture
all CourseRank constraints, in our framework we have item
costs and user budgets—essential features of the application
areas we consider for deployment of our system—which are
not captured by CourseRank. Similarly, item costs and user
budgets are not considered for team formation in [13].

In this paper, for space limitations, we restrict attention to
the problem of recommending packages when there is just
one component RecSys and no compatibility constraint is
imposed. The problem remains intractable and still war-
rants approximation algorithms. We discuss in Sec. 5 how
to extend our algorithms when multiple component RecSys
and compatibility constraints are present.

The roadmap of the paper is as follows. After discussing
related work in more detail (Sec. 2), we present the archi-
tecture of our system and give a precise definition of the
problem we study (Sec. 3). We then describe the approx-
imation algorithms we have developed for returning top-k
composite recommendations (Sec. 4). We first present a 2-
approximation algorithm that is instance optimal [6] with
an optimality ratio of one. This means that any other 2-
approximation algorithm, that can only access items in non-
increasing order of their value, must access at least as many
items as our algorithm. However, this algorithm makes re-
peated calls to a routine for solving exactly the problem
of finding the top-rated package under budget, from those
items that have been accessed from the component RecSys
so far. Because this is an NP-complete problem, we then

5Especially when the ratings need to be predicted.

develop a greedy algorithm for returning top-k composite
recommendations. This algorithm is also guaranteed to re-
turn a 2-approximation, but is no longer guaranteed to be
instance optimal. It is interesting to note that the average
value of packages returned by our approximation algorithms
is higher than that returned by the exact algorithm. This
is because an exact algorithm will add low-value items to
a recommendation in order to maximize value. However,
from a user’s perspective the recommendations returned by
the approximation algorithms may sometimes be preferable.

In Sec. 6 we subject our algorithms to thorough empirical
analysis using two real data sets – TripAdvisor and Movie-
Lens – and two synthetic data sets. We first investigate the
quality of the recommendations produced by our approxima-
tion algorithms. Our findings confirm that our algorithms
always produce recommendations that are 2-approximations,
with many of them being close to optimal. We then com-
pare the efficiency of our instance optimal and greedy ap-
proximation algorithms with that of an exact algorithm in
terms of running time and number of items accessed. Our
results indicate that our greedy algorithm is always signifi-
cantly faster than the other two algorithms, while the greedy
and instance optimal algorithms usually access substantially
fewer items than the exact algorithm. Finally, we discuss fu-
ture work and conclude the paper in Sec. 7. To the best of
our knowledge, this is the first time instance optimality is
established in the context of approximation algorithms.

2. RELATED WORK
Closest to our work is [3], where they are interested in

finding top-k tuples of entities. Examples of entities in-
clude cities, hotels and airlines, while packages are tuples
of entities. Instead of querying recommender systems, they
query documents using keywords in order to determine en-
tity scores. A package in their framework is of fixed size,
e.g., one city, one hotel and one airline, with fixed associ-
ations among the entities essentially indicating all possible
valid packages. Instead, we allow for packages (composite
recommendations) of variable size, subject to a budget con-
straint. Associations between entities can be easily captured
in our framework using the notion of compatibility of sets.

Other closely related work is [5] where a novel framework
is proposed to automatically generate travel itineraries from
online user-generated data like picture uploads and formu-
late the problem of recommending travel itineraries of high
quality where the travel time is under a given time budget.
However, in this work, the value of each POI is determined
by the number of times it is mentioned by users, whereas
in our work, item value is a personalized score which comes
from an underlying recommender system and accessing these
items is constrained to be in value-sorted order. Unlike [5],
we optimize item accesses, establish instance optimality, and
provide algorithms for generating top-k packages.

CARD [4] is a framework for providing top-k recommen-
dations of composite products or services. Fine-grained con-
trol over specifying user requirements as well as how atomic
costs are combined is provided by an SQL-like language ex-
tended with features for decision support. Each composite
recommendation is of fixed size, making the problem sim-
pler; thus CARD returns exact not approximate solutions.

Similarly, FlexRecs [12] is a sophisticated system for defin-
ing complex recommendations from relational data. Recom-
mendation requirements are specified by relational algebra

expressions enhanced with extend, recommend and blend op-
erators. As with [3, 4], recommendations are of fixed size
and thus solutions are exact.

In our setting of access to component RecSys (but with a
restricted notion of binary boolean compatibility), the prob-
lem of finding the top-k fixed-size packages is simpler than
that of finding packages of variable size; it can be solved
efficiently using Rank Join [7].

CourseRank [17] is a project motivated by a course plan-
ning application for students, where constraints are of the
form “take ki from Si,” where ki is a non-negative integer
and Si is a set of courses. Similar to our work, each course
in this system is associated with a score which is calculated
using an underlying recommendation engine. Given a num-
ber of constraints of the form above (and others), the system
finds a minimal set of courses that satisfies the requirements
and has the highest score.

