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Abstract. While recommender systems based on collaborative filtering have be-
come an essential tool to help users access items of interest, it has tieateic

that collaborative filtering enables an adversary to perfpassive privacy at-
tacks a type of the most damaging and easy-to-perform privacy attaoks. |
passive privacy attack, the dynamic nature of a recommender sydi@ns an
adversary with a moderate amount of background knowledge to infisess
transaction through temporal changes inphélic related-item lists (RILs). Un-

like the traditional solutions that manipulate the underlying user-item rating ma-
trix, in this paper, we respond to passive privacy attacks by directlgyanizing

the RILs, which are the real outputs rendered to an adversary. Tinisfoen-

tal switch allows us to provide a novel rigorous inference-proof pgivguaran-

tee, known agi-bound with desirable data utility and scalability. We propose
anonymization algorithms based on suppression and a novel mechanisnu-
tation, tailored to our problem. Experiments on real-life data demonstrate that ou
solutions are both effective and efficient.

1 Introduction

In recent years, recommender systems have been increadepibyed in a wide range
of applications as an effective tool to cope with informatmverload. Among various
approaches developed for recommender systenigborative filtering[12] is prob-
ably the most successful technique that has been widelytadlophe general idea
of collaborative filtering is to utilize known preferencesllected from a group of
users to make recommendations or predictions of unknowfenemrces for other “sim-
ilar” users [24]. As a standard practice, many collabogafiltering systems release
related-item list{RILS) as a means of engaging users. For example, e-comrserce
vice providers likeAmazonand Netflix have incorporated collaborative filtering as an
essential component to help users find items of interest.zamarovides RILs as the
“Customers who bought this item also bought” feature, wNigflix presents RILs as
the “More like” feature. These RILs serve the role of exptanes of sorts, which can
motivate users to take the recommendations seriously.cin RiLs have successfully
proven their value in terms of profit increment and user eégpee improvement.
Though successful as a means of boosting user engagemias, liteen recently
shown by Calandrino et al. [5] that release of RILs bringsstanitial risks of privacy
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Fig. 1. A sample user-item rating matrix and its public RILs.

breaches w.r.t. a fairly simple attack model, knowrpassive privacy attackn a pas-
sive privacy attack, an adversary possesses a moderatenanfdackground knowl-
edgein the form of a subset of items thattarget userhas bought/rated and aims to
infer whether aarget itemexists in the target user’s transaction. In the sequel, we us
the termsbuyandrate interchangeably. The adversary monitors plidlic RIL of each
of the background items (i.e., items in the background kedgé¢) over a period of
time. If the target item appears afresh and/or moves up irRihe of a sufficiently
large subset of the background items, the adversary irtiatgtie target item has been
added to the target user’s transaction. In this processadkiersary doesot need to
register in the system or create any fake profiles, and héecattack is “passive”. Here
is an example that illustrates the idea of passive privaacks.

Example 1. Consider a recommender system associated withsthr-item rating ma-
trix in Figure 1 (a). Suppose at tinig an attacker knows that Alice (user 5) has bought
itemsis, i3, i7 andig from their daily conversation, and is interested to leari\iice

has bought a sensitive iteigl The adversary then monitors the temporal changes of the
public RILs ofis, i3, iz andig. Let the new ratings made durir{d@?, 7z] be the shaded
ones in Figure 1 (a). At tim&5, by comparing the RILs with those &t, the attacker
observes thats appears or moves up in the RILsigf i3, i andig, and consequently
infers that Alice has boughif. m

Example 1 demonstrates the possibility of a passive priadgiack. In a real-world
recommender system, each change in an RIL is the effect oé#muls of transactions.
The move-up or appearance of a target item in some backgilitemd’ RILs may not
even be caused by the target user. Thus, one natural quéstsk is how likely will
a passive privacy attack succeed in a real-world recommegagsgten?”. Calandrino
et al. [5] perform a comprehensive experimental study om feal-world systems, in-
cludingAmazonHunch LibraryThingandLast.fm and show that it is possible to infer
a target user’'s unknown transaction with 096f% accuracy on Amazon, Hunch and
LibraryThing and70% accuracy on Last.fm. In particular, passive privacy atteaie
able to successfully infer a third of the test users’ tratisas withno error on Hunch.
This finding is astonishing as it suggests that the simplsipagprivacy attack model is
surprisingly effective in real-world recommender systefiiserefore there is an urgent
need to develop techniques for preventing passive priviiagkes.



Privacy issues in collaborative filtering have been studiiefibre. With the excep-
tion of very few works [23, 21], most proposed solutions [&7, 4, 2, 1, 18] resort to
a distributed paradigm in which user information is kepta@ral machines and recom-
mendations are generated through the collaboration bateeentral server and client
machines. While this paradigm provides promising privacgrgatees by shielding in-
dividual data from the server, it isot the current practice of real-world recommender
systems. The distributed solution requires substantigiiwctural changes to exist-
ing recommender systems with substantial costs, whicteptessignificant barrier to
adoption. Porting existing recommender systems which eptogied in a centralized
setting to the distributed setting is thus not realisticr¥eo the distributed setting does
not prevent passive privacy attacks because the attacks deauite access to individ-
ual user data, but instead rely on aggregate outputs.

