
Adding Structure to Top-K: From Items to Expansions

Xueyao Liang
Dept. of Computer Science,

Univ. of British Columbia
liangxue@cs.ubc.ca

Min Xie
Dept. of Computer Science,

Univ. of British Columbia
minxie@cs.ubc.ca

Laks V.S. Lakshmanan
Dept. of Computer Science,

Univ. of British Columbia
laks@cs.ubc.ca

ABSTRACT

Keyword based search interfaces are extremely popular as a means
for efficiently discovering items of interest from a huge collec-
tion, as evidenced by the success of search engines like Google
and Bing. However, most of the current search services still return
results as a flat ranked list of items. Considering the huge num-
ber of items which can match a query, this list based interface can
be very difficult for the user to explore and find important items
relevant to their search needs. In this work, we consider a search
scenario in which each item is annotated with a set of keywords.
E.g., in Web 2.0 enabled systems such as flickr and del.icio.us, it is
common for users to tag items with keywords. Based on this anno-
tation information, we can automatically group query result items
into different expansions of the query corresponding to subsets of
keywords. We formulate and motivate this problem within a top-k
query processing framework, but as that of finding the top-k most
important expansions. Then we study additional desirable proper-
ties for the set of expansions returned, and formulate the problem
as an optimization problem of finding the best k expansions satis-
fying all the desirable properties. We propose several efficient al-
gorithms for this problem. Our problem is similar in spirit to recent
works on automatic facets generation, but has the important differ-
ence and advantage that we don’t need to assume the existence of
pre-defined categorical hierarchy which is critical for these works.
Through extensive experiments on both real and synthetic datasets,
we show our proposed algorithms are both effective and efficient.

Categories and Subject Descriptors

H.3.4 [Information Storage and Retrieval]: Systems and Soft-
ware - Information Networks

General Terms

Algorithms

Keywords

Top-k Query Processing, Top-k Query Expansions, Semantic Re-
dundancy, Efficiency, Keywords and Tags

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’11, October 24–28, 2011, Glasgow, Scotland, UK.
Copyright 2011 ACM 978-1-4503-0717-8/11/10 ...$10.00.

1. INTRODUCTION
Keyword based search interfaces are extremely popular as a mea-

ns for efficiently discovering items of interest from a huge collec-
tion, as evidenced by the success of search engines like Google [5],
Bing [2] and Yahoo! [7]. However, most of the current search ser-
vices still return results as a flat ranked list of items. As has been
found by a recent study [8], this list-based interface can make it
very difficult for the user to explore and find important items rel-
evant to their search needs. We claim that automatically grouping
search results into semantically independent “topics” can signifi-
cantly enhance the usability of the results. Below, we discuss a few
motivating examples to illustrate this point.

Consider an academic search engine like Google Scholar [1].
Though it works perfectly for those queries which target a specific
paper, when handling a general purpose query like “find all papers
which are relevant to the topic of database histogram”, the search
engine returns a huge list of papers ranked by their relevance to
the query. This ranked list is difficult for user to work from for
exploring papers related to the query and efficiently finding the pa-
pers they want. It is clear that the user may benefit significantly if
the search service can automatically group all the papers into se-
mantically independent “topics”. As a second example, consider
search on social annotation websites like Del.icio.us [3] and Flickr
[4]. These websites have rich user generated metadata for each
item, however current search engines on these websites only uti-
lize them to generate a ranked list of items for a query based on
keyword relevance. In case of Del.icio.us, search results are pre-
sented using a faceted interface, but this is based on expanding the
user’s keyword query with one of a fixed set of tags. E.g., search-
ing on the tag “programming” returns more than 1.3 million hits
on Del.icio.us, however, only three single word tags “ajax”, “soft-
ware” and “javascript” are suggested to expand the query, while
many other useful expansions such as “c++ programming tutorial”
and “database programming language” cannot be found on the in-
terface. As a third example, consider a community question an-
swering forum like Quora [6]. A user may wish to search the Q&A
in Quora using keywords and it is often helpful for the system to
present the search results in an automatically grouped form, where
different groups somehow correspond to different “subtopics” of
the “topic” that the user may have questions about.

Indeed, to help users explore the returned search results, cur-
rent search engines like Google, Bing and Yahoo! often add to the
search result interface a set of facets, like publishing time, size of
document, price etc. Faceted interfaces can greatly facilitate user
navigation through the results. However, these facets are often pre-
defined, and may not capture the attributes of the item which are
the most important. E.g., for Google Scholar, current facets for
the search results contain only types of publication and publica-

tion date, whereas the users may want to explore “topics” of papers
among the search results. Similar comments apply to the other two
example search scenarios above.

Our problem is similar in spirit to recent works on automatic
facets generation [19], but has the important difference and ad-
vantage that we don’t need to assume the existence of pre-defined
categorical hierarchy which is critical for these works. Indeed, in
the applications we consider such as above, we cannot assume any
prior taxonomy.

Motivated by these drawbacks of current search result interfaces,
we consider a search scenario in which each item is annotated with
a set of keywords. These can be keywords associated with pa-
pers or tags assigned to items by users of social annotation sys-
tems or keywords occurring in question and answers in Q&A sys-
tems. Based on this annotation information, we want to automati-
cally group query result items into different expansions of the query
corresponding to subsets of keywords. Items may have a number of
attributes, either explicitly stored or computed, which can signify
their importance or utility to the user. E.g., papers have citation
score, pagerank of their authors, etc. In social annotation systems,
popularity of items and pagerank of the annotator can be important
attributes. Finally, in a system like Quora, we have attributes like
importance scores of questioner or answerer, number of people in-
terested in a question, etc. Intuitively, the expansions that we wish
to return to a user should be driven by how important the items are
that match an expansion and how many such important items match
it. This raises the problem of what expansions of a query should we
show the user? We formulate and motivate this problem within a
top-k query processing framework, but as that of finding the top-k
most important expansions, where the importance or utility of an
expansion is driven by the utility of the items matching it.