Later work [16] extends CourseRank with prerequisite con-
straints, and proposes several approximation algorithms that
return high-quality course recommendations which satisfy
all the prerequisites. As in our work, such recommendations
need not be of fixed size. However, [16, 17] do not consider
the cost of items (cf. courses) which can be important for
applications like trip planning and twitter.

The problem of team formation is studied in [13]. Here
each person has a set of skills and pairs of people have a
collaboration cost associated with them (lower cost indicates
better collaboration). Given a task requiring a set of skills,
the problem is to find a set of people whose skills cover those
required and who have a low aggregated collaboration cost.
The notion of compatibility in our framework can model
their collaboration cost. Similar to CourseRank, the people
(items) themselves are not rated. A further difference with
our approach is that we wish to maximize the aggregate item
(cf. people) ratings subject to item and compatibility costs,
rather than minimize compatibility cost.

Although we do not include in our system complex con-
straints such as those in [13, 16, 17], for applications where
complex constraints exist, we can leverage existing work to
post-process each composite recommendation generated by
our algorithms to ensure that the constraints are satisfied.

Finally, motivated by online shopping applications, [18]
studies the problem of recommending “satellite items” re-
lated to a given “central item” subject to a cost budget. The
resulting notion of packages is quite restricted compared to
our framework, and item values are not taken into account.

3. ARCHITECTURE AND PROBLEM

3.1 System Architecture
In a traditional RecSys, users rate items based on their

personal experience, and these ratings are used by the sys-
tem to predict ratings for items not rated by an active user.
The predicted ratings can be used to give the user a ranked
recommendation (item) list.

As shown in Figure 1, our composite recommendation sys-
tem is composed of one or more component RecSys and has
access to external sources that provide the cost of a given
item. An external source can be a local database or a web
service. E.g., Amazon.com can be consulted for book prices.
In terms of computation, we abstract each RecSys as a sys-
tem which serves items in non-increasing order of their value
(rating or score) upon request. In addition, the system in-

cludes a compatibility checker module, which checks whether
a package satisfies compatibility constraints, if any. We as-
sume the compatibility checker consults necessary informa-
tion sources in order to verify compatibility.

The user interacts with the system by specifying a cost
budget, an integer k, and optionally compatibility constraints
on packages. The system finds the top-k packages of items
with the highest total value such that each package has a
total cost under budget and is compatible.

Figure 1: System Architecture

3.2 Problem Statement
Given a set N of items and U of users, an active user

u ∈ U , and item t ∈ N , we denote by vu(t) the value of
item t for user u. We denote the value as v(t) when the
active user is understood. A RecSys predicts v(t) when it is
not available, by using the active user’s past behavior and
possibly that of other similar users. For t ∈ N , we denote
by c(t) the cost of item t. Given a set of items R ⊂ N ,
we define c(R) = Σt∈R c(t) and v(R) = Σt∈R v(t). Given
a cost budget B, a set of items P ⊂ N is called feasible if
c(P) ≤ B. In this paper, for space limitations, we focus on
the following problem (with extensions discussed in Sec. 5):

Definition 1 (Top-k Composite Recommendations).
Given an instance I of a composite recommendation sys-
tem consisting of one component RecSys and an external
information source, a cost budget B and an integer k, find
the top-k packages P1, ..., Pk such that each Pi is feasible
and among all feasible packages P1, ..., Pk have the k high-
est total values, i.e., v(P) ≤ v(Pi) for all feasible packages
P �∈ {P1, ..., Pk}.

When k = 1, the top-k composite recommendation prob-
lem (CompRec) can be viewed as a variation of the classical
0/1 knapsack problem [10] with the restriction that items
can be accessed only in non-increasing order of their value.
Without loss of generality, we assume all items have cost
smaller than the cost budget B.

Note that ratings of items from the component RecSys are
retrieved using sorted access, while the cost of a given item
is obtained via random access. Let cs and cr be the costs
associated with these accesses. Then the total access cost of
processing n items is n× (cs+cr). Notice that cs and cr can
be large compared to the cost of in-memory operations: for
both accesses information needs to be transmitted through
the Internet, and for the sorted access, v(t) may need to be
computed. So, well known algorithms for knapsack which
need to access all items [10] may not be realistic. Thus, an
efficient algorithm for top-k CompRec should minimize the
total access cost, i.e., it should minimize the number of items
accessed and yet ensure the top-k packages are obtained.

It can be shown that if we have no background knowledge
about the cost distribution of items, in the worst case, we
must access all items to find top-k packages. In order to
facilitate the pruning of item accesses, we thus assume some
background information about item costs is precomputed
and maintained at the composite RecSys. The background
cost information, which we denote generically by BG, can
be a histogram collected from the external cost source or
something as simple as a minimum item cost cmin. This
information can be materialized in our system and be re-
freshed regularly by re-querying the cost source.

