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Abstract. While recommender systems based on collaborative filtering have be-
come an essential tool to help users access items of interest, it has been indicated
that collaborative filtering enables an adversary to performpassive privacy at-
tacks, a type of the most damaging and easy-to-perform privacy attacks. In a
passive privacy attack, the dynamic nature of a recommender systemallows an
adversary with a moderate amount of background knowledge to infer auser’s
transaction through temporal changes in thepublic related-item lists (RILs). Un-
like the traditional solutions that manipulate the underlying user-item rating ma-
trix, in this paper, we respond to passive privacy attacks by directly anonymizing
the RILs, which are the real outputs rendered to an adversary. This fundamen-
tal switch allows us to provide a novel rigorous inference-proof privacy guaran-
tee, known asδ-bound, with desirable data utility and scalability. We propose
anonymization algorithms based on suppression and a novel mechanism, permu-
tation, tailored to our problem. Experiments on real-life data demonstrate that our
solutions are both effective and efficient.

1 Introduction

In recent years, recommender systems have been increasingly deployed in a wide range
of applications as an effective tool to cope with information overload. Among various
approaches developed for recommender systems,collaborative filtering[12] is prob-
ably the most successful technique that has been widely adopted. The general idea
of collaborative filtering is to utilize known preferences collected from a group of
users to make recommendations or predictions of unknown preferences for other “sim-
ilar” users [24]. As a standard practice, many collaborative filtering systems release
related-item lists(RILs) as a means of engaging users. For example, e-commerceser-
vice providers likeAmazonandNetflix have incorporated collaborative filtering as an
essential component to help users find items of interest. Amazon provides RILs as the
“Customers who bought this item also bought” feature, whileNetflix presents RILs as
the “More like” feature. These RILs serve the role of explanations of sorts, which can
motivate users to take the recommendations seriously. In fact, RILs have successfully
proven their value in terms of profit increment and user experience improvement.

Though successful as a means of boosting user engagement, ithas been recently
shown by Calandrino et al. [5] that release of RILs brings substantial risks of privacy
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(a) A sample user-item rating matrix (b) Public RILs at different timestamps

Fig. 1.A sample user-item rating matrix and its public RILs.

breaches w.r.t. a fairly simple attack model, known aspassive privacy attack. In a pas-
sive privacy attack, an adversary possesses a moderate amount of background knowl-
edgein the form of a subset of items that atarget userhas bought/rated and aims to
infer whether atarget itemexists in the target user’s transaction. In the sequel, we use
the termsbuyandrate interchangeably. The adversary monitors thepublicRIL of each
of the background items (i.e., items in the background knowledge) over a period of
time. If the target item appears afresh and/or moves up in theRILs of a sufficiently
large subset of the background items, the adversary infers that the target item has been
added to the target user’s transaction. In this process, theadversary doesnot need to
register in the system or create any fake profiles, and hence the attack is “passive”. Here
is an example that illustrates the idea of passive privacy attacks.

Example 1. Consider a recommender system associated with the user-item rating ma-
trix in Figure 1 (a). Suppose at timeT1 an attacker knows that Alice (user 5) has bought
itemsi2, i3, i7 and i8 from their daily conversation, and is interested to learn ifAlice
has bought a sensitive itemi6. The adversary then monitors the temporal changes of the
public RILs ofi2, i3, i7 andi8. Let the new ratings made during(T1, T2] be the shaded
ones in Figure 1 (a). At timeT2, by comparing the RILs with those atT1, the attacker
observes thati6 appears or moves up in the RILs ofi2, i3, i7 andi8, and consequently
infers that Alice has boughti6.

Example 1 demonstrates the possibility of a passive privacyattack. In a real-world
recommender system, each change in an RIL is the effect of thousands of transactions.
The move-up or appearance of a target item in some backgrounditems’ RILs may not
even be caused by the target user. Thus, one natural questionto ask is “how likely will
a passive privacy attack succeed in a real-world recommender system?”. Calandrino
et al. [5] perform a comprehensive experimental study on four real-world systems, in-
cludingAmazon, Hunch, LibraryThingandLast.fm, and show that it is possible to infer
a target user’s unknown transaction with over90% accuracy on Amazon, Hunch and
LibraryThing and70% accuracy on Last.fm. In particular, passive privacy attacks are
able to successfully infer a third of the test users’ transactions withno error on Hunch.
This finding is astonishing as it suggests that the simple passive privacy attack model is
surprisingly effective in real-world recommender systems. Therefore there is an urgent
need to develop techniques for preventing passive privacy attacks.



Privacy issues in collaborative filtering have been studiedbefore. With the excep-
tion of very few works [23, 21], most proposed solutions [6, 7, 27, 4, 2, 1, 18] resort to
a distributed paradigm in which user information is kept on local machines and recom-
mendations are generated through the collaboration between a central server and client
machines. While this paradigm provides promising privacy guarantees by shielding in-
dividual data from the server, it isnot the current practice of real-world recommender
systems. The distributed solution requires substantial architectural changes to exist-
ing recommender systems with substantial costs, which present a significant barrier to
adoption. Porting existing recommender systems which are deployed in a centralized
setting to the distributed setting is thus not realistic. Worse, the distributed setting does
not prevent passive privacy attacks because the attacks do not require access to individ-
ual user data, but instead rely on aggregate outputs.

Unfortunately, the only works [23, 21] in the centralized setting do not address pas-
sive privacy attacks either. Polat and Du [23] suggest to adduniform noise to the user-
item rating matrix. However, no formal privacy analysis is provided, and thus it is not
clear how beneficial the scheme is in terms of privacy. In fact, we show in Section 6
that adding uniform noise does not really prevent passive privacy attacks and cannot
achieve meaningful utility for RILs. McSherry and Mironov [21] ground their work on
differential privacy[10], which is known for its rigorous privacy guarantee. They study
how to construct a differentially private item covariance matrix, however they do not
consider updates to the matrix, an intrinsic characteristic of recommender systems. We
argue that differential privacy isnot suitable for our problem for at least two reasons:
1) the ratings in a user-item rating matrix are correlated ina subtle way: the decision of
buying an item is influenced by recommendations based on others’ behavior, and there-
fore differential privacy cannot provide the claimed privacy protection [17]; 2) it is very
difficult to achieve desirable utility when handling dynamic updates under differential
privacy [26]. Furthermore, recent research [9] indicates that differential privacy does
not provide inferential privacy, which is vital to thwart passive privacy attacks.