We make the following contributions:

• We introduce the problem of finding top-k high quality ex-
pansions (Section 2).

• We first propose a naïve algorithm for this problem and then
discuss its limitations and propose a significant improvement
leveraging the lattice structure of expansions (Section 3).

• We consider some semantic issues with directly returning the
top-k high quality expansions, and propose several different
algorithms for improving the quality of the returned results
(Section 4).

• Through extensive experiments on both real and synthetic
datasets, we demonstrate that our proposed algorithms have
excellent performance and very good quality (Section 5).

Related work is discussed in Section 6. We summarize the work
in Section 7 and discuss open research problems.

2. PROBLEM DEFINITION
Consider a set of items S = {t1, ..., tn}, each item ti ∈ S being as-

sociated with a set of m attributes {a1, ..., am}. We denote the value
of ti on attribute a j as ti.a j, and assume without loss of generality
that all values on attribute a j are normalized to [0, 1], j ∈ 1...m. At-
tributes of an item ti correspond to ti’s “utility” to a user, and in this
work, without loss of generality, we assume large attribute values
are preferred, so larger the value larger the utility. The overall util-

ity of an item ti, denoted u(ti), is captured by a weighted sum of its
values on all attributes, i.e., u(ti) =

∑

j∈1...m w j × ti.a j, where w j is a
positive weight associated with attribute a j. These weights may be
chosen by a user or the system may learn the “best” weights from
user behavior using models like linear regression [10].

{k1,k2,k3,k4}

{k2,k3,k4}{k1,k2,k3} {k1,k3,k4}{k1,k2,k4}

{k1,k2} {k1,k3} {k1,k4} {k2,k3} {k2,k4} {k3,k4}

{k1} {k2} {k3} {k4}

∅

Figure 1: Lattice structure of expansions.

We assume each item ti ∈ S is also associated with a set of l

keywords or tags {k1, ..., kl} which summarize the contents of ti. We
denote the set of keywords associated with an item ti as Kw(ti). A
query Q in our system is a set of keywords, Q = {k1, ..., kp}. An
item t matches query Q iff Q ⊆ Kw(t). The answer to Q, denoted
S Q, is then the set of matching items in S , i.e., S Q = {t | t ∈ S ,Q ⊆

Kw(t)}.
As mentioned in the introduction, the number of items match-

ing a query Q can often be huge, and merely returning the top-k
matching items may not help the user find the items they are most
interested in. So we want to group items into different expansions
of Q and return high quality expansions. Let K denote the set of all
keywords in the system. We call a subset of keywords e ⊆ K − Q

an expansion1 of Q. The size of an expansion e, |e|, is the number
of keywords in e. Let the set of all possible expansions for Q be
EQ , then given an expansion e ∈ EQ , we say an item t ∈ S matches

e if Q ∪ e ⊆ Kw(t). Let S e denote the set of matching items for e,
then we have S e = {t | t ∈ S ,Q ∪ e ⊆ Kw(t)}.

Given a query Q, all possible expansions of Q can be orga-
nized as a lattice based on the subset-of relationship, E.g., Figure 1
shows the lattice structure of all possible expansions for K − Q =

{k1, ..., k4}. We will shortly define the quality of an expansion, and
we will show in Section 3.2 that this lattice structure can be used to
improve the efficiency of our algorithm for determining high qual-
ity expansions.

Intuitively, the importance of an expansion e can be captured
by aggregating the utilities of items which match e. Let g be a
monotone aggregation function which calculates the overall utility
or quality of expansion e, i.e., define u(e) := g({u(t) | t ∈ S e}). Then
we can define our top-k expansion problem as follows.

Definition 1 (Top-k Expansions). Given a set S of items and a

keyword query Q, find the top-k expansion set Ek = {e1, ..., ek} s.t.

∀e ∈ Ek and ∀e′ ∈ EQ − Ek , u(e) ≥ u(e′).

The intuition is that in response to a user query, we want to return
the best quality expansions where the quality of an expansion is
monotonically determined by the utility of the items matching it.

The set of annotations used in this paper is summarized in Ta-
ble 1. Below, we give an example of an aggregation function with
certain desirable properties.

2.1 Determining Importance of An Expansion
To determine the utility u(e) of expansion e, a natural idea is

to use a monotone function to aggregate utility values of all items
which can match e. However, this approach means for every ex-
pansion, we may need to retrieve all items that are relevant to this
expansion which can be prohibitive considering the huge size of
matching items. Besides, low quality items matching e intuitively
should not determine its importance. So we will only consider top-

1Note, actually the real expansion is Q ∪ e but for technical conve-
nience, we deal with the part of the expansion outside Q.

Symbol Description
t an item in the system
S a set of items
t.a attribute a’s value of an item t
w the weight associated with an attribute

u(t) the utility value of an item t
k a keyword
K the set of all possible keywords
LK the lattice of all possible keywords K
L the partially materialized lattice

Kw(t) the set of keywords associated with t
Q a query which is composed of a set of keywords

S Q the set of matching items for query Q
e an expansion

EQ the set of all possible expansions for query Q
S e the set of matching items for expansion e

u(e) the utility value of an expansion e
VS e the multiset of utility values of all items matching e
LK(e) the sub-lattice induced by e

Et all possible expansions of t
et the largest size expansion in Et

Table 1: Annotations

N matching items for determining importance of an expansion e,
where N is a parameter that is tuned for each application.