Our composite recommendation problem can be consid-
ered as a special case of a resource-limited knapsack prob-
lem where in addition to quality guarantee, the number of
items to be accessed should also be minimized. So standard
algorithms for knapsack, e.g., exact algorithms [10] and ap-
proximation algorithms [8, 19] may not be efficient as they
always need to access the entire dataset. The only known
variation of knapsack which deals with resource limitation is
the Online Knapsack Problem [15]. However, for this prob-
lem, no access constraints are considered, only competitive-
ness in terms of quality is studied. And furthermore, no
information about items can be inferred, which makes the
problem significantly harder and difficult to approximate.

4. COMPOSITE RECOMMENDATIONS
In this section, we develop several approximation algo-

rithms for top-1 CompRec, after which we extend them to
handle top-k CompRec.

4.1 Instance Optimal Algorithms
As identified in Section 3.2, top-1 CompRec is a variation

of the 0/1 knapsack problem where the underlying items can
be accessed only in non-increasing order of their value (rat-
ing). Because of the huge potential size of the sets of items
and the high cost of retrieving item information from the
source, it is crucial for an algorithm to find high-quality so-
lutions while minimizing the number of items accessed. Fur-
thermore, as the 0/1 knapsack problem is NP-Complete [10],
we need to develop efficient approximation algorithms.

4.1.1 Top-1 Composite Recommendation
Given an instance I of top-1 CompRec, let BG denote the

known background cost information and S = {t1, ..., tn} be
the set of items which have been accessed or seen so far.

Let v̄ be the value of the first accessed item, because items
are accessed in the non-increasing order of their value, n · v̄
is a trivial upperbound on the value that can be achieved by
any knapsack solution for S.

For each i ∈ {1, ..., n} and v ∈ {1, ..., n · v̄}, let SSi,v de-
note a subset of {t1, ..., ti} whose total value is exactly v
and whose total cost is minimized. Let C(i, v) be the cost
of SSi,v (C(i, v) =∞ if the corresponding SSi,v doesn’t ex-
ist), then it is well known from previous work [19, 10] that a
pseudo-polynomial algorithm can be utilized to get the op-
timal knapsack solution for S by first calculating all C(i, v)
using the following recursive function and then choosing the
maximum value achievable by any subset SSn,v of which the
total cost is bounded by budget B, i.e., max{v|C(n, v) ≤
B}.
C(i+ 1, v) = (1){

min{C(i, v), c(ti+1) + C(i, v − v(ti+1))} if v(ti+1) ≤ v
C(i, v) otherwise

Let the background cost information be BG = cmin, which
is the minimum cost of all items, let vmin = mint∈S v(t) be
the minimum value of all accessed items, and let OPT be
the true optimal solution to the underlying top-1 CompRec
Instance I . We can get an upperbound V ∗ on the value
v(OPT) of the optimal solution using the following algo-
rithm MaxValBound. (Proofs of all lemmas and theorems
can be found in [1].)

Algorithm 1: MaxValBound(S, C, B, BG)
1 V ∗ = � B

cmin
� × vmin

2 for v ∈ {1, ..., n · v̄} do
3 if C(n, v) < B

4 V ∗=max{V ∗, v + �B−C(n,v)
cmin

� ∗ vmin}
5 return V ∗

Lemma 1. Given S, C, B, BG, the value V ∗ returned
by MaxValBound is an upperbound on v(OPT). And V ∗ is
tight in that there exists a possible unseen item configuration
for which V ∗ is achievable by using a subset of accessed items
and feasible unseen items6.

Given the upper bound V ∗ on the optimal solution, we
next propose a 2-approximation algorithm for top-1 Com-
pRec which is guaranteed to be instance optimal (see be-
low). The algorithm, InsOpt-CR, is shown as Algorithm 2.
One item is retrieved from the source at each iteration of
the algorithm (lines 3–4). After accessing this new item, we
can use the pseudo-polynomial algorithm to find an optimal
solution Ro over the accessed itemset S (line 5). We calcu-
late the upper bound value V ∗ of the optimal solution using
MaxValBound. If v(Ro) ≥ 1

2
×V ∗, the algorithm terminates;

if not, it continues to access the next item (lines 7–8). The
following example shows how InsOpt-CR works.

Algorithm 2: InsOpt-CR(N , B, BG)
1 S ← An empty buffer
2 while TRUE do
3 t ← N .getNext()
4 S.Insert(t)
5 (Ro,C) ← OptimalKP(S, B)
6 V ∗ = MaxValBound(S,C,B,BG)
7 if v(Ro) ≥ 1

2
× V ∗

8 return Ro

Example 1. Let I = {t1, t2, . . . , tn} be a top-1 Com-
pRec instance, where v(t1) = v(t2) = 101, c(t1) = c(t2) =
100, for i = 3, . . . , 101, v(ti) = c(ti) = 1, and for i =
102, . . . , n, v(ti) = 1 and c(ti) = 0.5. Let B = 199. Clearly,
BG = cmin = 0.5. After accessing the first 101 items, S =
{t1, . . . , t101}, Ro = {t1} ∪ {t3, . . . , t101}, v(Ro) = 200. Be-
cause cmin = 0.5 and vmin = 1, we can calculate V ∗ = 398
and InsOpt-CR will stop since v(Ro) ≥ 1

2
× V ∗.