In this paper, we develop a solution for thwarting passive privacy attacks in col-
laborative filtering. We analyze the cause of such attacks and accordingly propose a
novel inference-proof privacy notion, known asδ-bound. It guarantees that, withany
background knowledge in the form of a set of items associatedwith a target userut, an
adversary is not able to successfully infer any additional item rated byut with proba-
bility > δ. Achievingδ-bound on real-life recommender systems requires a non-trivial
effort. The existing solutions [23, 21] anonymize the underlying user-item rating matrix
to protect privacy, regardless of the fact that normally thematrix isnot released to the
public (or to the adversary). Instead, we propose to directly anonymize RILs, which
are the real outputs rendered to the adversary. This fundamental switch from the rating
matrix to RILs brings significant benefits in terms of both utility and scalability.

Our contributions. To our best knowledge,ours is the first remedy to passive privacy
attacks in collaborative filtering, a type of the most damaging and easy-to-perform pri-
vacy attacks. Our contributions are summarized as follows.

First, we analyze the cause of passive privacy attacks, and accordingly propose a
novel inference-proof privacy model calledδ-boundto limit the probability of a suc-



cessful passive privacy attack. We establish the critical condition for a user-item rating
matrix to satisfyδ-bound, which enables effective algorithms for achievingδ-bound.

Second, deviating from the direction of existing studies that manipulate the under-
lying user-item rating matrix, we address the problem by directly anonymizing RILs.
This departure is supported by the fact that, in real-life recommender systems, an ad-
versary doesnot have access to the underlying matrix, and is critical to bothdata utility
and scalability. We propose two anonymization algorithms,one based on suppression
and the other based on a novel anonymization mechanism,permutation, tailored to our
problem. We show permutation provides better utility.

Third, our anonymization algorithms take into consideration the inherent dynamics
of a recommender system. We propose the concept ofattack windowto model a real-
world adversary. Our algorithms ensure that the released RILs are private within any
attack window, in that they satisfyδ-bound w.r.t. passive privacy attacks.

Finally, we perform an extensive experimental study on real-life data. We examine
the impact of different parameters on the performance of ouralgorithms. We demon-
strate that our approach can be seamlessly incorporated into existing recommender sys-
tems to provide formal protection against passive privacy attacks while incurring slight
utility loss.

2 Related Work

The existing privacy-preserving collaborative filtering schemes roughly fall into two
categories, namelycentralizedanddistributedschemes.
Centralized private recommender systems.There are very few studies on providing
privacy protection in centralized recommender systems [23, 21]. Polat and Du [23] sug-
gest users to first add uniform noise to their ratings and thensend the perturbed ratings
to a central recommender system. However, this approach neither provides a formal pri-
vacy guarantee and nor prevents passive privacy attacks. McSherry and Mironov [21]
show how to generate differentially private item covariance matrices that could be used
by the leading algorithms for the Netflix Prize. However, it is not known how to ap-
ply their approach to a changing matrix. In contrast, our method aims to support a dy-
namic recommender system. With a different goal, Machanavajjhala et al. [20] study the
privacy-utility trade-offs in personalized social recommendations. The paper indicates
that, under differential privacy, it isnot possible to obtain accurate social recommen-
dations without disclosing sensitive links in a social graph in many real-world settings.
These findings stimulate us to define a customized privacy model for recommender
systems.
Distributed private recommender systems.A large body of research [6, 7, 27, 4, 2, 1,
18] resorts to distributed storage and computation of user ratings to protect individual
privacy. Canny [6] addresses privacy issues in collaborative filtering by cryptographic
techniques. Users first construct an aggregate model of the user-item rating matrix and
then use local computation to get personalized recommendations. Individual privacy is
protected by multi-party secure computation. In a later paper [7], Canny proposes a new
method based on a probabilistic factor analysis model to achieve better accuracy.



Zhang et al. [27] indicate that adding noise with the same perturbation variance
allows an adversary to derive significant amount of originalinformation. They propose
a two-way communication privacy-preserving scheme, whereusers perturb their ratings
based on the server’s guidance. Berkvosky et al. [4] assume that users are connected in
a pure decentralized P2P platform and autonomously keep andmaintain their ratings in
a pure decentralized manner. Users have full control of whenand how to expose their
data using three general data obfuscation policies. Aimeuret al. [2] present a general
privacy-preserving framework called ALAMBIC, which relies on a semi-trusted third
party for keeping sensitive user data.

Ahn and Amatriain [1] consider a variant of the traditional collaborative filtering,
known asexpert collaborative filtering, in which recommendations are drawn from a
pool of domain experts. Li et al. [18] motivate their approach by an active privacy attack
model. They propose to identify item-user interest groups and separate users’ private
interests from their public interests. While this method reduces the chance of privacy
attacks, it fails to provide a formal privacy guarantee.

A closely related research area isrobustnessof recommender systems [22, 14]. This
line of research focuses on attacks whose goal is to bias the recommendations produced
by a recommender system, rather than privacy attacks.

In sum, existing studies based on the distributed paradigm are not appropriate for
seamless incorporation into existing recommender systems, which are centralized. None
of the existing studies, be they centralized or distributed, protect against passive privacy
attacks on recommender systems, which is the main problem tackled in this paper.