Let VS e = {u(t) | t ∈ S e} be the multiset of utility values of
all items matching e. We will apply a function topN to VS e which
retrieves the top-N highest utility values from VS e . Then to deter-
mine the importance of e, we will sum up all values in topN (VS e),
so g(S e) :=

∑

v∈topN (VS e) v. It is clear that g(S e) satisfies the desired
properties for determining the importance of an expansion, as g(S e)
will be large when there are high quality items matching e and also
when the number of these high quality items is large.

It can be easily shown that the aggregation function g defined
is subset-monotone, which means for two expansions e1 and e2, if
S e1
⊆ S e2

, then g(e1) ≤ g(e2). And it is worth noting that the
algorithms proposed in this work can be easily adapted to other
subset-monotone score functions.

On top of the basic top-k expansion problem, we will want to
impose some additional desirable properties for the k expansions
returned by our algorithms. In Section 4, we study these proper-
ties and propose additional algorithms which can return expansions
satisfying these properties.

3. BASIC ALGORITHM
In this section, we present two algorithms for finding top-k ex-

pansions. In order to facilitate both algorithms, we assume m in-
verted lists are materialized, one each for the m attributes, where
for each inverted list, items are sorted in the non-increasing order
of their value on the corresponding attribute.

3.1 Naïve Algorithm
Inspired by the NRA algorithm proposed in [13], a naïve way of

generating top-k expansions can be described as follows: 1. access
items in the non-increasing order of their attribute value; 2. for
each matching item accessed, enumerate all possible expansions
and update their lower bound and upper bound utility value; 3. stop
the iterative process once top-k expansions have been identified.
The pseudo-code for the above process is given in Algorithm 1.

In Algorithm 1, all attribute lists are accessed in a round-robin
fashion (line 4), and for each matching item t obtained from list Ia,
we will enumerate the set Et of all possible expansions (line 5–7).

Consider an expansion e ∈ Et , let S S e be the current set of ac-
cessed items which can match e. Then for each t ∈ S S e, because

all attribute values are normalized to [0, 1] and items are accessed
in the non-increasing order of their attribute values, similar to the
NRA algorithm [13], we can determine the lower bound on t’s util-
ity u(t) by summing up all current accessed attribute values of t,
and we can determine its upper bound utility ū(t) by summing up
all accessed attribute values of t along with the last accessed values
of other attributes in the inverted lists.

Then because of the subset-monotonicity of the score function
g, the lower bound utility u(e) for expansion e ∈ Et can be calcu-
lated as a sum of all values in topmin(N,|S S e |)({u(t) | t ∈ S S e})). And
the upper bound utility ū(e) of an expansion e can be estimated by
considering both S S e and the maximum utility value which can be
achieved by any unseen items. Let the last accessed values on each
of the m attribute lists be v̄1, ..., v̄m respectively, then because items
are accessed in the non-increasing order of their attribute value, an
“imaginary” item t′ with m attribute values v̄1, ..., v̄m must have the
maximum value that can be achieved by any unseen items. So the
upper bound utility of e can be estimated as the sum of all values
in topN ({ū(t) | t ∈ S S e} ∪ {u(t′1), ..., u(t′

N
)})). where t′1, ..., t

′
N

are N

imaginary items which have the same utility as t′.
After the lower and upper bounds for all expansions in Et have

been updated (line 8–10), we can estimate the upper bound util-
ity for all possible unseen items by summing up the values of N

maximum possible imaginary items (updateUpperBound(∅) in line
12).

Henceforth, by the value of an expansion, we mean its utility
value. Let EQ be the expansion query which contains the set of
expansions of Q that have been materialized by the algorithm at
a given point. We can rank all expansions in EQ by their lower
bound values. Let EQk be the top-k expansions in EQ and UB′

be the maximum upper bound value of an expansion in EQ − EQk ,
then the maximum of UB′ and the upper bound value for all unseen
items determines the overall upper bound value UB (line 11–12).
If the lower bound value for the kth expansion in EQk is already
larger than UB, the algorithm can be safely terminated, exactly in
the spirit of NRA.

Algorithm 1: TopExp-Naive(Q, I, g, k)

1 EQ← expansion queue;
2 UB← upper bound threshold;
3 while |EQ| < k OR u(EQ.kth expansion) < UB do

4 Ia ← getNextListRR();
5 t← Ia.getNextItem();
6 if Q * Kw(t) then continue;
7 Et ← enumerateExpansion(Kw(t) − Q);
8 foreach e ∈ Et do

9 if e < EQ then EQ.push(e);
10 e.updateLower&UpperBound(t, g);

11 UB′ ← maximum upper bound value of an expansion in
EQ − EQk;

12 UB←MAX(UB′, updateUpperBound(∅));

The correctness of Algorithm 1 easily follows from the fact that
both lower bound and upper bound of an expansion are correct.
And to assess the performance of Algorithm 1, we borrow the no-
tion of instance optimality as proposed by Fagin et al. in [13].