Given a top-1 CompRec instance I with optimal solution
OPT , because V ∗ ≥ v(OPT), if v(Ro) ≥ 1

2
×V ∗, then v(Ro)

≥ 1
2
×OPT , so OptIns-CR returns a correct 2-approximation

of OPT.

6An unseen item t is feasible iff. v(t) ≤ vmin and c(t) ≥ cmin

To analyze the optimality of our proposed algorithm, we
utilize the notion of instance optimality proposed in [6].

Definition 2. Instance Optimality: Let A be a class
of algorithms, and let I be a class of problem instances.
Given a non-negative cost measure cost(A, I) of running al-
gorithm A over I, an algorithm A ∈ A is instance optimal
over A and I if for every A′ ∈ A and every I ∈ I we have
cost(A, I) ≤ c · cost(A′, I) + c′, for constants c and c′. Con-
stant c is called the optimality ratio.

To prove the instance optimality of InsOpt-CR, we first
show the following.

Lemma 2. Given any top-1 CompRec instance I and any
2-approximation algorithm A with background cost informa-
tion BG and the same access constraints as InsOpt-CR, A
must read at least as many items as InsOpt-CR.

Theorem 1. Let I be the class of all top-1 CompRec in-
stances, and A be the class of all possible 2-approximation al-
gorithms that are constrained to access items in non-increas-
ing order of their value. Given the same background cost
information BG, InsOpt-CR is instance optimal over A and
I with an optimality ratio of one.

4.1.2 Top-k Composite Recommendations
In addition to the best composite recommendation, it is

often useful to provide the user with the top-k composite rec-
ommendations, where k is a small constant. In this section,
we extend the algorithm proposed in Section 4.1.1 to one
that returns the top-k composite recommendations. Simi-
lar to the top-1 case, due to the hardness of the underlying
problem, we seek an efficient approximation algorithm which
can give us high quality recommendations.

Given an instance I of top-k CompRec, assume RI is the
set of all feasible composite recommendations, i.e., RI =
{R | R ⊆ N ∧ c(R) ≤ B}). Following Fagin et al. [6]
and Kimelfeld et al. [11], we define an α-approximation of
the top-k composite recommendations to be any set Rk of
min(k, |RI |) composite recommendations, such that, for all
R ∈ Rk and R′ ∈ RI\Rk, v(R) ≥ 1

α
× v(R′).

To produce top-k composite recommendations, we will ap-
ply Lawler’s procedure to InsOpt-CR. Lawler’s procedure [14]
is a general technique for enumerating optimal top-k answers
to an optimization problem, which relies on an efficient al-
gorithm to find the optimal solution to the problem.

Let InsOpt-CR-Topk be the InsOpt-CR algorithm modi-
fied using Lawler’s procedure. All we need to change is that
instead of returning the 2-approximation solution found in
Algorithm 2 (line 8), we enumerate at this point all possible
2-approximation solutions using Lawler’s procedure. If the
number of 2-approximation solutions is at least k, then we
can report the top-k packages found; otherwise, we continue
accessing the next item.

In InsOpt-CR, the enumeration of all possible 2-approxim-
ation solutions is straightforward. Since we know the upper
bound V ∗, we can simply utilize Lawler’s procedure to enu-
merate candidate packages which are under cost budget and
have aggregated value of at least half of V ∗.

Lemma 3. Given any instance I of top-k CompRec and
any 2-approximation algorithm A with the same background
cost information BG and access constraints as InsOpt-CR-
Topk, A must read as many items as InsOpt-CR-Topk.

Theorem 2. Let I be the class of all top-k CompRec in-
stances, and A be the class of all possible 2-approximation
algorithms that are constrained to access items in the non-
increasing order of their value. Given the same background
cost information BG, InsOpt-CR-Topk is instance optimal
over A and I with an optimality ratio of one.

4.2 Greedy Algorithms
Although the instance optimal algorithms presented above

guarantee to return top-k packages that are 2-approximations
of the optimal packages, they rely on an exact algorithm for
the knapsack problem which may lead to high computational
cost. To remedy this, we propose more efficient algorithms
next. Instead of using an exact algorithm to get the best
package for the currently accessed set of items S, we use a
simple greedy heuristic to form a high quality package RG

from S and then test whether RG is globally a high quality
package.

Compared with InsOpt-CR, our greedy solution Greedy-
CR for top-1 CompRec needs to replace OptimalKP in InsO-
pt-CR with GreedyKP, which uses greedy heuristics [10] to
find a high quality itemset in polynomial time 7, and to
change Ro to the greedy solution RG. Furthermore, instead
of using tight upperbound calculated by MaxValBound, we
need to use an untight heuristic upperbound which is calcu-
lated by the following algorithm MaxHeuristicValBound.