Unfortunately, the only works [23, 21] in the centralizedisg) do not address pas-
sive privacy attacks either. Polat and Du [23] suggest towamirm noise to the user-
item rating matrix. However, no formal privacy analysis isyided, and thus it is not
clear how beneficial the scheme is in terms of privacy. In, faet show in Section 6
that adding uniform noise does not really prevent passiwagy attacks and cannot
achieve meaningful utility for RILs. McSherry and Mirona®1]] ground their work on
differential privacy[10], which is known for its rigorous privacy guarantee. yls¢éudy
how to construct a differentially private item covariancatrx, however they do not
consider updates to the matrix, an intrinsic characteraftrecommender systems. We
argue that differential privacy isot suitable for our problem for at least two reasons:
1) the ratings in a user-item rating matrix are correlatea $ubtle way: the decision of
buying an item is influenced by recommendations based omthehavior, and there-
fore differential privacy cannot provide the claimed pdygrotection [17]; 2) it is very
difficult to achieve desirable utility when handling dynaniipdates under differential
privacy [26]. Furthermore, recent research [9] indicates differential privacy does
not provide inferential privacy, which is vital to thwartgsve privacy attacks.

In this paper, we develop a solution for thwarting passivieagy attacks in col-
laborative filtering. We analyze the cause of such attacklsaamtordingly propose a
novel inference-proof privacy notion, known &sbound It guarantees that, witAny
background knowledge in the form of a set of items associatttda target uset;, an
adversary is not able to successfully infer any additiotehirated byu, with proba-
bility > §. Achievingd-bound on real-life recommender systems requires a noiadtri
effort. The existing solutions [23, 21] anonymize the umgleg user-item rating matrix
to protect privacy, regardless of the fact that normallyrtiegrix is not released to the
public (or to the adversary). Instead, we propose to diyemtionymize RILs, which
are the real outputs rendered to the adversary. This fundahsvitch from the rating
matrix to RILs brings significant benefits in terms of botHitytiand scalability.

Our contributions. To our best knowledgegurs is the first remedy to passive privacy
attacks in collaborative filtering, a type of the most dammggand easy-to-perform pri-
vacy attacksOur contributions are summarized as follows.

First, we analyze the cause of passive privacy attacks, ecatdingly propose a
novel inference-proof privacy model calléeboundto limit the probability of a suc-



cessful passive privacy attack. We establish the critioabiition for a user-item rating
matrix to satisfyd-bound, which enables effective algorithms for achievidgpund.

Second, deviating from the direction of existing studiest thanipulate the under-
lying user-item rating matrix, we address the problem bgaly anonymizing RILs.
This departure is supported by the fact that, in real-lifremender systems, an ad-
versary doesot have access to the underlying matrix, and is critical to loiatia utility
and scalability. We propose two anonymization algorithorsg based on suppression
and the other based on a novel anonymization mechapisrmutation tailored to our
problem. We show permutation provides better utility.

Third, our anonymization algorithms take into considenathe inherent dynamics
of a recommender system. We propose the concegpttatk windowo model a real-
world adversary. Our algorithms ensure that the releaséd Rie private within any
attack window, in that they satishtbound w.r.t. passive privacy attacks.

Finally, we perform an extensive experimental study on-liéadata. We examine
the impact of different parameters on the performance ofatgorithms. We demon-
strate that our approach can be seamlessly incorporatedxigting recommender sys-
tems to provide formal protection against passive privdtgcs while incurring slight
utility loss.

2 Related Work

The existing privacy-preserving collaborative filterinchemes roughly fall into two
categories, namelgentralizedanddistributedschemes.

Centralized private recommender systemsThere are very few studies on providing
privacy protection in centralized recommender systemsd2B Polat and Du [23] sug-
gest users to first add uniform noise to their ratings and sleexd the perturbed ratings
to a central recommender system. However, this approatieng@rovides a formal pri-
vacy guarantee and nor prevents passive privacy attackSh&tcy and Mironov [21]
show how to generate differentially private item covarentatrices that could be used
by the leading algorithms for the Netflix Prize. However,sihot known how to ap-
ply their approach to a changing matrix. In contrast, ourhoétaims to support a dy-
namic recommender system. With a different goal, Machgjieala et al. [20] study the
privacy-utility trade-offs in personalized social recoemdations. The paper indicates
that, under differential privacy, it inot possible to obtain accurate social recommen-
dations without disclosing sensitive links in a social grapmany real-world settings.
These findings stimulate us to define a customized privacyeifmd recommender
systems.

Distributed private recommender systemsA large body of research [6,7,27,4,2,1,
18] resorts to distributed storage and computation of wetngs to protect individual
privacy. Canny [6] addresses privacy issues in collabeggdiitering by cryptographic
techniques. Users first construct an aggregate model ofséreitem rating matrix and
then use local computation to get personalized recommiemdatndividual privacy is
protected by multi-party secure computation. In a lateiepdp], Canny proposes a hnew
method based on a probabilistic factor analysis model tesaetbetter accuracy.



Zhang et al. [27] indicate that adding noise with the saméupeation variance
allows an adversary to derive significant amount of originedrmation. They propose
a two-way communication privacy-preserving scheme, wheees perturb their ratings
based on the server’s guidance. Berkvosky et al. [4] asshataisers are connected in
a pure decentralized P2P platform and autonomously keemairdain their ratings in
a pure decentralized manner. Users have full control of vamehhow to expose their
data using three general data obfuscation policies. Aireeal. [2] present a general
privacy-preserving framework called ALAMBIC, which redi®n a semi-trusted third
party for keeping sensitive user data.

Ahn and Amatriain [1] consider a variant of the traditionallaborative filtering,
known asexpert collaborative filteringin which recommendations are drawn from a
pool of domain experts. Li et al. [18] motivate their apprioéy an active privacy attack
model. They propose to identify item-user interest groups separate users’ private
interests from their public interests. While this methoduessb the chance of privacy
attacks, it fails to provide a formal privacy guarantee.