3 Preliminaries

3.1 Item-to-item Recommendation

A common recommendation model followed by many popular websites is to provide,
for every item, a list of its top-N related items, known asitem-to-item recommenda-
tion [5]. Item-to-item recommendations take as input a user-item rating matrixM in
which rows correspond to users and columns correspond to items. The set of all users
form the user universe, denoted byU ; the set of all items form the item universe, de-
noted byI. Each cell in this matrix represents a user’s stated preference (e.g., ratings
for movies or historical purchasing information) on an item, and its value is usually
within a given range (e.g., [1, 5]) or a special symbol “-”, indicating that the preference
is unknown. A sample user-item rating matrix is illustratedin Figure 1 (a).

To generate a list of related items for an itemi, we calculateitem similarity scores
betweeni and other items. The similarity scores can be calculated based on some pop-
ular approaches, such asPearson correlationand vector cosine similarity[24]. The
related item list(RIL) of an itemi is then generated by taking the topN items that have
the largest similarity scores. We call all RILs for all itemspublished at a timestampTk

anRIL release, denoted byRk. We denote a single RIL of an itemj at timestampTk

by Rj
k. Two sample RIL releases are given in Figure 1 (b).
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Fig. 2. An adversary is able to compare any two RIL releases within an attack window W to
launch passive privacy attacks.

3.2 Attack Model

In this section, we briefly review passive privacy attacks [5] on collaborative filtering. In
the setting of passive privacy attacks, an adversary possesses somebackground knowl-
edgein the form of a set of items that have been rated by atarget user, and seeks to
infer for some other item, called atarget item, whether it has been rated/bought by the
user, from thepublicRIL releases published by the recommender system.

As mentioned in Section 3.1, in item-to-item recommendations, for each item, the
recommender system provides an RIL according to item similarity scores. Let an ad-
versary’s background knowledge on a target userut beB and the target item beit /∈ B.
The adversary monitors the changes of the RIL of eachbackground itemin B over time.
If it appears afresh and/or moves up in the RILs of a sufficiently large number of back-
ground items, indicating the increased similarity betweenbackground items andit, the
adversary might infer thatit has been added tout’s record, i.e.,ut has boughtit, with
high accuracy.

In reality, an adversary could launch passive privacy attacks by observing the tem-
poral changes between any two RIL releases. However, it is unrealistic to assume that
an adversary will perform privacy attacks over an unreasonably long timeframe (e.g.,
several months or even several years). Therefore, we propose the concept ofattack
window to model a real-world adversary. Without loss of generality, we assume that
the RIL releases are generated at consecutive discrete timestamps and an adversary
performs attacks at a particular timestamp. We note that this reflects the behavior of
real-world recommender systems as RILs are indeed periodically updated. At timeTk,
an adversary’s attack windowWTk

contains the RIL releases generated at timestamps
Tk, Tk−1, · · · , Tk−|WTk

|+1, where|WTk
| is the size ofWTk

, namely the number of
RIL releases withinWTk

. The adversary performs privacy attacks by comparing any
two RIL releases within his attack window. The attack model is illustrated in Figure 2,
where the attack window size is 5.

4 Our Privacy Model

To thwart passive privacy attacks in collaborative filtering, a formal notion of pri-
vacy is needed. In the context ofprivacy-preserving data publishing[11], where an
anonymized relational database is published, a plethora ofprivacy models have been
proposed, such ask-anonymity [25],ℓ-diversity [19] and differential privacy [10]. In
contrast, in our problem, recommender systems never publish anonymized rating ma-
trices but only aggregate RILs.



RILs, being aggregate, reveal less information than a detailed rating matrix. How-
ever, as shown in [5], publishing RILs still exposes the system to privacy risks, e.g., pas-
sive privacy attacks. no privacy risks. In this paper, we propose a novelinference-proof
privacy notion, known asδ-bound, tailored for passive privacy attacks in collaborative
filtering. LetTran(u) denote the transaction of useru, i.e., the set of items bought byu.

Definition 1 (δ-bound) LetB be the background knowledge on useru in the form of a
subset of items drawn fromTran(u), i.e.,B ⊂ Tran(u). A recommender system satisfies
δ-boundwith respect to a given attack windowW if by comparinganytwo RIL releases
R1 andR2 withinW,

max
u∈U,i∈(I−B)

Pr(i ∈ Tran(u) | B,R1,R2) ≤ δ (1)

wherei ∈ (I − B) is any item that either appears afresh or moves up inR2, and
0 ≤ δ ≤ 1 is the given privacy requirement.

Intuitively, the definition ofδ-bound thwarts passive privacy attacks in item-to-item
collaborative filtering by limiting the probability of a successful attack onany user
with any background items to at mostδ. A smallerδ value provides more stringent
privacy protection, but may lead to worse data utility. Thisunveils the fundamental
trade-off between privacy and data utility in our problem. We will explore this trade-off
in designing our anonymization algorithms in Section 5.

We now analyze the cause of passive privacy attacks and consequently derive the
critical condition under which a recommender system enjoysδ-bound. The fundamental
cause of passive privacy attacks is that the target userut’s rating a target itemit will
increase the similarity scores betweenit and the background item setB, which might
lead to its move-up or appearance in some background items’ RILs. So essentiallyB
acts as aquasi-identifier, which could potentially be leveraged to identify the target user
ut. The privacy ofut is at risk ifB is possessed by only very few users. Consider an
extreme example, whereut is the only user who previously ratedB. Suppose that no
user who previously rated just part ofB ratedit during the time period(T1, T2]. Then
observing the appearance or move-up ofit in the RILs ofB atT2 allows the adversary
to infer thatut has ratedit with 100% probability.

Based on this intuition, one possible way to alleviate passive privacy attacks is to
require every piece of background knowledge to be shared by asufficient number of
users. However, this criterion alone is stillnot adequate to ensureδ-bound. Consider an
example where, besidesut, there are another 9 users who also ratedB. Suppose, during
(T1, T2], all of them ratedit. By observing the appearance or move-up ofit in B’s RILs,
an adversary’s probability of success is still100%. So in order to guaranteeδ-bound it is
critical to limit the portion of users who are associated with the background knowledge
B and also ratedit. Let Sup(B) ≥ 1 be the number of usersu associated withB (i.e.,
B ⊂ Tran(u)) at timeT2, Sup(B ∪ it) be the number of users who are associated with
bothB andit atT2.