Algorithm 3: MaxHeuristicValBound(S, B, BG)
1 τ ← vmin

cmin

2 Sort S = {t1, . . . , tn} by value/cost ratio

3 m = max{m | v(tm)
c(tm)

≥ τ ∧ c(Rm) ≤ B}
4 Rm = {t1, . . . , tm}
5 if m == n
6 V ∗ = v(Rm) + τ ∗ (B − c(Rm))

7 else
8 V ∗ = v(Rm)+max{τ, vm+1

cm+1
} ∗ (B − c(Rm))

9 return V ∗

It follows from known results about knapsack that, similar
to InsOpt-CR, Greedy-CR will always generate a correct 2-
approximation to the optimal solution.

However, unlike InsOpt-CR, Greedy-CR is not instance
optimal among all 2-approximation algorithms with the same
constraints, as the following example shows.

Example 2. Let I = {t1, t2, . . . , tn} be a top-1 CompRec
instance, where v(t1) = v(t2) = 101, c(t1) = c(t2) = 100,
for i = 3, . . . , 101, v(ti) = c(ti) = 1, and for i = 102, . . . , n,
v(ti) = 1 and c(ti) = 0.5. Let B = 199, BG = cmin = 0.5
and approximation ratio α = 2. From Example 1, we know
that after accessing the first 101 items, S = {t1, . . . , t101},
v(Ro) = 200, V ∗ = 398 and InsOpt-CR will stop. However,
at this moment RG = {t1}, and v(RG) = 101 < 1

2
× V ∗.

So Greedy-CR will continue accessing new items and it can
be easily verified that Greedy-CR needs to access another 98
items before it stops.

7Note that any approximation algorithm for knapsack [10]
can be plugged in here while correctness of the resulting
algorithm and the instance optimality result won’t change.

We note that, in practice, cases such as the above may
occur rarely. In fact, in our experimental results (Sec. 6) we
observed that, on a range of datasets, Greedy-CR exhibited
a very low running time while achieving similar access costs
and overall result quality when compared to InsOpt-CR.

Similar to Section 4.1.2, we can easily extend Greedy-CR
to Greedy-CR-Topk by using Lawler’s procedure [14] to enu-
merate all possible high quality packages after one such pack-
age is identified. However, unlike InsOpt-CR-Topk which
guarantees instance optimality, here we simply use Lawler’s
procedure to enumerate all candidate packages using the
greedy algorithm instead of the exact algorithm. Similar to
[11], we show in the following theorem that for top-k Com-
pRec, if an α-approximation algorithm is utilized in Lawler’s
procedure instead of the exact algorithm which finds the
optimal solution, we get an α-approximation to the top-k
composite recommendations.

Theorem 3. Given an instance I of top-k CompRec, any
α-approximation algorithm A for top-1 CompRec can be uti-
lized with Lawler’s procedure to generate a set Rk of com-
posite recommendations which is an α-approximation to the
optimal set of top-k composite recommendations.

So the quality of the packages generated by the resulting
enumeration process can be guaranteed. In this enumeration
process, given a candidate package, we use the greedy algo-
rithm to get the next candidate package for each sub-search
space in Lawler’s procedure, and if all of them are not guar-
anteed to be 2-approximations, the enumeration will stop.

However, similar to Greedy-CR, it is obvious that Greedy-
CR-Topk is not instance optimal. We note that, in practice,
the difference between the results generated by InsOpt-CR-
Topk and Greedy-CR-Topk (in terms of the aggregate values
of packages generated) may be very small.

5. DISCUSSION
As mentioned in Sec. 3, our framework includes the notion

of a package satisfying compatibility constraints. E.g., for
trip planning, the user may require the returned package to
contain no more than 3 museums.

To capture these constraints in our algorithms, we can
define a Boolean compatibility function C over the packages
under consideration. Given a package P , C(P) = true iff all
constraints on items in p are satisfied. We can add a call
to C in InsOpt-CR-Topk and Greedy-CR-Topk after each
candidate package has been found. If the package fails the
compatibility check, we just discard it and search for the
next candidate package. In terms of access cost, it can be
easily verified that the modified InsOpt-CR-Topk algorithm
is still instance optimal.

It is worth noting that the Boolean compatibility func-
tion defined here allows for greater generality than the con-
straints studied in previous work such as [3, 17]. However,
depending on the application needs, for scenarios where only
one specific type of constraint is considered, e.g., having one
item from each of 3 predefined categories, more efficient al-
gorithms like Rank Join [7] can be leveraged.

Furthermore, although in the previous algorithms we as-
sume there is only one component recommender system, it is
straightforward to combine recommendation lists from sev-
eral component recommender systems by creating on-the-fly
a “virtual recommendation list”, e.g., select at each iteration

the item which has the maximum value/rating across all
recommender systems. The details will appear in the full
version of the paper where efficient algorithms are given for
special cases of compatibility constraints as well as compat-
ibility constraints based on continuous functions.