A closely related research areadbustnessf recommender systems [22, 14]. This
line of research focuses on attacks whose goal is to biagtilenmendations produced
by a recommender system, rather than privacy attacks.

In sum, existing studies based on the distributed paradignmat appropriate for
seamless incorporation into existing recommender syst&hish are centralized. None
of the existing studies, be they centralized or distribypedtect against passive privacy
attacks on recommender systems, which is the main problektethin this paper.

3 Preliminaries

3.1 Item-to-item Recommendation

A common recommendation model followed by many popular \edss to provide,
for every item, a list of its topV related items, known aitem-to-item recommenda-
tion [5]. Item-to-item recommendations take as input a usen-itating matrixA/ in
which rows correspond to users and columns correspondnsit€he set of all users
form the user universe, denoted by the set of all items form the item universe, de-
noted byI. Each cell in this matrix represents a user’s stated preferée.g., ratings
for movies or historical purchasing information) on an iteand its value is usually
within a given range (e.g., [1, 5]) or a special symbol “-"dicating that the preference
is unknown. A sample user-item rating matrix is illustratedrigure 1 (a).

To generate a list of related items for an itémve calculatdtem similarity scores
between and other items. The similarity scores can be calculateddas some pop-
ular approaches, such &garson correlatiorand vector cosine similarityf24]. The
related item listRIL) of an itemi is then generated by taking the tdpitems that have
the largest similarity scores. We call all RILs for all itemsblished at a timestanif,
anRIL release denoted byR;. We denote a single RIL of an iteghat timestam/,
by R;.. Two sample RIL releases are given in Figure 1 (b).
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Fig. 2. An adversary is able to compare any two RIL releases within an attack wintfoto
launch passive privacy attacks.

3.2 Attack Model

In this section, we briefly review passive privacy attackofbcollaborative filtering. In
the setting of passive privacy attacks, an adversary psssassmdackground knowl-
edgein the form of a set of items that have been rated hgrget user and seeks to
infer for some other item, calledtarget item whether it has been rated/bought by the
user, from thepublic RIL releases published by the recommender system.

As mentioned in Section 3.1, in item-to-item recommendatetjdor each item, the
recommender system provides an RIL according to item siityilacores. Let an ad-
versary's background knowledge on a target usdre B and the targetitem b ¢ B.
The adversary monitors the changes of the RIL of dsatkground itenn B over time.

If i; appears afresh and/or moves up in the RILs of a sufficienttyelaumber of back-
ground items, indicating the increased similarity betwleackground items and, the
adversary might infer that has been added tg's record, i.e.u; has bought;, with
high accuracy.

In reality, an adversary could launch passive privacy k#tdny observing the tem-
poral changes between any two RIL releases. However, itrisaligtic to assume that
an adversary will perform privacy attacks over an unreaslyrlang timeframe (e.g.,
several months or even several years). Therefore, we peajh@sconcept ohttack
windowto model a real-world adversary. Without loss of generalitg assume that
the RIL releases are generated at consecutive discretetimps and an adversary
performs attacks at a particular timestamp. We note thatriéflects the behavior of
real-world recommender systems as RILs are indeed peailbdigpdated. At timéely,
an adversary’s attack windoWr, contains the RIL releases generated at timestamps
T, Ti—1, s T pwr, |+1, Where|Wr, | is the size ofWr,, namely the number of
RIL releases withinVy, . The adversary performs privacy attacks by comparing any
two RIL releases within his attack window. The attack modaélliistrated in Figure 2,
where the attack window size is 5.

4 Our Privacy Model

To thwart passive privacy attacks in collaborative filtgria formal notion of pri-
vacy is needed. In the context pfivacy-preserving data publishing 1], where an
anonymized relational database is published, a plethopiwdcy models have been
proposed, such dsanonymity [25],¢-diversity [19] and differential privacy [10]. In
contrast, in our problem, recommender systems never puatisnymized rating ma-
trices but only aggregate RILs.



RILs, being aggregate, reveal less information than a ldetaating matrix. How-
ever, as shown in [5], publishing RILs still exposes theeysto privacy risks, e.g., pas-
sive privacy attacks. no privacy risks. In this paper, wepps®e a noveinference-proof
privacy notion, known as-bound tailored for passive privacy attacks in collaborative
filtering. LetTran(u) denote the transaction of useri.e., the set of items bought ly

Definition 1 (4-bound) Let B be the background knowledge on usdn the form of a
subset of items drawn froffran(u), i.e., B C Tran(u). A recommender system satisfies
d-boundwith respect to a given attack windaw if by comparinganytwo RIL releases
R1 andR, within W,

Pr(ieT B,Ri,R2) <6 1
ueUVanea&ciB) r(i € Tran(u) | 1, R2) (1)

wherei € (I — B) is any item that either appears afresh or moves uRin and
0 < 6 < 1isthe given privacy requirement.

Intuitively, the definition of§-bound thwarts passive privacy attacks in item-to-item
collaborative filtering by limiting the probability of a scessful attack orany user
with any background items to at most A smallerd value provides more stringent
privacy protection, but may lead to worse data utility. Thisveils the fundamental
trade-off between privacy and data utility in our problene Will explore this trade-off
in designing our anonymization algorithms in Section 5.

We now analyze the cause of passive privacy attacks and quoestly derive the
critical condition under which a recommender system enjelysund. The fundamental
cause of passive privacy attacks is that the target ugerrating a target item, will
increase the similarity scores betwegrand the background item s&t which might
lead to its move-up or appearance in some background iteths. Bo essentiallyB
acts as @guasi-identifierwhich could potentially be leveraged to identify the tangser
uz. The privacy ofu, is at risk if B is possessed by only very few users. Consider an
extreme example, wherng is the only user who previously ratdgl. Suppose that no
user who previously rated just part Bfratedi; during the time periodT},73]. Then
observing the appearance or move-up,ah the RILs of B atT; allows the adversary
to infer thatu,; has rated; with 100% probability.