Theorem 1 Consider an adversary with background knowledgeB on any target user
ut. The adversary aims to infer the existence of the target itemit ∈ (I−B) in Tran(ut)



by comparing two RIL releasesR1 andR2 published at timeT1 andT2, respectively.
If Sup(B∪it)

Sup(B) ≤ δ, then

Pr(it ∈ Tran(ut) | B,R1,R2) ≤ δ.

Proof. (Sketch) In a passive privacy attack, if the attacker observes that the target item
it appears or moves up in RILs of items inB, then he makes the inference that this
observation results from the fact thatut has recently boughtit. Let the set of users who
previously boughtB beUB . First, it is clear that, without any additional background
information, users inUB are absolutely indistinguishable to the attacker. Second,let
UB∪it be the subset of users inUB who have actually boughtit. With the background
knowledge confined toB, it is reasonable to assume that this subsetUB∪it of users can
be any sizeSup(B∪it) subset ofUB with equal probability. Thus the attacker’s success
probability is equal to the overall probability ofut belonging toUB∪it , which can be

calculated as
( Sup(B)−1
Sup(B∪it)−1)
( Sup(B)
Sup(B∪it)

)
= Sup(B∪it)

Sup(B) ≤ δ. This completes the proof.

Theorem 1 bridges the gap between an attacker’s probabilityof success and the
underlying user-item rating matrix, and enables us to guaranteeδ-bound by examining
the supports in the matrix.

5 Anonymization Algorithm

Achievingδ-bound deals with privacy guarantee. Another equally important aspect of
our problem is preserving utility of the RILs. For simplicity of exposition, in this pa-
per we consider the standard utility metricrecall [16, 13] to measure the quality of
anonymized RILs. Essentially, an anonymization algorithmresults in better recall if the
original RIL and the anonymized RIL contain more common items. It is straightforward
to extend our algorithms for other utility metrics.

Our solution employs twoanonymization mechanisms: suppression, a popular mech-
anism used in privacy-preserving data publishing [11], andpermutation, a novel mech-
anism tailored to our problem. Suppression refers to the operation of suppressing an
item from an RIL, while permutation refers to the operation of permuting an item that
has moved up in an RIL to a position equal to or lower than its original position.

Before elaborating on our algorithms, we give the terminology and notations used
in our solution. Recall that an RIL release at timestampTk is the set of RILs of all items
published atTk, denoted byRk. The RIL associated with an itemj atTk is denoted by
Rj

k. Given two timestampsT1 andT2 with T1 < T2 (i.e.,T1 is beforeT2), we say that
an itemi distinguishesbetweenRj

1 andRj
2 if one of the following holds: 1)i appears

in Rj
2 but not inRj

1, or 2) i appears in bothRj
1 andRj

2 but its position inRj
2 is higher

than its position inRj
1 (i.e., i moves up inRj

2).

5.1 Suppression-based Anonymization

Static Release We start by presenting a simple case, where we are concerned with
only two RIL releases (i.e., the attacker’s attack window isof size 2). We refer to such



Algorithm 1 Suppression-based anonymization algorithm for static release
Input: User-item rating matrixM , RIL releaseR1 at timeT1,
privacy parameterδ
Output: Anonymized RIL releaseR2 at timeT2

1: GenerateR2 fromM ;
2: for each itemi ∈ I do
3: Generate the set of itemsSi whose RILs are distinguished

by i;
4: for each itemi ∈ I with Si 6= ∅ do
5: Vi = GenerateViolatingBorder(Si, δ,M)
6: Li = IdentifySuppressionLocation(Vi);
7: for each locationl ∈ Li do
8: Suppress(i, l,M);
9: return SuppressedR2;

a scenario asstatic release. Our goal is to make the second RIL release satisfyδ-bound
with respect to the first release. We provide an overview of our approach in Algorithm 1.

Identify potential privacy threats (Lines 2-3). Since an adversary leverages the
temporal changes of the RILs to make inference attacks, the first task is to identify, for
each itemi, the set of items whose successive RILs at timeT1 andT2 are distinguished
by i. This set of items are referred to aspotential violating itemsof i, denoted bySi. For
example, for the two RIL releases in Figure 1 (b), the set of potential violating items of
i6 is Si6 = {i2, i3, i7, i8}. An adversary could use any subset ofSi as his background
knowledge to infer the existence ofi in a target user’s transaction.

Determine suppression locations (Lines 5-6).Not all these potential violating
items (or their combinations, i.e., itemsets) will cause actual privacy threats. Among
potential violating items, we identify the itemsets where real privacy threats arise3 and
eliminate the threats by suppressing the target item from some RILs while achieving
minimum utility loss. There are two major technical challenges in doing this, which Al-
gorithm 1 addresses: 1) how to calculate a set of suppressionlocations s.t. the resultant
utility loss is minimized (Lines 5-6); 2) how to suppress an item from an RIL without
incurring new privacy threats (Line 8).

For the first challenge, we show that the problem is NP-hard (see Theorem 3 below)
and provide an approximation algorithm. For a target itemit

4, an adversary’s back-
ground knowledge could beanysubset ofSit . Therefore, we have to guarantee that the
probability of inferring the presence ofit in a target user’s transaction fromanyitemset
B ⊆ Sit , viewed as background knowledge on the target user, is≤ δ. We refer to this
probability as thebreach probabilityassociated with the background knowledge (i.e.,
itemset)B. We point out that the problem structure does not satisfy anynatural mono-
tonicity: indeed, the breach probability associated with an itemset may be more or less
than that of its superset. Thus, in the worst case, we must check the breach probabil-

3 That is, when an adversary uses the itemsets as his background knowledge, he is able to infer
the target item with probability> δ.

4 Note thateveryitem i ∈ I could be a target item.



ity for every itemset (except the empty set) ofSit , which has exponential complexity.
Doing so for every item (viewed as target item) is not realistic.