6. EXPERIMENTS
In this section, we study the performance of our proposed

algorithms based on both real and synthetic datasets.

6.1 Experimental Setup and Data Sets
The goal of our experiments were: (i) evaluate the rel-

ative quality of Inst-Opt-CR and Greedy-CR compared to
the optimal algorithm, in terms of both the total and aver-
age values of the top-k packages returned, and (ii) evaluate
the relative efficiency of the algorithms with respect to the
number of items accessed and the actual run time. All ex-
periments were done on a Xeon 2.5GHz Quad Core Windows
Server 2003 machine with 16GB RAM and a 128GB SCSI
hard disk. All code is in Java using JDK/JRE 1.6.

We use four datasets in our experiments. The first dataset
is from MovieLens8. We use the 10 million rating MovieLens
dataset which contains 1 million ratings for 3900 movies by
6040 users. In our experiments, we used the running time of
movies, obtained from IMDB9, as cost and we assume users
are interested in packages of movies where the total running
time is under a given budget.

TripAdvisor10 is a well-known website where users can
share and explore travel information. For our experiments,
we crawled user rating information from places of interest
(POIs) in the 10 most popular cities in the US. We exclude
POIs which have one or no reviews, and the dataset contains
23658 ratings for 1393 POIs by 14562 users, so it is very
sparse.11 We associate with each POI in the dataset, a cost
which is based on log(number of reviews) and scaled to the
range of 1 to 50. The intuition of this cost function is that
the more popular a POI is (in terms of number of reviews),
the more likely it is to be crowded or the more likely it is
for the tickets to be expensive. In practice, we may also
use some existing work like [5] to mine from online user-
generated itineraries other cost measures, e.g., average time
users spent at each POI, average cost of visiting each POI,
etc.

For the MovieLens and TripAdvisor datasets, we use a
simple memory-based collaborative filtering algorithm [2]12

to generate predicted ratings for each user. The ratings are
scaled and rounded to integers ranging from 1 to 50.

For the MovieLens dataset, we randomly selected 20 users
from the 23594 user pool, and the budget for each user was
fixed at 500 minutes13. For the TripAdvisor dataset, be-
cause of the sparsity of the underlying user rating matrix,
we selected the 10 most active users as our sample for testing
the algorithms, and set the user cost budget to 50.

8http://www.movielens.org
9http://www.imdb.com

10http://www.tripadvisor.com
11Pruning more aggressively rendered it too small.
12Our algorithms don’t depend on a specific recommendation
algorithm; in practice, our framework assumes ratings come
from existing recommender systems.

13For all datasets, we tested our algorithms under various
cost budgets with very similar results, so other budgets are
omitted for lack of space.

1st Package 2nd Package 3rd Package 4th Package 5st Package
SUM AVG SUM AVG SUM AVG SUM AVG SUM AVG

Optimal 427 46.7 426 46.6 425 46.7 424 46.7 423 46.6
MovieLens InsOpt-CR-Topk 386 47.5 385 47.4 385 47.3 384 47.2 383 47.2

Greedy-CR-Topk 384 47 381 47 380 46.8 379 46.7 379 46.7

Optimal 300 50 300 50 300 50 300 50 300 50
TripAdvisor InsOpt-CR-Topk 185 50 175 50 165 50 160 50 155 50

Greedy-CR-Topk 220 50 210 50 210 50 205 50 205 50

Optimal 1092 36.4 1091 36.4 1090 36.3 1090 36.3 1089 36.5
Uncorrelated Data InsOpt-CR-Topk 929 43.6 926 43.6 925 43.6 925 43.6 924 43.5

Greedy-CR-Topk 945 42.9 939 42.8 938 42.8 936 42.7 931 42.8

Optimal 122 5.3 122 5.2 122 5.2 122 5.1 122 5.2
Correlated Data InsOpt-CR-Topk 110 6.7 110 6.7 110 6.7 110 6.6 110 6.5

Greedy-CR-Topk 110 6.6 110 6.6 109 7.6 109 6.5 109 7.15

Table 1: Quality Comparison for Different Composite Recommendation Algorithms

0 5 10
0

2

4

6

K

N
D

C
G

 S
co

re

(a) Movie Lens

0 5 10
0

2

4

6

K

(b) TripAdvisor

0 5 10
0

2

4

6

K

(c) Uncorrelated Data

0 5 10
0

2

4

6

K

(d) Correlated Data

Worst NDCG Score
Greedy−CR−Topk
InsOpt−CR−Topk

Worst NDCG Score
Greedy−CR−Topk
InsOpt−CR−Topk

Worst NDCG Score
Greedy−CR−Topk
InsOpt−CR−Topk

Worst NDCG Score
Greedy−CR−Topk
InsOpt−CR−Topk

Figure 2: NDCG Score for Top-k Packages

We also tested our algorithms on synthetic correlated and
uncorrelated datasets. For both datasets, item ratings are
randomly chosen from 1 to 50. For the uncorrelated dataset,
item costs are also randomly chosen from 1 to 50, but for
the correlated dataset, the cost of item t is randomly chosen
from min{1, v(t)−5} to v(t)+5. In both datasets, the total
number of items is 1000, and the cost budget is set to 50.
For all datasets, we assume the background cost information
BG is simply the global minimum item cost.