Based on this intuition, one possible way to alleviate pasprivacy attacks is to
require every piece of background knowledge to be shareddwffaient number of
users. However, this criterion alone is stiit adequate to ensubebound. Consider an
example where, besides, there are another 9 users who also rdée&uppose, during
(T1, T3], all of them rated;. By observing the appearance or move-up @fi B's RILs,
an adversary’s probability of success is stil0%. So in order to guarantéebound it is
critical to limit the portion of users who are associatedwtite background knowledge
B and also rated,. Let Sup(B) > 1 be the number of useisassociated wittB (i.e.,

B C Tran(u)) at timeT», Sup(B U ;) be the number of users who are associated with
both B andi; atT5.

Theorem 1 Consider an adversary with background knowledgyen anytarget user
u. The adversary aims to infer the existence of the targetitem(7 — B) in Tran(u;)



by comparing two RIL releaséd8; and R, published at tim&";, and 75, respectively.
Sup(BUiy)
If @ = d, then
Pr(i; € Tran(w) | B,R1,R2) <. m

Proof. (Sketch) In a passive privacy attack, if the attacker okesetirat the target item
i appears or moves up in RILs of items i then he makes the inference that this
observation results from the fact thathas recently boughit. Let the set of users who
previously boughtB be Ug. First, it is clear that, without any additional background
information, users /g are absolutely indistinguishable to the attacker. Sectatd,
Upu;, be the subset of users ifz who have actually bougthit. With the background
knowledge confined t@, it is reasonable to assume that this sulb&et,, of users can
be any siz&up(BUi;) subset of/ 5 with equal probability. Thus the attacker’s success
probability is equal to the overall probability ef belonging toUg;,, which can be
R 1) _ Sup(BUiy)

Sup(BUiy)—
calculated ao( Sup(B) )= su(B)
Sup(BUiy)

< 4. This completes the proof.

Theorem 1 bridges the gap between an attacker’'s probabfliguccess and the
underlying user-item rating matrix, and enables us to guess-bound by examining
the supports in the matrix.

5 Anonymization Algorithm

Achieving é-bound deals with privacy guarantee. Another equally irtgpdraspect of
our problem is preserving utility of the RILs. For simpliciof exposition, in this pa-
per we consider the standard utility metrigcall [16, 13] to measure the quality of
anonymized RILs. Essentially, an anonymization algoritksults in better recall if the
original RIL and the anonymized RIL contain more common gehnis straightforward
to extend our algorithms for other utility metrics.

Our solution employs twanonymization mechanisnssippressioya popular mech-
anism used in privacy-preserving data publishing [11], p@chutation a novel mech-
anism tailored to our problem. Suppression refers to theatipe of suppressing an
item from an RIL, while permutation refers to the operatiémpermuting an item that
has moved up in an RIL to a position equal to or lower than iigieal position.

Before elaborating on our algorithms, we give the termiggland notations used
in our solution. Recall that an RIL release at timestajis the set of RILs of all items
published aff;, denoted byR . The RIL associated with an itegnat 7}, is denoted by
R{C. Given two timestamp®; and7T; with 77 < T5 (i.e., T} is beforeTs), we say that
an items distinguishesbetweenR{ andRé if one of the following holds: 1) appears
in R} but not inR’, or 2) i appears in bottR?’ and R’ but its position inR}, is higher
than its position ink? (i.e.,i moves up inkJ).

5.1 Suppression-based Anonymization

Static Release We start by presenting a simple case, where we are conceritied w
only two RIL releases (i.e., the attacker’s attack windowfisize 2). We refer to such



Algorithm 1 Suppression-based anonymization algorithm for stateass

Input: User-item rating matrix\/, RIL releaseR, at timeTh,
privacy parametes
Output: Anonymized RIL releas®. at timeT>

1: GeneratéR; from M;

2:for eachitemi € I do

3:  Generate the set of iten$§ whose RILs are distinguished

by i;

4:for each itemi € I with S; # () do

5 V; = GenerateViolatingBorder(.S;, 8, M)

6: L; = ldentifySuppressionLocation(V;);
7:  for each locatiori € L; do
8
9:

Suppress(i, 1, M);
return Suppresse®s;

a scenario astatic releaseOur goal is to make the second RIL release satighpund
with respect to the first release. We provide an overview obpproach in Algorithm 1.

Identify potential privacy threats (Lines 2-3). Since an adversary leverages the
temporal changes of the RILs to make inference attacks, iétddsk is to identify, for
each itemi, the set of items whose successive RILs at tifp@nd7; are distinguished
by i. This set of items are referred tofstential violating itemsf ¢, denoted bys;. For
example, for the two RIL releases in Figure 1 (b), the set ¢€ipiial violating items of
i6 IS Si; = {i2,13,17,1s}. An adversary could use any subsetSfas his background
knowledge to infer the existence oinh a target user’s transaction.

Determine suppression locations (Lines 5-6)Not all these potential violating
items (or their combinations, i.e., itemsets) will causaakprivacy threats. Among
potential violating items, we identify the itemsets whezalprivacy threats ariseand
eliminate the threats by suppressing the target item fromesRILs while achieving
minimum utility loss. There are two major technical chagles in doing this, which Al-
gorithm 1 addresses: 1) how to calculate a set of supprekgiations s.t. the resultant
utility loss is minimized (Lines 5-6); 2) how to suppress tam from an RIL without
incurring new privacy threats (Line 8).