To help tame the complexity of having to check all subsets ofSit , whereit is any
candidate target item, we develop a pruning scheme. Define anitemsets ⊂ Sit to be
a minimal violating itemsetprovideds has a breach probability> δ and every proper
subset ofs has a breach probability≤ δ. LetVit be theviolating borderof it, consisting
of all minimal violating itemsets ofit. By definition of minimality, to thwart the privacy
attacks onVit , it is enough to suppressit from the RIL of one item inv, for every
minimal violating itemsetv ∈ Vit . The reason is that, for anyv ∈ Vit , no proper subset
of v can be used to succeed in an attack. We next prove that it is sufficient to guarantee
δ-bound on all itemsets inSit by ensuringδ-bound onVit .

Theorem 2 For two RIL releasesR1 andR2, a target userut and a target itemit,
∀v ∈ Vit , suppressingit from the RIL of one item inv ensures∀s ⊂ Sit , P r(it ∈
Tran(ut)|s,R1,R2) ≤ δ.

Proof. An itemsets ⊂ Sit with Pr(it ∈ Tran(ut)|s,R1,R2) > δ must be inVit or
a superset of somev ∈ Vit . If s is in Vit , suppressing one item froms makesPr(it ∈
Tran(ut)|s,R1,R2) ≤ δ. If s is a superset of somev ∈ Vit , one item is suppressed
from eachv. The rest items ins cannot be a minimal violating itemset or a superset of
some minimal violating itemset as in this case at least one more item will be suppressed.
This completes the proof.

The general idea ofGenerateViolatingBorder (Line 5) is that if an itemset vio-
latesδ-bound, then there is no need to further examine its supersets. We impose an
arbitrary total order on the items inSit to ensure that each itemset will be checked
exactly once. We iteratively process the itemsets with increasing sizes. The minimal
violating itemsets with sizek come from a candidate set generated byjoining non-
violating itemsets of sizek − 1. Two non-violating itemsets,s1 = {i11, i

1
2, · · · , i

1
l }

and s2 = {i21, i
2
2, · · · , i

2
l }, can be joined if for all1 ≤ m ≤ l − 1, i1m = i2m and

Order(i1l ) > Order(i2l ). The joined result iss1 ⋊⋉ s2 = {i11, i
1
2, · · · , i

1
l , i

2
l }.

For a target itemit whose potential violating items do not cause any privacy threat,
we still need to consider all2|Sit

|− 1 itemsets before concluding that there is no threat.
To alleviate the computational cost of these items, we make use of a simple pruning
strategy. Let the number of users who ratedit at timeT2 be Sup(it), the number of
users ratedSit at T2 beSup(Sit), and the number of users who rated bothSit andit
at T2 beSup(Sit ∪ {it}). SinceSup(Sit

∪{it})

Sup(Sit
) ≤ Sup(it)

Sup(Sit
) , to guarantee that the breach

probability Sup(Sit
∪{it})

Sup(Sit
) ≤ δ, it is enough to ensure thatSup(Sit) ≥ Sup(it)

δ
. Notice

that, for any subsets ⊂ Sit ,
Sup(s∪{it})

Sup(s) ≤ Sup(it)
Sup(s) ≤ Sup(it)

Sup(Sit
) ≤ δ. Thus, there is no

need to make any checks for subsets ofSit .

Example 2. Continuing with Example 1, recallSi6 = {i2, i3, i7, i8}. Figure 3 shows all
itemsets ofSi6 in a lattice structure. Considering the orderOrder(i2) > Order(i3) >
Order(i7) > Order(i8), the lines connecting itemsets illustrate how two itemsetscan
be joined (e.g.,i2i3 ⋊⋉ i2i7 = i2i3i7). Let δ = 0.7. SinceSup(i3∪i6)

Sup(i3)
= 3

4 > δ, {i3}
is a minimal violating itemset, all its supersets are not further checked. Similarly,{i7}
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Fig. 3.The generation of the violating border forSi6 = {i2, i3, i7, i8}.

Algorithm 2 IdentifySuppressionLocation

Input: The violating borderVi of item i

Output: A set of locations (items) to suppressLi

1:Li = ∅;
2:C ← the set of items inVi;
3: while Vi 6= ∅ do
4: for each itemj ∈ C do
5: nj = |{v ∈ Vi : j ∈ v}|;
6: Add the itemj with the maximumnj toLi;
7: Vi = Vi − {v ∈ Vi : j ∈ v}
8: C ← the set of items inVi;
9: return Li;

and{i2, i8} are also minimal violating itemsets. The corresponding violating border is
Vi6 = {{i3}, {i7}, {i2, i8}}. All itemsets beyond the dashed line are not examined.

Achievingδ-bound onVit requires to find a set of items from whose RILs we sup-
press the target itemit, such that, by suppressingit from those RILs, for eachpotential
background knowledge (i.e., itemset)B, either the breach probability associated with
it is≤ δ or it does not distinguish the successive RILs of at least one itemin B. From a
recall point of view, we would like to minimize the number of items tobe suppressed,
since each item suppression leads to a utility loss of 1. Moreformally, the problem is
defined as follows.

Definition 2 (IdentifySuppressionLocation) Given the violating borderVit , select a set
of itemsLit such that∀v ∈ Vit(∃l ∈ Lit(l ∈ v)) and|Lit | is minimized.

The problem is identical to theminimal hitting set(MHS) problem [3]:given a
collectionC of subsets of a finite setS, find a subsetS′ ⊂ S such thatS′ contains a
least one element from each subset inC and|S′| is minimized. In view of the above, we
have the following.

Theorem 3 IdentifySuppressionLocation is NP-hard. There is anO(ln |Vit |)-approximation
algorithm to the optimal solution, which runs in O(|Vit ||I|) time.