Definition 2. Instance Optimality: Let A be a class of algo-

rithms that make no random accesses to the m inverted lists, and

let I be a class of problem instances. Given a non-negative cost

measure cost(A, I) of running algorithm A ∈ A over I ∈ I, an

algorithm A ∈ A is instance optimal over A and I if for every

A′ ∈ A and every I ∈ I we have cost(A, I) ≤ c · cost(A′, I)+ c′, for

constants c and c′. Constant c is called the optimality ratio.

Let the cost of an algorithm for the top-k expansion problem
be determined by the number of items accessed, we first show the
following result.

Lemma 1. Given any instance I of the top-k expansion problem

and any algorithm A with the same access constraints as TopExp-

Naive, assume A accesses x items, then TopExp-Naive will access

at most m × x items.

Proof. (Sketch) Assume another algorithm B ∈ A stops in list
Ia after accessing x items, then it must be true that at the time when
B stops, the current utility of the kth maximum utility expansion
ek will have its utility larger than or equal to the upper bound util-
ity of all generated non-result expansions and all possible unseen
expansions. This is because otherwise, we can come up with an
configuration of the remaining unseen items such that we can have
an expansion of which the utility is larger than ek. Then it is clear
that our algorithm TopExp-Naive will also stop at the same position
in list Ia. By considering the fact there are m lists in total, we can
infer that the total number of items accessed by TopExp-Naive is
at most m × x, for the scenario where B accesses x items in list Ia,
zero item in other lists, and TopExp-Naive accesses x items in each
list.

Theorem 1. Let I be the class of all top-k expansion problem

instances, andA be the class of all possible algorithms that find the

top-k expansions, that are constrained to access items sequentially

in non-increasing order of their attribute values, then TopExp-Naive

is instance optimal overA and I with an optimality ratio of m.

{k1,k2,k3}

{k1,k2} {k1,k3} {k2,k3} {k3,k4}

{k1} {k2} {k3} {k4}

∅a1 a2

t1 : 0.9

t2 : 0.8

t4 : 0.8

t3 : 0.7

t2 : 0.8

t3 : 0.6

t1 : 0.6

t4 : 0.5

Kw(t1) = {k1,k2}

Kw(t2) = {k3,k4}

Kw(t3) = {k1,k2,k3}

Kw(t4) = {k1}

(a) (b) (c)

{k1,k2,k3}{k1,k2}

{k1,k3}

{k2,k3}

{k3,k4}

{k1}

{k2}

{k3}

{k4}

t1,t3 ub:1.5 lb:0.9

t1,t3 ub:1.5 lb:0.9 Unseen

t2,t3 ub:1.4 lb:1.6

t2 ub:1.6 lb:1.6

ub:1.4

ub:1.5 lb:0.9

t3 ub:1.4 lb:0.6

t3 ub:1.4 lb:0.6

t2 ub:1.6 lb:1.6

t1,t3
t3 ub:1.4 lb:0.6

(d)

Figure 2: Example for TopExp-Naive.

Example 1. We show an example of algorithm TopExp-Naive
in Figure 2. In this example, for simplicity of presentation, we
assume all 4 items t1, ..., t4 can match the query Q, so Q will be
ignored from the keyword list of all items. Furthermore, we as-
sume N = 1 which means we are using the best item to determine
the importance of each expansion, and k = 1 which means we are
looking for top-1 expansion. Keywords associated with each item
are shown in Figure 2 (a), and each item in the example has two
attributes a1 and a2. The inverted lists for these two attributes are
shown in Figure 2 (b).

As described in TopExp-Naive, the algorithm will enumerate all
possible expansions for each item accessed, e.g., after t1 is ac-
cessed, {k1}, {k2} and {k1, k2} will be generated, and their utility

bound values will be updated using the attribute value of t1. For
this case, because only t1.a1 is known, we know ū(t1) = 1.9 and
u(t1) = 0.9, these will be the upper and lower bound utility value
for all three expansions. After we have accessed the first two items
of both lists, the expansions generated are shown in Figure 2 (c),
while the items contained in each generated expansion and the util-
ity bound values for each generated expansion are shown in Fig-
ure 2 (d). It is clear that at this moment, the upper bound utility for
all generated expansions is 1.6, the upper bound utility for all un-
seen expansions is 1.4 (sum of the last accessed utility value from
each list) and the lower bound utility for expansions {k3}, {k4} and
{k3, k4} are all 1.6, so we can stop the algorithm now and return any
one of these three expansions.

3.2 Improved Algorithm
One serious drawback of the naïve algorithm is that every time

an item t containing keywords Kw(t) is accessed, all 2|Kw(t)−Q| pos-
sible expansions for this item are explicitly enumerated and their
bounds are maintained. In this section, we propose an efficient al-
gorithm which can leverage the lattice structure of expansions to
avoid enumerating and maintaining unnecessary expansions. We
also address the challenge of determining the bounds of unseen (un-
materialized) expansions, which is necessary for early termination
of the top-k algorithm.

3.2.1 Avoiding Unnecessary Expansions

Given a query Q and a newly accessed item t, let et = Kw(t) −
Q be the largest size expansion in Et , then the naïve algorithm
will enumerate all possible expansions of t by considering all non-
empty subsets of et. However, this may not be necessary. E.g.,
let K<t be the set of keywords which have been seen before t; if
∀k ∈ K<t, k < et, we just need to maintain one single expansion et,
as all other expansions generated from et will have the same current
matching itemset as et and thus the same lower and upper bounds as
et. This indicates that there are opportunities to avoid the expansion
enumeration process for each newly accessed item.