For the first challenge, we show that the problem is NP-haze {$1eorem 3 below)
and provide an approximation algorithm. For a target iterfy an adversary’s back-
ground knowledge could keEnysubset of5;, . Therefore, we have to guarantee that the
probability of inferring the presence gfin a target user’s transaction fraamyitemset
B C S,,, viewed as background knowledge on the target uset, ds We refer to this
probability as thebreach probabilityassociated with the background knowledge (i.e.,
itemset)B. We point out that the problem structure does not satisfyretyral mono-
tonicity: indeed, the breach probability associated witlitemset may be more or less
than that of its superset. Thus, in the worst case, we muskdhe breach probabil-

3 That is, when an adversary uses the itemsets as his background dgewte is able to infer
the target item with probabilitys §.
* Note thateveryitemi € I could be a target item.



ity for every itemset (except the empty set)$f, which has exponential complexity.
Doing so for every item (viewed as target item) is not reiglist

To help tame the complexity of having to check all subsetS;pfwherei, is any
candidate target item, we develop a pruning scheme. Defiltemsets C S;, to be
a minimal violating itemseprovideds has a breach probability 6 and every proper
subset ok has a breach probabilitg §. LetV;, be theviolating borderof i,, consisting
of all minimal violating itemsets aof;. By definition of minimality, to thwart the privacy
attacks onV;,, it is enough to suppress from the RIL of one item inv, for every
minimal violating itemset € V;,. The reason is that, for anye V;,, no proper subset
of v can be used to succeed in an attack. We next prove that itfisienf to guarantee
0-bound on all itemsets if;, by ensuringd-bound onV/, .

Theorem 2 For two RIL releasesk, and R, a target useru; and a target itemi,
Yv € V;,, suppressing; from the RIL of one item im ensuresvs C S;,, Pr(i; €
Tran(ut)|s,R1,R2) < .=

Proof. An itemsets C S;, with Pr(i; € Tran(u:)|s, R1,R2) > 6 must be inV;, or

a superset of some € V;,. If s is in V;,, suppressing one item frommakesPr(i; €
Tran(ut)|s,R1, R2) < 4. If sis a superset of some € V;,, one item is suppressed
from eachv. The rest items i cannot be a minimal violating itemset or a superset of
some minimal violating itemset as in this case at least one item will be suppressed.
This completes the proof.

The general idea ofenerateViolatingBorder (Line 5) is that if an itemset vio-
latesd-bound, then there is no need to further examine its sugergé impose an
arbitrary total order on the items ifi;, to ensure that each itemset will be checked
exactly once. We iteratively process the itemsets witheasing sizes. The minimal
violating itemsets with sizé& come from a candidate set generatedjdining non-

violating itemsets of sizé — 1. Two non-violating itemsetss; = {i},i3, -+ ,i} }
andsy = {i?,i3,---,i?}, can be joined if for alll < m < - 1,4} = i2 and
Order(i}) > Order(i?). The joined result is; x so = {il,i3, - ,i},i?}.

For a target item; whose potential violating items do not cause any privacgahr
we still need to consider &lSi:| — 1 itemsets before concluding that there is no threat.
To alleviate the computational cost of these items, we malkeai a simple pruning
strategy. Let the number of users who raieét time 7, be Sup(i;), the number of
users rated;, atT, beSup(S;,), and the number of users who rated bs&th andi;

atT, beSup(S;, U {i}). Sinces”‘;ﬁg;{;t}) < SSL.L;,‘E(S’”) to guarantee that the breach
probability% < 4, itis enough to ensure th8up(S;,) > S“F’T(”) Notice
1t
~ Sup(sU{it}) Sup(i) Sup(it) i
that, for any subset C S;,, Sup(s) < Sup(s) < Sup(S:.) < 4. Thus, there is no
need to make any checks for subset$gf

Example 2. Continuing with Example 1, rec§]], = {2, i3, i7, 45 }. Figure 3 shows alll
itemsets of5;, in a lattice structure. Considering the ord@rder(iz) > Order(iz) >
Order(i7) > Order(is), the lines connecting itemsets illustrate how two itemsats

be joined (€.9.j2is X iziz = inigi7). Letd = 0.7. Since%ﬁ%ﬁ) =3 >4, {is}

is a minimal violating itemset, all its supersets are notffier checked. Similarlyi; }
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Fig. 3. The generation of the violating border f85; = {i2, i3, i7,is}.

Algorithm 2 IdentifySuppressionLocation
Input: The violating borde#; of item ¢
Output: A set of locations (items) to supprebs

1L =0,

2: C <+ the set of items iiV;;

3:while V; # 0 do

4: for eachitemj € C do

5: n;={veVi:jev};
6: Add the itemj with the maximumn; to L;;
-
8
9:

Vi=Vi—{veV,:jev}
C < the set of items iV
return L;;

and{is, ig} are also minimal violating itemsets. The correspondindating border is
Vie = {{is}, {i7},{i2,is}}. Allitemsets beyond the dashed line are not exammed.

Achievingd-bound onV;, requires to find a set of items from whose RILs we sup-
press the target iter, such that, by suppressitigfrom those RILs, for eachotential
background knowledge (i.e., itemsd?) either the breach probability associated with
1¢ IS < 6 or i, does not distinguish the successive RILs of at least oneiitdBn From a
recall point of view, we would like to minimize the number of itemshie suppressed,
since each item suppression leads to a utility loss of 1. NManmally, the problem is
defined as follows.