Proof. The NP-hardness follows from the fact that the problem ofIdentifySuppressionLocation

is equivalent to MHS. Algorithm 2 shows a simple greedy algorithm, which repeatedly
picks the item that belongs to the maximum number of “uncovered” itemsets inVit ,
where an itemset is said to be “covered” if one of the items in the current hitting set



belongs to it. It is known [8] that this simple greedy heuristic gives anO(ln |Vit |)-
approximation for MHS. The time complexity can be directly derived from the pseudo-
code in Algorithm 2 based on the observation that|C| ≤ |I|.

Perform suppression (Algorithm 1, Line 8). To thwart privacy attacks, we sup-
press the target itemit from the RILs of the items identified by Algorithm 2. Suppress-
ing it from a RIL will make items with a position lower thanPos(it) (i.e., the position
of it in the RIL) move up one position and introduce a new item into the RIL. Note
that the move-up or appearance of these items might cause many newprivacy threats,
resulting in both higher complexity and lower utility. To alleviate this problem, instead
of changing the positions of all items belowPos(it) and introducing a new item to the
RIL, we directly insert a new item atPos(it) and check its breach probability.

Even inserting a new itemi directly atPos(it) in j’s RIL might lead to substantial
computational cost, because, in the worst case, it demands to examine every possible
combination of the itemsets derived fromSi with j, which is ofO(2|Si|) complexity. So
we are only interested in items withSi = ∅ (or |Si| is sufficiently small). In this case,
we can perform the check in constant time. More specifically,we iteratively consider
the items not in the RIL in the descending order of their similarity scores until we find
an item to be inserted atPos(it) without incurring new privacy threats. If an itemi not in
the RIL hasSi 6= ∅, we skipi and consider the next item. This process terminates when
a qualified item is found. Wheni is inserted intoj’s RIL, Si is accordingly updated:
Si = {j}.

Multiple Release We next deal with the case of multiple releases. As discussedin
Section 3.2, at any timeTk, an adversary performs passive privacy attacks by comparing
any two RIL releases within the attack windowWTk

. Hence, whenever a recommender
system generates a new RIL release, it has to be secured with respect to all previous
|WTk

| − 1 releases5.

We explain the key idea for extending Algorithm 1 for this case. Anonymizing the
RIL releaseRk at timeTk works as follows. First, we should generate the potential vio-
lating items ofeveryitemi inRk with respect to each ofRk−1,Rk−2, · · · ,Rk−|WTk

|+1.

Let SRj

i be the potential violating items ofi generated by comparingRk andRj ,

wherek − |WTk
| + 1 ≤ j ≤ k − 1. We calculate the violating border over eachS

Rj

i ,

denoted byV Rj

i . To makeRk private for the entire attack window, we need to elim-
inate all itemsets from these|WTk

| − 1 borders. We take the union of all the borders

Vi = V
Rk−1

i ∪ V
Rk−2

i ∪ · · · ∪ V
Rk−|W|+1

i . We prune all itemsets that are the supersets
of an itemset inVi, i.e., retain only minimal sets inVi. The rationale of this pruning
step is similar to that of Theorem 2. Second, when we bring in anew item to an RIL, its
breach probability needs to be checked with respect toeachof the previous|WTk

| − 1
releases.

5 We assume that the attack window size of an adversary is fixed at different timestamps. In
reality, this assumption can be satisfied by setting a large enough window size.



5.2 Permutation-based Anonymization

In the suppression-based solution, we do not distinguish between an item’s appearance
and move-up. For items that newly appear in an RIL, we have to suppress them. How-
ever, for items that move up in an RIL, we do not really need to suppress them from
the RIL to thwart passive privacy attacks. To further improve data utility, we introduce
a novel anonymization mechanism tailored to our problem, namely permutation. The
general idea of permutation is to permute the target item to alower position in the RIL
so that it cannot be used by an adversary to perform a passive privacy attack. If we can-
not find a position to permute without generating new privacythreats, we suppress the
target item from the RIL. So our permutation-based anonymization algorithm employs
both permutation and suppression, but prefers permutationwhenever a privacy threat
can be eliminated by permutation.

Static ReleaseSimilarly, we first generate the potential violating itemsSi for each item
i. Unlike in the suppression-based method, we label each itemin Si with eithersuppress
or permute. If an item gets intoSi due to its appearance in an RIL, it is labeledsuppress;
otherwise it is labeledpermute. For example, in Figure 1, we label the occurrences ofi6
in the RILs ofi2, i7 andi8 with suppressand its occurrence ini3’s RIL with permute.

The violating border ofSi can be calculated by theGenerateViolatingBorder pro-
cedure described in Section 5.1. Forrecall, it can be observed that permutation does
not incur any utility loss. For this reason, we take into consideration the fact thatsup-
pressandpermuteare associated with different utility loss when identifying items to
anonymize. We call this new procedureIdentifyAnonymizationLocation. We model
IdentifyAnonymizationLocation as aweighted minimum hitting set(WMHS) prob-
lem. IdentifyAnonymizationLocation chooses at every step the item that maximizes
the score, namely the ratio between the number of uncovered itemsets containing it and
its weight. The weight of an item is calculated based on its utility loss. For an item
labeledsuppress, its weight is 1. For an item labeledpermute, it does not result in any
utility loss and should receive a weight value0. However, this leads to a divide-by-zero
problem. Instead, we assign the item a sufficiently small weight value 1

|Vi|+1 . This is
sufficient to guarantee that items labeledpermuteare always preferred over items la-
beledsuppress, because the maximum score of an item labeledsuppressis |Vi| while
the minimum score of an item labeledpermuteis |Vi|+ 1.