Let LK be the lattice of all possible keywords K. For an ex-
pansion e ∈ LK , we let LK(e) denote the sub-lattice induced by e,
i.e., LK (e) = {e′ | e′ ⊆ e}. For a newly accessed item t, the naïve
algorithm will enumerate all expansions e ∈ LK (et), however, as
discussed above that this isn’t always necessary.

The idea of the new algorithm can be described as follows. Let
L denote a partially materialized lattice which contains the set of
expansions generated so far before the current item t. If ∃e ∈ L

s.t. e = et, then it is clear we just need to update the lower bound
and upper bound utilities of all existing expansions in L which are
subsets of et. Otherwise, all expansions in L will correspond to
different sets of items compared with et, so we need to first generate
the expansion et and update its lower bound and upper bound utility.
Then we consider the following two cases: 1. if ∀e ∈ L, e ∩ et =

∅, then all e′ ∈ LK(et) correspond to the same set of items, their
lower bound and upper bound utilities are the same, and we just
need to maintain one expansion et which can concisely represent
all expansions in LK(et); 2. On the other hand, if there exists an
expansion e ∈ L s.t. e ∩ et , ∅, then for each such expansion e, we
need to further consider the following three sub-cases:

1. if e ⊆ et, we don’t need to generate additional expansions,
but we need to update the lower bound and upper bound util-
ity of e since item t also contributes to every sub-expansion
e of et.

2. if et ⊆ e, similar to case 1, we don’t need to generate ad-
ditional expansions; and since t cannot contribute to e, we
don’t need to update utility bounds of e.

Algorithm 2: TopExp-Lazy(Q, I, g, k)

1 UB← upper bound threshold;
2 L← partial materialized lattice structure;
3 while |EQ| < k OR u(EQ.kth expansion) < UB do

4 Ia ← getNextListRR();
5 t← Ia.getNextItem();
6 if Q * Kw(t) then continue;
7 et ← Kw(t) − Q;
8 if et ∈ L then

9 foreach e ∈ {e | e ∈ L ∧ e ⊆ et} do

10 e.updateLower&UpperBound(t);

11 else

12 T Q← temporary update expansion queue;
13 T Q.push(et);
14 while ¬ T Q.empty() do

15 e = T Q.pop();
16 El ← {e

′ | e′ ∈ L ∧ (∄e′′ ∈ L : e′ ⊂ e′′)};
17 foreach el ∈ El ∧ el ∩ e , ∅ do

18 E ← {e′ | e′ ∈ L ∧ e′ ⊆ el};
19 if ∃e′ ∈ E s.t. e′ * e ∧ e * e′ then

20 Find all e′ ∈ E s.t. e′ * e ∧ e * e′ and
(∄e′′ ∈ E : e′ ⊂ e′′ ∧ e′′ * e ∧ e * e′′);

21 T Q.push(e ∩ e′);

22 if e < L then L.add(e);

23 foreach e ∈ L ∧ e ⊆ et do

24 e.updateLower&UpperBound(t);

25 UB← upper bound value of the (k + 1)th expansion in L;
26 UB←MAX(UB, getUpperBound(∅));

3. if e * et or et * e, let e′ = e ∩ et, then it is clear that S e′ ,

S e and S e′ , S et , which means we need to generate a new
expansion e′ and update its utility bounds accordingly.

3.2.2 Bounds for Unseen Expansions

Since we don’t explicitly maintain all possible expansions for
each item accessed, this will create a challenge for determining
lower bound and upper bound utilities for all possible expansions.
For all expansions which are maintained inL, the lower bound and
upper bound are determined as discussed in Section 3.1. For each
remaining expansion e not materialized in L, depending on the po-
sition of e in the lattice LK , we need to consider the following two
cases:

• ∄e′ ∈ L s.t. e ⊂ e′. This means we haven’t accessed any
item which corresponds to this expansion. The utility upper
bound of e in this case is the same as the maximum possible
utility of an unseen expansion, as discussed in Section 3.1.

• ∃e′ ∈ L s.t. e ⊂ e′. This means we have already accessed
some items which correspond to this expansion. Then we
must be able to find a smallest such expansion ê ∈ L s.t.
e ⊂ ê, and ∀e′ ∈ L, if e ⊂ e′, then ê ⊆ e′. To see this,
suppose e′, e′′ ∈ L are distinct expansions such that e ⊂ e′

and e ⊂ e′′. From Section 3.2.1, it follows that for e′′′ =

e′ ∩ e′′, we have S e′′′ , S e′ and S e′′′ , S e′′ , so e′′′ should
be generated as a new expansion before e, and this expansion
has the property that it is a subset of both e′ and e′′, and it is a
superset of e. It follows that the smallest superset expansion
ê must exist in L. So after ê is found, we know e and ê

currently correspond to the same set of items, then e’s utility
bound will be the same as ê. This means that we don’t need
to explicitly consider this expansion when using the utility
bounds to determine whether the algorithm can stop.

Example 2. Consider the lattice in Figure 1 and assume we have
only materialized two expansions e1 = {k1} and e2 = {k1, k2, k3}.
Then for an expansion e3 = {k2, k4}, because there is no such ma-
terialized expansion e′ ∈ L s.t. e3 ⊂ e′, then we know we haven’t
accessed any item which corresponds to this expansion. So we only
need to consider its upper bound utility, which is the maximum
possible utility for all possible expansions. And for another un-
materialized expansion e4 = {k1, k2}, we can find out that e4 ⊂ e2,
so e4 and e2 correspond to the same set of items, and e4’s utility
bounds are the same as those of e2.