Definition 2 (IdentifySuppressionLocation) Given the violating bordeV;, , select a set
of itemsL;, such thatvv € V;, (3l € L;, (I € v)) and|L;, | is minimized.

The problem is identical to theinimal hitting set(MHS) problem [3]:given a
collectionC of subsets of a finite sé&t, find a subset’ C S such thatS’ contains a
least one element from each subsefiand|.S’| is minimizedIn view of the above, we
have the following.

Theorem 3 IdentifySuppressionLocation is NP-hard. There is a®(In |V}, |)-approximation
algorithm to the optimal solution, which runs in @, ||I]) time.m

Proof. The NP-hardness follows from the fact that the problemdeaitifySuppressionLocation
is equivalent to MHS. Algorithm 2 shows a simple greedy atban, which repeatedly
picks the item that belongs to the maximum number of “uncedéitemsets inV;,,
where an itemset is said to be “covered” if one of the itemdgndurrent hitting set



belongs to it. It is known [8] that this simple greedy helcisiives anO(In |V}, |)-
approximation for MHS. The time complexity can be directgrided from the pseudo-
code in Algorithm 2 based on the observation fldgt< |I].

Perform suppression (Algorithm 1, Line 8). To thwart privacy attacks, we sup-
press the target ite from the RILs of the items identified by Algorithm 2. Suppress
ing i; from a RIL will make items with a position lower thdts(i;) (i.e., the position
of 4; in the RIL) move up one position and introduce a new item ihi& RIL. Note
that the move-up or appearance of these items might causg mearprivacy threats,
resulting in both higher complexity and lower utility. Tdealiate this problem, instead
of changing the positions of all items beld®s(i;) and introducing a new item to the
RIL, we directly insert a new item d&tos(i,) and check its breach probability.

Even inserting a new iterndirectly atPos(i;) in j's RIL might lead to substantial
computational cost, because, in the worst case, it demanelsaimine every possible
combination of the itemsets derived fraspwith 5, which is ofO(2!%:) complexity. So
we are only interested in items wit$y = () (or |S;] is sufficiently small). In this case,
we can perform the check in constant time. More specificallyjteratively consider
the items not in the RIL in the descending order of their snitiy scores until we find
an item to be inserted &bs(i; ) without incurring new privacy threats. If an iteimot in
the RIL hasS; # (), we skip: and consider the next item. This process terminates when
a qualified item is found. Whehis inserted intgj’s RIL, S; is accordingly updated:

Si ={j}.

Multiple Release We next deal with the case of multiple releases. As discussed
Section 3.2, at any tim&;,, an adversary performs passive privacy attacks by congparin
any two RIL releases within the attack windd, . Hence, whenever a recommender
system generates a new RIL release, it has to be securedesitlkat to all previous
Wr, | — 1 releases.

We explain the key idea for extending Algorithm 1 for this@a&nonymizing the
RIL releaseR . at timeT}, works as follows. First, we should generate the potenti@ vi
lating items ofeveryitemi in R, with respecttoeach @®;_1, Ry o, -, Ri—wr, |+1-
Let SiR-" be the potential violating items af generated by comparing; and R,
wherek — [Wr, | +1 < j < k — 1. We calculate the violating border over eaﬁ;ﬁj,
denoted by[/iR”'. To makeR;, private for the entire attack window, we need to elim-
inate all itemsets from theg®Vr, | — 1 borders. We take the union of all the borders
Vi = Vo Uy UL o VY We prune all itemsets that are the supersets
of an itemset inV;, i.e., retain only minimal sets i#;. The rationale of this pruning
step is similar to that of Theorem 2. Second, when we bringievaitem to an RIL, its
breach probability needs to be checked with respeeathof the previougWr, | — 1
releases.

5 We assume that the attack window size of an adversary is fixed at diffémeestamps. In
reality, this assumption can be satisfied by setting a large enough windaw size



5.2 Permutation-based Anonymization

In the suppression-based solution, we do not distinguisivd®n an item’s appearance
and move-up. For items that newly appear in an RIL, we haveppress them. How-
ever, for items that move up in an RIL, we do not really needuggpsess them from
the RIL to thwart passive privacy attacks. To further imgralata utility, we introduce
a novel anonymization mechanism tailored to our problemmeiapermutation The
general idea of permutation is to permute the target itemléavar position in the RIL
so that it cannot be used by an adversary to perform a passizeypattack. If we can-
not find a position to permute without generating new prividrgats, we suppress the
target item from the RIL. So our permutation-based anongtian algorithm employs
both permutation and suppression, but prefers permutatimnever a privacy threat
can be eliminated by permutation.

Static ReleaseSimilarly, we first generate the potential violating itef)dor each item
1. Unlike in the suppression-based method, we label eachiiteinwith eithersuppress
or permutelf an item gets inte&; due to its appearance in an RIL, it is labetegpress
otherwise it is labelegermute For example, in Figure 1, we label the occurrencesg of
in the RILs ofi,, i7 andig with suppressand its occurrence ify’s RIL with permute

The violating border of5; can be calculated by th&enerateViolatingBorder pro-
cedure described in Section 5.1. Fecall, it can be observed that permutation does
not incur any utility loss. For this reason, we take into ¢desation the fact thasup-
pressand permuteare associated with different utility loss when identifyitems to
anonymize. We call this new proceduldentifyAnonymizationLocation. We model
IdentifyAnonymizationLocation as aweighted minimum hitting s€W#WMHS) prob-
lem. IdentifyAnonymizationLocation chooses at every step the item that maximizes
the score, namely the ratio between the number of uncovereréts containing it and
its weight. The weight of an item is calculated based on iigtyutoss. For an item
labeledsuppressits weight is 1. For an item labelggbrmute it does not result in any
utility loss and should receive a weight valiieHowever, this leads to a divide-by-zero
problem. Instead, we assign the item a sufficiently smalghllei/alueﬁ. This is
sufficient to guarantee that items labelggkmuteare always preferred over items la-
beledsuppressbecause the maximum score of an item labalegpresss |V;| while
the minimum score of an item labelpérmuteis |V;| + 1.