To tackle the anonymization locations identified byIdentifyAnonymizationLocation,
we start by suppressing items labeledsuppressbecause these privacy threats cannot be
solved by permutation. Similar to theSuppress procedure described in Section 5.1, we
look for the first itemi outside a RIL withSi = ∅ that does not incur any new pri-
vacy threat, as a candidate to replace the suppressed item. One exception is that in
the permutation-based solution, we can stop searching oncewe reach the first item
that was in the previous RIL (for this type of items there isno need to check their
breach probabilities as our following steps make sure that they cannot be used in pas-
sive privacy attacks, as is shown later). For the moment, we do not assign a partic-
ular position fori and wait for the permutation step. After suppressing all items la-
beledsuppress, we perform permutation on the RILs that contain locations returned by
IdentifyAnonymizationLocation. In an RIL, for all items that were also in the RIL at



Algorithm 3 Permutation-based anonymization algorithm for multiple release
Input: User-item rating matrixM , the attack windowWTk

at timeTk, previous|WTk
| − 1 RIL

releases, privacy parameterδ

Output: Anonymized RIL releaseRk at timeTk

1: GenerateRk fromM ;
2: for each previous RIL releaseRj do
3: for each itemi ∈ I do
4: Generate the set of itemsS

Rj

i whose RILs are
distinguished byi betweenRk andRj ;

5: Label items inS
Rj

i by suppress or permute and
recordpermute position;

6: V
Rj

i = GenerateViolatingBorder(S
Rj

i , δ,M);
7: for each itemi ∈ I do

8: Vi = V
Rk−1

i ∪ · · · ∪ V
Rk−|WTk

|+1

i ;
9: Vi = Label(Vi);

10: Vi = Prune(Vi);
11: for each itemi ∈ I with Vi 6= ∅ do
12: 〈Li, Ci〉 = IdentifyAnonymizationLocation(Vi);
13: for each location-code pair〈l, c〉 ∈ 〈Li, Ci〉 do
14: if c = suppress then
15: SuppressMR(i, l,M);
16: else
17: PermuteMR(i, l,M);
18: return AnonymizedRk;

the previous timestampT1, we assign them the same positions as those atT1; for all
items that were not in the RIL atT1, we randomly assign them to one of the remaining
positions.

We next show the correctness of our permutation-based solution. For an item that
needs to be suppressed, it is replaced by a new item, whose appearance is examined to
be free of privacy threats, and thus randomly assigning a position does not violate the
privacy requirement. For an item that needs to be permuted, we freeze its position to
be the same as before, i.e., as in the previous RIL release, and therefore it cannot be
used by the adversary to perform passive privacy attacks. Sothe anonymized RILs are
resistant to passive privacy attacks.

Example 3. Revisit Example 1. We show how to anonymizei2’s RIL at T2 using the
permutation-based method. Supposei8 needs to be permuted andi6 to be suppressed.
We first suppressi6 and find the first item outside the RIL without incurring any new
privacy threat, say,i3. We then permutei8. Since now all items,i3, i7 andi8, appear in
i2’s RIL atT1, we assign them the same positions as those atT1, that is, the anonymized
RIL atT2 is the same as the RIL atT1.

Multiple Release Finally, we explain our permutation-based algorithm for themultiple
releasescenario. Algorithm 3 presents our idea in detail. We compare the trueRk at



time Tk with each of the previous|WTk
| − 1 RIL releases within the attack window

WTk
to generate the corresponding potential violating items for each itemi, denoted

by S
Rj

i (Lines 2-4). In addition to labeling each potential violating item bysuppress
or permute, for an itemi labeledpermute, we record its position in the RIL in which it
moves up (Line 5).

For eachSRj

i , we calculate its violating borderV Rj

i (Line 6). Since we have to
makeRk private with respect to all previous|WTk

| − 1 releases, we perform a union
over allV Rj

i (Line 8). In the case of multiple release, the same item mightbe labeled

bothsuppressandpermutein differentV Rj

i and by different positions. To resolve this
inconsistency, we letsuppresstake precedence overpermutation. That is, if an itemi
is labeledsuppressin anyV Rj

i , it will be labeledsuppressin Vi (Line 9), because a
new item’s entering in an RIL cannot be hidden by permuting its position. Also, the
position associated with an item labeledpermuteis updated to the lowest position of
all its positions in differentV Rj

i . We call this lowest position thesafe position. It is not
hard to see that only if the item is permuted to a position lower than or equal to its safe
position, it can be immune to passive privacy attacks withinthe entire attack window. A
similar pruning strategy can be applied onVi, which removes all supersets of an itemset
in Vi (Line 10).

Vi is then fed intoIdentifyAnonymizationLocation (Line 12). The outputs are a set
of items (i.e., locations) in whose RILi should be anonymized, their corresponding
anonymization codes (eithersuppressor permute), and safe positions for items labeled
permute. For items labeledsuppress, they are processed with the same procedure as
the suppression-based solution for the multiple release scenario (SuppressMR). Here
we focus onPermuteMR (Line 17). In static release, we can restore the items labeled
permuteto their previous positions to thwart privacy attacks. However, this is not suf-
ficient for multiple release, because changes of the underlying user-item rating matrix
are different in different time periods.

The key observation is that we have to permute the itemi to a position lower than or
equal to its safe position. We iteratively switchi with the items in the RIL with position
lower than or equal toi’s safe position and check if the switch incurs any new privacy
threat with respect to all previous|WTk

| − 1 releases. If we cannot find a permutation
without violating the privacy requirement, we suppressi instead.

6 Experiments

In this section, we study the performance of the proposed anonymization algorithms
over the public real-life datasetsMovieLensandFlixster. We compare our suppression-
based anonymization algorithm (SUPP) and permutation-based anonymization algo-
rithm (PERM) with the randomized perturbation approach (RP) [23] 6. All implemen-
tations were done in Python, and all experiments were run on aLinux machine with a
4 Core Intel Xeon CPU and 16GB of RAM.

6 Due to the reason explained in Section 2, we cannot perform a meaningful comparison with
the approach in [21].
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Fig. 4. Utility results on: MovieLens (a)–(d); Flixster (e)–(h).