6.2 Quality of Recommended Packages
For each dataset, Table 1 shows the quality of the top-

5 composite recommendations returned by the optimal and
approximation algorithms. We use as measures of quality
the aggregated value of each package (SUM column) and
the average item value of each package (AVG column).

It can be verified from Table 1 that our approximation al-
gorithms do indeed return top-k composite packages whose
value is guaranteed to be a 2-approximation of the optimal.
Furthermore, from the average item value column, it is clear
that our proposed approximation algorithms often recom-
mend packages with high average value, whereas the opti-
mal algorithm often tries to fill the package with small cost
and small value items. So by sacrificing some of these lower
quality items, the proposed approximation algorithms may
manage to find high quality packages much more efficiently.

To better study the overall quality of returned packages,
we also adopt a modified Normalized Discounted Cumulative
Gain (NDCG) [9] to measure the quality of the top-k com-
posite packages returned by the approximation algorithms
against the optimal algorithm. Let Ro = {P o

1 , . . . , P
o
k } be

the top-k packages returned by the optimal algorithm, and
Ra = {P a

1 , . . . , P
a
k } be the top-k packages returned by the

approximation algorithm. The modified NDCG score is a

weighted sum of aggregated package value difference at each
position of the returned top-k list, and is defined as:

NDCG(Ro, Ra) =
k∑

i=1

log(1 +
v(Po

i)−v(Pa
i)

v(Po
i)

)

log(1 + i)

The ideal value for the modified NDCG score is 0, where
the top-k packages returned have exactly the same value
as the optimal top-k packages. The worst possible value
for the modified NDCG score is

∑k
i=1

log 2
log(1+i)

, where each

package returned has an aggregated value of 0. In Figure 2,
we show for the 4 datasets the NDCG score of the top-k
packages (k ranging over 1 to 10) returned by the instance
optimal algorithm and the greedy algorithm. It is clear that,
while having a substantial run time advantage, the greedy
algorithm can achieve a very similar overall top-k package
quality compared to the instance optimal algorithm. We
also note that both approximation algorithms have a very
small NDCG score.

6.3 Efficiency Study
The running times of our algorithms on the 4 datasets are

shown in Figure 3 (a)-(d), while access costs are shown in
Figure 3 (e)-(h). For MovieLens, TripAdvisor and the uncor-
related dataset, it can be seen that on average the greedy al-
gorithm Greedy-CR-Topk has excellent performance in terms
of both running time and access cost. The instance optimal
algorithm InsOpt-CR-Topk also has low access cost, but its
running time grows very quickly with k since it needs to
solve exactly many instances of knapsack, restricted to the
accessed items.

As can be seen in Figure 3 (h), the only dataset where both
the greedy and instance optimal algorithms have a high ac-
cess cost is the correlated dataset (but notice that the greedy
algorithm still has good running time). The reason for this

0 5 10

100

1010

102

104

106

108

K

R
un

ni
ng

 T
im

e
(m

s)
(a) MovieLens

0 5 10

100

1010

102

104

106

108

K

(b) TripAdvisor

0 5 10

100

1010

102

104

106

108

K

(c) Uncorrelated Data

0 5 10

100

1010

102

104

106

108

K

(d) Correlated Data

0 5 10
0

500

1000

1500

2000

K

A
cc

es
s

C
os

t (

of
 It

em
s)

(e) MovieLens

0 5 10
0

500

1000

1500

2000

K

(f) TripAdvisor

0 5 10
0

500

1000

1500

2000

K

(g) Uncorrelated Data

0 5 10
0

500

1000

1500

2000

K

(h) Correlated Data

Optimal
InsOpt−CR−Topk
Greedy−CR−Topk

Optimal
InsOpt−CR−Topk
Greedy−CR−Topk

Optimal
InsOpt−CR−Topk
Greedy−CR−Topk

Optimal
InsOpt−CR−Topk
Greedy−CR−Topk

Optimal
Greedy−CR−Topk
InsOpt−CR−Topk

Optimal
Greedy−CR−Topk
InsOpt−CR−Topk

Optimal
Greedy−CR−Topk
InsOpt−CR−Topk

Optimal
Greedy−CR−Topk
InsOpt−CR−Topk

Figure 3: (a)–(d) Running Time for Different Datasets; (e)–(h) Access Cost for Different Datasets

is that, for the correlated dataset, the global minimum cost
corresponds only to items which also have the least value.
Thus the information it provides on the unseen items is very
coarse. In practice, one solution to this might be to obtain
more precise background cost information.