So the general idea of our lazy expansion generation based algo-
rithm is that we only need to maintain expansions which correspond
to a unique set of items. For a set of expansions which are matched
by the same set of items, we can simply represent them using the
largest expansion in the set.

3.2.3 Lazy Expansion Algorithm

The pseudo-code for the lazy expansion generation based algo-
rithm is given in Algorithm 2. Similar to TopExp-Naive, TopExp-
Lazy iteratively retrieves items from the attribute lists (line 4–6).
However, unlike TopExp-Naive, we maintain only necessary ex-
pansions in the partially materialized lattice L. For a newly ac-
cessed item t, if et has already been generated by a previous item,
we simply update the itemset and lower/upper utility bounds of the
corresponding expansions which contain this item (line 8–10). Oth-
erwise, as discussed above, we may need to generate some addi-
tional expansions which correspond to a unique matching itemset
(line 11–24). The procedure works as follows. First, we identify
from L all leaf expansions El which are maximal expansions, i.e.,
they are not included in other expansions in L (line 16). Then for
each leaf expansion el ∈ El , if et doesn’t overlap with el, we can
ignore all expansions which are subsets of el as they can’t overlap
with et either (line 17). If el overlaps with et, then we search the set
E of expansions in L which are subsets of el: if there is an expan-
sion e′ ∈ E s.t. e′ * et and et * e′, then we need to find all of the
largest such expansions e′ in E, and as described in Section 3.2.1,
for each of them, a new expansion e′ ∩ et needs to be inserted to
L as it corresponds to a unique set of matching items, so we will
recursively insert this new expansion into L (line 19–21).

The procedure for updating lower bound and upper bound utili-
ties for each expansion is very similar to TopExp-Naive. However,
because in TopExp-Lazy each expansion may represent more than
one expansion, in order to determine which expansions in the ex-
pansion buffer L are current top-k expansions, we need to calculate
for each expansion e ∈ L the exact number of ungenerated expan-
sions which have the same utility bounds as e. The pseudo-code for
this procedure are listed in Algorithm 3 and Algorithm 4.

The idea of Algorithm 3 is that we first find fromL the expansion
set S Te of which the expansions are subset of e (line 1), we prune
away those expansions in S Te of which a superset is also present in
S Te (line 2–3), then for the pruned expansion set S Te, we can use
the classical inclusion-exclusion principle to count the total number
of expansions covered by S Te (line 4). Algorithm 4 is a simple
implementation of the counting procedure.

Example 3. Figure 3 shows an example that illustrates how Al-
gorithm TopExp-Lazy works. The configuration of this example,
including query, item attributes, item attribute values, keywords of

Algorithm 3: updateCount(L, e)

1 S Te ← {e
′ | e′ ∈ L ∧ e′ ⊂ e};

2 S T ′e ← {e
′ | e′ ∈ S Te ∧ ∃e′′ ∈ E → e′ ⊂ e′′};

3 S Te = S Te − S T ′e;
4 count← countGeneratedExpansions(S Te);

5 e.count← 2|e| − count − 1;

Algorithm 4: countGeneratedExpansions(S Te)

1 count← 0;
2 for outeridx from 2 to |S Te| do

3 S T ′e = ∅;
4 for inneridx from 1 to outeridx - 1 do

5 S T ′e.insert(S Te[outeridx] ∩ S Te[inneridx]);

6 S T ′′e ← {e
′ | e′ ∈ S T ′e ∧ ∃e′′ ∈ E → e′ ⊂ e′′};

7 S T ′e = S T ′e − S T ′′e ;
8 if S T ′e.hasOverlap() then

9 count += countGeneratedExpansions(S T ′e);

10 else

11 foreach e′ ∈ S T ′e do

12 count += 2|e
′ |-1;

each item and parameters k, N, is the same as Example 1. How-
ever, because we are using the lazy expansion generation based
algorithm, we don’t need to enumerate all possible expansions for
each item accessed. E.g., when the first item t1 is accessed, we
only need to generate expansion {k1, k2} and don’t need to gener-
ate expansions {k1} and {k2}, as they correspond to the same cur-
rent set of matching items as {k1, k2}. The utility bound values for
{k1, k2} will be the same as in the TopExp-Naive algorithm, and
again we don’t need to maintain these utility bound values for {k1}

and {k2} since they are the same as for {k1, k2}. After accessing
two items from each lists, the expansions materialized for TopExp-
Lazy are shown as bolded expansions in Figure 3 (c). Compared
with TopExp-Naive, it’s worth noting that 5 expansions don’t need
to be maintained. At this point, similarly to TopExp-Naive, the al-
gorithm can also stop as the top expansion {t3, t4}’s lower bound
utility is already larger than or equal to the maximum upper bound
utility for all expansions.

Note that for the lazy expansion generation based algorithm, for
each expansion which needs to materialized, we need to use Algo-
rithm 3 to count how many expansions correspond to the same set
of items. E.g., after accessing t3 in the inverted list of a2, we need to
consider how many expansions are “covered by” the current expan-
sion {k1, k2, k3}. Algorithm 3 will first find all materialized expan-
sions which are subsets of {k1, k2, k3}, for this case, {k1, k2} and {k3}.
Then as in line 4 of Algorithm 3, Algorithm 4 will be called to enu-
merate the number of non-empty expansions covered by these two
expansions. Because there is no overlap between {k1, k2} and {k3},
in line 10–12 of Algorithm 4, we can simply sum up the number of
non-empty expansions covered by these two expansions, which is
4. Then this number will be used to determine the number of non-
empty expansions covered by {k1, k2, k3} in line 5 of Algorithm 3,
which is 3 ({k1, k2, k3}, {k1, k3} and {k2, k3}).