 0

 5

 10

 15

 20

 25

 30

3 4 5

s
u
p
p
re

s
s
e
d
 i
te

m
s

Att. window size

(a)

SUPP
PERM

 0

 5

 10

 15

 20

 25

 30

5 6 7

s
u
p
p
re

s
s
e
d
 i
te

m
s

Time gap

(b)

SUPP
PERM

 0

 5

 10

 15

 20

 25

 30

0.1 0.15 0.2

s
u
p
p
re

s
s
e
d
 i
te

m
s

δ

(c)

SUPP
PERM

 0

 10

 20

 30

 40

 50

5 10 15

s
u
p
p
re

s
s
e
d
 i
te

m
s

N

(d)

SUPP
PERM

 0
 20
 40
 60
 80

 100
 120
 140

3 4 5

s
u
p
p
re

s
s
e
d
 i
te

m
s

Att. window size

(e)

SUPP
PERM

 0
 20
 40
 60
 80

 100
 120
 140

5 6 7

s
u
p
p
re

s
s
e
d
 i
te

m
s

Time gap

(f)

SUPP
PERM

 0
 20
 40
 60
 80

 100
 120
 140

0.1 0.15 0.2

s
u
p
p
re

s
s
e
d
 i
te

m
s

δ

(g)

SUPP
PERM

 0

 50

 100

 150

 200

 250

 300

5 10 15

s
u
p
p
re

s
s
e
d
 i
te

m
s

N

(h)

SUPP
PERM

Fig. 5. Number of items suppressed by different anonymization algorithms: MovieLens (a)–(d);
Flixster (e)–(h).

The objectives of our experiments are: 1) evaluate the utility of various anonymiza-
tion algorithms under different parameters; 2) examine theprobability of successful
passive privacy attacks after performing different anonymization algorithms; and 3)
demonstrate the efficiency of our proposed algorithms.

6.1 Experiment Setup

The first datasetMovieLens7 is a popular recommendation benchmark. It contains 1
million ratings over 4K movies and 6K users. The second dataset Flixster [15] was
crawled from the Flixster website8, and contains 8.4 million ratings over 49K movies
and 1 million users. Both datasets are time-stamped, and in all experiments, we follow
the classical item-based recommendation framework studied in [16] to calculate item
similarity scores. ForRP, we use zero-meaned uniform noise with small variances.
Experimental results obtained under different variances exhibit similar trends. Due to
space limit, we only report the results with the variance equal to 1.

For all experiments, we select the initial timestamp such that the initial RIL release
is generated based on approximately10% of all ratings in the dataset. For the time gap

7 http://www.movielens.org
8 http://www.flixster.com
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Fig. 6. Attack success probability results on: MovieLens (a)–(d); Flixster (e)–(h).

between two consecutive RIL releases, we consider it to be a time period for gener-
ating a multiple of1% of total ratings, e.g., if the time gap is5, then the number of
ratings generated between two consecutive RIL releases will be approximately5% of
all ratings. Results obtained from other settings of these two parameter settings are very
similar, and hence omitted here.

In all experiments, we consider the effect of four tunable parameters: the attack win-
dow size, the time gap between two consecutive RIL releases,the privacy requirement
δ, and the number of items in an RILN . The following default values are used unless
otherwise specified: 4 for the attack window size, 5 for the time gap,0.1 for δ, and5 for
N .

6.2 Performance Evaluation

Utility study . As discussed before,SUPPandPERM only anonymize a few RILs in
which real privacy risks for passive privacy attacks arise.Thus, they will leave most of
the RILs intact. This is confirmed byoverall recall, which is defined as the percentage
of items inall original RILs that are retained after anonymization. We show in Figure 4
the overall recall of different algorithms on both datasetsby varying the four parameters,
namely attack window size, time gap between two consecutiveRIL releases,δ andN .
It can be observed that bothSUPPandPERMconsistently achieve high overall recall,
while RPcannot provide desirable utility in terms of RILs.

To further examine the utility loss just on the anonymized RILs (by ignoring RILs
which are intact after the anonymization), we also considertargeted recall, which is
defined as the percentage of items retained in the anonymizedRILs (i.e., the RILs in
which suppression and/or permutation are performed). Thisutility metric is of impor-
tance because we do not want to have anonymized RILs that are substantially different
from the original ones. The experimental results on both datasets, as shown in Figure 4,
suggest that our algorithms do not significantly destroy theusefulness of any RIL. We
can also observe thatPERMachieves better utility thanSUPP. We present the numbers
of suppressed items by bothPERMandSUPPunder varying parameters in Figure 5.
The results confirm thatPERM is more preferable thanSUPPin all cases.
Privacy study. In Figure 6, for both datasets, we demonstrate thatRPcannot prevent
passive privacy attacks: the worst case breach probabilityover the RILs generated from
the perturbed user-item rating matrix is still extremely high (e.g.,100% for some target
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Fig. 7.Efficiency results on: MovieLens (a)–(d); Flixster (e)–(h).

user). In contrast, our algorithms ensure that the breach probability over anonymized
RILs is always less than the given privacy parameterδ.
Efficiency study. Finally, we show the run-time of our proposed anonymization algo-
rithms under various settings over both datasets in Figure 7. As can be observed, both
proposed algorithms are efficient, and in most situations,PERMis at least twice as fast
asSUPP. The reason is that the cost of permutation is often much smaller than suppres-
sion, since the latter may need to explore many items beyond an RIL before finding a
qualified replacement. Therefore, we conclude that empirically PERMis a better choice
thanSUPPin terms of both utility and efficiency.

We note thatRPis usually very efficient, as we only need to add some noise when a
rating arrives. However, as shown in the experimental results, the small run-time over-
head induced by our proposed algorithms can result in substantial utility improvement
and guaranteed privacy protection against RIL-based passive inference attacks.

7 Conclusion

The recent discovery of passive privacy attacks in item-to-item collaborative filtering
has exposed many real-life recommender systems to a seriouscompromise of privacy.
In this paper, we propose a novel inference-proof privacy notion calledδ-bound for
thwarting passive privacy attacks. We develop anonymization algorithms to achieveδ-
boundby means of a novel anonymization mechanism calledpermutation. Our solution
can be seamlessly incorporated into existing recommender systems as a post-processing
step over the RILs generated using traditional collaborative filtering algorithms. Exper-
imental results demonstrate that our solution maintains high utility and scales to large
real-life data.
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