7. CONCLUSION
Motivated by applications in trip planning and in finding

the most effective tweeters to follow, we studied the prob-
lem of recommending packages consisting of sets of items.
Our composite recommender system has one or more com-
ponent RecSys, which serve item recommendations in non-
increasing order of their value. We proposed the problem
of generating top-k package recommendations that are com-
patible and are under a cost budget, where a cost is in-
curred by visiting each recommended item and the budget
and compatibility constraints are user specified. We focused
on the case where there are no compatibility constraints and
there is only one component RecSys. The problem is NP-
complete since it is a variant of the Knapsack problem with
the restriction that items need to be accessed in value-sorted
order. So we developed two 2-approximation algorithms
that are designed to minimize the number of items accessed.
The first of these, InsOpt-CR-Topk, is instance optimal in a
strong sense: every 2-approximation algorithm for the prob-
lem must access at least as many items as this algorithm.
The second of these, Greedy-CR-Topk, is not guaranteed to
be instance optimal, but is much faster. We experimentally
evaluated the performance of the algorithms and showed
that in terms of the quality of the top-k packages returned
both algorithms are close to each other and deliver high
quality packages; in terms of the number of items accessed
Greedy-CR-Topk is very close to InsOpt-CR-Topk, but in
terms of running time, Greedy-CR-Topk is much faster.

8. ACKNOWLEDGMENTS
Part of this work was done during Peter Wood’s visit to

UBC in January, 2010. This research was supported by a
grant from NSERC (Canada).

9. REFERENCES
[1] http://www.cs.ubc.ca/~minxie/TR-2010-04.pdf.

[2] G. Adomavicius and A. Tuzhilin. Toward the next generation of
recommender systems: A survey of the state-of-the-art and
possible extensions. IEEE TKDE, 17(6):734–749, 2005.

[3] A. Angel, S. Chaudhuri, G. Das, and N. Koudas. Ranking
objects based on relationships and fixed associations. In EDBT,
pages 910–921, 2009.

[4] A. Brodsky, S. M. Henshaw, and J. Whittle. CARD: a
decision-guidance framework and application for recommending
composite alternatives. In RecSys, pages 171–178, 2008.

[5] M. De Choudhury, M. Feldman, S. Amer-Yahia, N. Golbandi,
R. Lempel, and C. Yu. Automatic construction of travel
itineraries using social breadcrumbs. In ACM Hypertext, 2010.

[6] R. Fagin, A. Lotem, and M. Naor. Optimal aggregation
algorithms for middleware. J. Comput. Syst. Sci.,
66(4):614–656, 2003.

[7] J. Finger and N. Polyzotis. Robust and efficient algorithms for
rank join evaluation. In ACM SIGMOD, pages 415–428, 2009.

[8] O. H. Ibarra and C. E. Kim. Fast approximation algorithms for
the knapsack and sum of subset problems. J. ACM,
22(4):463–468, 1975.

[9] K. Järvelin and J. Kekäläinen. Cumulated gain-based
evaluation of IR techniques. ACM Trans. Inf. Syst.,
20(4):422–446, 2002.

[10] H. Kellerer, U. Pferschy, and D. Pisinger. Knapsack Problems.
Springer, 2004.

[11] B. Kimelfeld and Y. Sagiv. Finding and approximating top-k
answers in keyword proximity search. In PODS, pages 173–182,
2006.

[12] G. Koutrika, B. Bercovitz, and H. Garcia-Molina. FlexRecs:
expressing and combining flexible recommendations. In
SIGMOD, pages 745–758, 2009.

[13] T. Lappas, K. Liu, and E. Terzi. Finding a team of experts in
social networks. In KDD, pages 467–476, 2009.

[14] E. L. Lawler. A procedure for computing the k best solutions to
discrete optimization problems and its application to the
shortest path problem. Man. Sci., 18(7):401–405, 1972.

[15] A. Marchetti-Spaccamela and C. Vercellis. Stochastic on-line
knapsack problems. Math. Program., 68:73–104, 1995.

[16] A. Parameswaran and H. Garcia-Molina. Recommendations
with prerequisites. In ACM Recommender Systems, pages
353–356, 2009.

[17] A. Parameswaran, P. Venetis, and H. Garcia-Molina.
Recommendation systems with complex constraints: A
CourseRank perspective. Technical report, 2009.

[18] S. B. Roy, S. Amer-Yahia, A. Chawla, G. Das, and C. Yu.
Constructing and exploring composite items. In ACM
SIGMOD, 2010.

[19] V. V. Vazirani. Approximation Algorithms. Springer, 2001.

[20] J. Weng, E.-P. Lim, J. Jiang, and Q. He. TwitterRank: finding
topic-sensitive influential twitterers. In WSDM, pages 261–270,
2010.