To tackle the anonymization locations identifiedigntifyAnonymizationLocation,
we start by suppressing items labekgpresdecause these privacy threats cannot be
solved by permutation. Similar to thippress procedure described in Section 5.1, we
look for the first item: outside a RIL withS; = @ that does not incur any new pri-
vacy threat, as a candidate to replace the suppressed iteenexzeption is that in
the permutation-based solution, we can stop searching weceeach the first item
that was in the previous RIL (for this type of items therensneed to check their
breach probabilities as our following steps make sure thet tannot be used in pas-
sive privacy attacks, as is shown later). For the moment, avaat assign a partic-
ular position fori and wait for the permutation step. After suppressing athgida-
beledsuppresswe perform permutation on the RILs that contain locatia@ianned by
IdentifyAnonymizationLocation. In an RIL, for all items that were also in the RIL at



Algorithm 3 Permutation-based anonymization algorithm for multiglease

Input: User-item rating matri¥\/, the attack windowVr, at timeT}, previous Wr, | — 1 RIL
releases, privacy parameter
Output: Anonymized RIL releas® . at timeTy,

1: GeneratéR, from M;

2: for each previous RIL release; do

3: for eachitemi € I do

4: Generate the set of iten$§°’ whose RILs are
distinguished by betweeriR;, andR ;;
5: Label items inS'sz by suppress or permute and

recordpermute position;
6: ViR" = GenerateVioIatingBorder(SiRj,6, M);
7:for each itemi € I do
8.

Ry Rik—\Wrp |+1
Vi=V, "ty Uy, Tl

9: Vi = Label(Vi);
10: V; = Prune(V});
11:  for eachitemi € I with V; # 0 do

12: (Li, C;) = ldentifyAnonymizationLocation(V;);
13: for each location-code pait, c) € (L;, C;) do
14: if ¢ = suppress then

15: SuppressMR(3, 1, M);

16: else

17: PermuteMR(z, 1, M);

18:return AnonymizedR;

the previous timestamp;, we assign them the same positions as thosg afor all
items that were not in the RIL &f;, we randomly assign them to one of the remaining
positions.

We next show the correctness of our permutation-basedi@olior an item that
needs to be suppressed, it is replaced by a new item, whosar@pjce is examined to
be free of privacy threats, and thus randomly assigning dipoglioes not violate the
privacy requirement. For an item that needs to be permutedreeze its position to
be the same as before, i.e., as in the previous RIL releadetharefore it cannot be
used by the adversary to perform passive privacy attackthé&sanonymized RILs are
resistant to passive privacy attacks.

Example 3. Revisit Example 1. We show how to anonyipizeRIL at 7, using the
permutation-based method. Suppos@eeds to be permuted anglto be suppressed.
We first suppress; and find the first item outside the RIL without incurring anyne
privacy threat, sayis;. We then permutg. Since now all itemsg, iz andig, appear in
i2's RIL atTy, we assign them the same positions as tho§g ahat is, the anonymized
RIL atT5 is the same as the RIL & . m

Multiple Release Finally, we explain our permutation-based algorithm farhultiple
releasescenario. Algorithm 3 presents our idea in detail. We complae trueR; at



time T}, with each of the previouS/Vr, | — 1 RIL releases within the attack window
Wr, to generate the corresponding potential violating itemmsetch itemi, denoted
by SZ.RJ' (Lines 2-4). In addition to labeling each potential viatgtiitem bysuppress
or permute for an itemi labeledpermute we record its position in the RIL in which it
moves up (Line 5).

For eachSZa", we calculate its violating bordd(iR-’ (Line 6). Since we have to
makeR, private with respect to all previou¥Vr, | — 1 releases, we perform a union

over aIIViR-" (Line 8). In the case of multiple release, the same item nmightabeled

both suppressandpermutein differentV;Rj and by different positions. To resolve this
inconsistency, we legsuppressake precedence oveermutation That is, if an item:

is labeledsuppressn any V;Rf, it will be labeledsuppressn V; (Line 9), because a
new item’s entering in an RIL cannot be hidden by permutisgpibsition. Also, the
position associated with an item labelpdrmuteis updated to the lowest position of
all its positions in differenVin. We call this lowest position theafe positionlt is not
hard to see that only if the item is permuted to a position alvan or equal to its safe
position, it can be immune to passive privacy attacks with@entire attack window. A
similar pruning strategy can be applied Bnwhich removes all supersets of an itemset
in V; (Line 10).

V; is then fed intddentifyAnonymizationLocation (Line 12). The outputs are a set
of items (i.e., locations) in whose RILshould be anonymized, their corresponding
anonymization codes (eitheuppres®r permutd, and safe positions for items labeled
permute For items labeleduppressthey are processed with the same procedure as
the suppression-based solution for the multiple releasaas® GuppressMR). Here
we focus onPermuteMR (Line 17). In static release, we can restore the items ldbele
permuteto their previous positions to thwart privacy attacks. Heerethis is not suf-
ficient for multiple release, because changes of the urnidgrlyser-item rating matrix
are different in different time periods.