Figure 3 (d) shows all the expansions that should be considered
and whether they are “covered by” some other expansions in the
lattice. Compared with Figure 2 (d), it is clear that the lazy ex-
pansion generation based algorithm will maintain just one expan-

sion for each set of expansions which correspond to the same set of
items.

{k1,k2,k3}

{k1,k2} {k1,k3} {k2,k3} {k3,k4}

{k1} {k2} {k3} {k4}

∅a1 a2

t1 : 0.9

t2 : 0.8

t4 : 0.8

t3 : 0.7

t2 : 0.8

t3 : 0.6

t1 : 0.6

t4 : 0.5

Kw(t1) = {k1,k2}

Kw(t2) = {k3,k4}

Kw(t3) = {k1,k2,k3}

Kw(t4) = {k1}

(a) (b) (c)

{k1,k2,k3}{k1,k2}

{k1,k3}

{k2,k3}

{k3,k4}

{k1}

{k2}

{k3}

{k4}

--> {k1,k2} Unseen

t2,t3 ub:1.4 lb:1.6

ub:1.4

ub:1.5 lb:0.9

t2 ub:1.6 lb:1.6

t1,t3
t3 ub:1.4 lb:0.6

(d)

--> {k3,k4}

--> {k1,k2,k3}

--> {k1,k2,k3}

--> {k1,k2}

Figure 3: Example for TopExp-Lazy.

4. SEMANTIC OPTIMIZATION
Though algorithms described in Section 3 can correctly find ex-

pansions which have the k highest utility, there are two kinds of
issues with these algorithms. First, the basic algorithm will favor
small expansions (i.e., fewer keywords) as these expansions have
more matching items than larger expansions. Second, in the re-
turned top-k expansions, it may happen that two expansions have
the subset-of relationship, which is not ideal. Indeed, we would
like the resulting expansions to have little overlap with each other.

In this section, we propose two solutions to remedy the above
drawbacks. In Section 4.1, we will study weighting schemes which
can penalize expansions that are either too small or too large. Then
in Section 4.2, we propose to find the k most interesting expansions
which don’t have overlap with each other.

4.1 Weighting Expansions
It is clear that expansions which have small size (e.g., “XML”)

correspond to “general topics” which are related to the query, wher-
eas expansions which have large size (e.g., “XML, schema, confor-
mance, automata”) correspond to “specific topics” which are re-
lated to the query. To help users quickly locate interesting informa-
tion from the returned results, intuitively neither too general topics
nor too specific topics should be returned early, so we want to favor
those expansions which are neither too large nor too small.

We assume there is a function fw : N → R (where N/R denote
the sets of natural/real numbers) which can return the weight fw(p)
for an expansion of size p. The intuition is that fw penalizes too
small and too large expansions for we expect them to be intuitively
too general or too specific. Then we can use this function to weight
the utility of all expansions under consideration. In this work, we

consider the Gaussian function fw(p) = e
−

(x−µ)2

2σ2 . The mean µ of fw

is set as the most ideal size of an expansion and the variance σ can
be adjusted by the system for different problem instances.

So how are the top-k algorithms impacted? For TopExp-Naive,
the weighting function can be simply applied to the utility bounds
of each expansion enumerated, and other parts of the algorithm
won’t be affected. However, for TopExp-Lazy, for each materi-
alized expansion e ∈ L, the unmaterialized expansions which have
the same set of matching items as e have the same utility bounds
as e when no weighting is applied. But once weighting is applied,
these expansions may have different utility bounds depending on

the size. E.g., consider that there is only one materialized expan-
sion e = {k1, k2} in L and let the lower and upper utility bounds of
e be u(e)× fw(2) and ū(e)× fw(2) respectively. Then for expansions
{k1} and {k2}, though they correspond to the same set of matching
items as e, their lower and upper utility bounds are u(e)× fw(1) and
ū(e) × fw(1) respectively.

So for the weighted lazy expansion generation based algorithm,
for a set E of expansions which correspond to the same set of
matching items, we may need to maintain multiple expansions whe-
re the number of expansions to be maintained depends on the size
of the largest expansion in E. For an expansion e, Algorithm 5 and
Algorithm 6, which are adapted from Algorithm 3 and Algorithm 4,
can be used to count for each possible expansion size, the number
of expansions which correspond to the same set of matching items
as e. These counts can be utilized along with the weighting function
to determine the corresponding lower and upper utility bounds.

Algorithm 5: updateCount(λ, e)

1 S Te ← {e
′ | e′ ∈ L ∧ e′ ⊂ e};

2 S T ′e ← {e
′ | e′ ∈ S Te ∧ ∃e′′ ∈ E → e′ ⊂ e′′};

3 S Te = S Te − S T ′e;
4 vecc ← a new count vector of size |e|;
5 for expsize from 1 to |e| do

6 vecc[expsize] =
(

|e|

expsize

)

;

7 vecc ← countGeneratedExpansions(S Te , vecc);
8 e.count = vecc;

Algorithm 6: calculateSameLBExpansionVec(S Te, vecc)

1 for outeridx from 2 to |S Te| do

2 S T ′e = ∅;
3 for inneridx from 1 to outeridx - 1 do

4 S T ′e.insert(S Te[outeridx] ∩ S Te[inneridx]);

5 S T ′′e ← {e
′ | e′ ∈ S T ′e ∧ ∃e′′ ∈ E → e′ ⊂ e′′};

6 S T ′e = S T ′e − S T ′′e ;
7 if S T ′e.hasOverlap() then

8 countGeneratedExpansions(S T ′e , vecc);