The key observation is that we have to permute the iteara position lower than or
equal to its safe position. We iteratively switttvith the items in the RIL with position
lower than or equal t@'s safe position and check if the switch incurs any new pgivac
threat with respect to all previoysVr, | — 1 releases. If we cannot find a permutation
without violating the privacy requirement, we suppréssstead.

6 Experiments

In this section, we study the performance of the proposedynization algorithms
over the public real-life datasetdovieLensandFlixster. We compare our suppression-
based anonymization algorithnSPP and permutation-based anonymization algo-
rithm (PERM) with the randomized perturbation approa&tPy [23] ©. All implemen-
tations were done in Python, and all experiments were runldnwa machine with a

4 Core Intel Xeon CPU and 16GB of RAM.

5 Due to the reason explained in Section 2, we cannot perform a meahiogfparison with
the approach in [21].
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The objectives of our experiments are: 1) evaluate theyugfivarious anonymiza-
tion algorithms under different parameters; 2) examinepiabability of successful
passive privacy attacks after performing different anoizgtion algorithms; and 3)
demonstrate the efficiency of our proposed algorithms.

6.1 Experiment Setup

The first dataseMovieLens’ is a popular recommendation benchmark. It contains 1
million ratings over 4K movies and 6K users. The second @afaléxster [15] was
crawled from the Flixster websifg and contains 8.4 million ratings over 49K movies
and 1 million users. Both datasets are time-stamped, antléxeriments, we follow
the classical item-based recommendation framework sudi§l6] to calculate item

similarity scores. FORP, we use zero-meaned uniform noise with small variances.

Experimental results obtained under different variancdsbé similar trends. Due to
space limit, we only report the results with the varianceag ¢ 1.

For all experiments, we select the initial timestamp suet tie initial RIL release
is generated based on approximatkly, of all ratings in the dataset. For the time gap

"http://ww. novi el ens. org
Shttp://ww. flixster.com
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Fig. 6. Attack success probability results on: MovieLens (a)—(d); Flixster(g)—

between two consecutive RIL releases, we consider it to bme period for gener-
ating a multiple of1l% of total ratings, e.g., if the time gap i then the number of
ratings generated between two consecutive RIL releasédevipproximatelyp% of
all ratings. Results obtained from other settings of thesetarameter settings are very
similar, and hence omitted here.

In all experiments, we consider the effect of four tunablapeeters: the attack win-
dow size, the time gap between two consecutive RIL reledisegrivacy requirement
4, and the number of items in an RIN. The following default values are used unless
otherwise specified: 4 for the attack window size, 5 for thestgap.1 for §, and5 for
N.

6.2 Performance Evaluation

Utility study . As discussed befor§UPPand PERM only anonymize a few RILS in
which real privacy risks for passive privacy attacks aridaus, they will leave most of
the RILs intact. This is confirmed bgverall recall which is defined as the percentage
of items inall original RILs that are retained after anonymization. WenshroFigure 4
the overall recall of different algorithms on both datasgtsarying the four parameters,
namely attack window size, time gap between two consecRileeleasesy and V.

It can be observed that bo8lUPPandPERM consistently achieve high overall recall,
while RP cannot provide desirable utility in terms of RILs.

To further examine the utility loss just on the anonymizedR(by ignoring RILs
which are intact after the anonymization), we also considegeted recall which is
defined as the percentage of items retained in the anonyrRillexd(i.e., the RILs in
which suppression and/or permutation are performed). Tilisy metric is of impor-
tance because we do not want to have anonymized RILs thatibseastially different
from the original ones. The experimental results on botaskdts, as shown in Figure 4,
suggest that our algorithms do not significantly destroyubefulness of any RIL. We
can also observe thREERMachieves better utility thaBUPP. We present the numbers
of suppressed items by boBERM and SUPPunder varying parameters in Figure 5.
The results confirm th&ERMis more preferable thaBUPPIn all cases.

Privacy study. In Figure 6, for both datasets, we demonstrate RRatannot prevent
passive privacy attacks: the worst case breach probabiléythe RILs generated from
the perturbed user-item rating matrix is still extremelgh{e.g.,100% for some target
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Fig. 7. Efficiency results on: MovieLens (a)—(d); Flixster (e)—(h).

user). In contrast, our algorithms ensure that the breachahility over anonymized
RILs is always less than the given privacy paraméter

Efficiency study. Finally, we show the run-time of our proposed anonymizattgo-
rithms under various settings over both datasets in Figufes€an be observed, both
proposed algorithms are efficient, and in most situatiBf}RMis at least twice as fast
asSUPR The reason is that the cost of permutation is often muchlentabn suppres-
sion, since the latter may need to explore many items beyorRlla before finding a
qualified replacement. Therefore, we conclude that engliyi®ERMis a better choice
thanSUPPIn terms of both utility and efficiency.

We note thaRPis usually very efficient, as we only need to add some noisenahe
rating arrives. However, as shown in the experimental testile small run-time over-
head induced by our proposed algorithms can result in soffetatility improvement
and guaranteed privacy protection against RIL-basedymsderence attacks.

7 Conclusion

The recent discovery of passive privacy attacks in iteriteim collaborative filtering
has exposed many real-life recommender systems to a sesoysromise of privacy.
In this paper, we propose a novel inference-proof privadyonocalled 5-bound for
thwarting passive privacy attacks. We develop anonynipadigorithms to achievé-
boundby means of a novel anonymization mechanism caleinutation Our solution
can be seamlessly incorporated into existing recommendeFas as a post-processing
step over the RILs generated using traditional collabeedtitering algorithms. Exper-
imental results demonstrate that our solution maintaigh biility and scales to large
real-life data.
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