9 else

10 for expsize from 1 to |e| do

11 foreach e′ ∈ S T ′e do

12 vecc[expsize] = vecc[expsize] -
(

|e′ |

expsize

)

;

4.2 Path Exclusion based Algorithm
To lessen the semantic overlap between different expansions re-

turned to the user, intuitively we may not want to return two dif-
ferent expansions e1 and e2, such that either e1 ⊂ e2 or e2 ⊂ e1.
Note that there can be many sets of expansions satisfying this pair-
wize comparability, and the set of highest utility expansions may
not satisfy this property. So in order to guarantee the quality of
the expansions returned, we want to maximize the sum of the utili-
ties for the set of expansions returned under the constraint that the
expansions returned should satisfy the pairwise comparability.

Definition 3. (Maximum k Path-Exclusive Expansion) Given a

set S of items and a keyword query Q, find the top k-expansion set

Ek = {e1, ..., ek} s.t. ∀ei, e j ∈ Ek , i , j, ei 1 e j, e j 1 ei, and
∑

e∈Ek
u(e) is maximized.

Let L = {e1, ..., en} be the set of all expansions materialized by
the algorithm. Consider a weighted undirected graph G = (Vtx, Edg),
with nodes Vtx = L where each node ei is associated with a weight
u(ei), i.e., the utility of ei. Whenever two expansions ei, e j ∈ Vtx

are such that either e1 ⊂ e2 or e2 ⊂ e1, Edg contains the edge
(ei, e j). Then it is straightforward to show that the maximum k

path-exclusive expansion problem is NP-hard by a direct reduction
from the maximum weighted independent set problem [18].

A simple greedy algorithm for the maximum weighted indepen-
dent set was proposed by [18]: repeatedly select a node in G with
minimum weighted degree in each iteration and add it to the cur-
rent solution; then delete this node and all of its neighbors from the
graph; stop when all nodes are removed from G. It has been proven
in [18] that this algorithm gives a max(δw, 1)-approximation, where
δw = maxH⊆G minv∈V(H) dw(v,H), dw(v,H) is defined as ww(NG (v))

ww({v})
,

ww(S) denotes the sum of weights of a set of nodes S , and NG(v)
is the set of neighbors of v in G.

Furthermore, if we rank all generated expansions by their up-
per bound utility, because items are accessed in the non-increasing
order of their attribute values, it is clear that the sum of the top-k
expansions’ upper bound utilities is an upper bound for the value
of all possible k path-exclusive expansions.

So based on this information, we propose the following algo-
rithm called Top-PEkExp, which can be used to calculate an ap-
proximate solution for the maximum k path-exclusive expansion
problem. In Top-PEkExp, similar to the previous algorithms, we
iteratively retrieve items from the attribute lists (line 3–5), then we
use TopExp-Lazy to generate necessary expansions in L (line 6).
The set of expansions in L are sent to the greedy algorithm for the
maximum weighted independent set problem (line 7), and if the re-
sult is already larger than 1

α
of the maximum upper bound utility,

for some constant α > 1 that is chosen by the system, we can stop
the algorithm (line 8–11).

Algorithm 7: Top-PEkExp(Q, I, g, k)

1 L← partial materialized lattice structure;
2 while true do

3 Ia ← getNextListRR();
4 t← Ia.getNextItem();
5 if Q * Kw(t) then continue;
6 Generate necessary expansions using TopExp-Lazy;
7 RG ← GreedyMWIS(L);
8 Etopk ← k expansions in L which have the largest upper

bound utilities;
9 U∗ = sume∈Etopk

ū(e);

10 if u(RG) ≥ 1
α
× U∗ then

11 return

It is clear that Algorithm Top-PEkExp can correctly return an
α approximate answer for the maximum k path exclusive expan-
sion problem. However, because we are using a greedy algorithm
for calculating the k path exclusive expansions in each iteration,
there may exist a better algorithm, e.g., which utilizes an exact
algorithm, which can find an α approximate answer much earlier
compared with our Top-PEkExp algorithm. This would trade more
work done per iteration for achieving early termination. We leave
a detailed study of optimal algorithms for the maximum k path ex-
clusive expansion problem for future work.

5. EXPERIMENTS
In this section we will discuss the performance of our proposed

algorithms. We use synthetic datasets to demonstrate the relative
efficiency, scalability, and memory savings of various algorithms
with respect to the naive algorithm. We also use a real dataset to
demonstrate the quality of the expansions returned by our algo-
rithms.

5.1 Experiment Setup and Data Sets
The goal of our experiments is two-fold: (i) Evaluate the effi-

ciency and scalability of the algorithms proposed in this paper. (ii)
Evaluate the quality of the expansions discovered by various algo-
rithms. The experiments are done on a Xeon 2.5GHz Dual Core
Windows 7 machine with 4GB RAM. All algorithms are imple-
mented in Java using JDK/JRE 1.6.

We use two kinds of datasets in our experiments. First, we gen-
erated synthetic datasets to compare the performance of various
algorithms with the naive algorithm. The metrics we used for the
comparison include the running time, number of items accessed
and number of expansions generated during the process. We gen-
erated 5 synthetic datasets with size from 8000 to 12000, and for
all these datasets, attributes and keyword values are sampled from
a power law distribution x = e−β with β = 2, which is in accordance
with our observation in the real datasets.

The second dataset is a partially crawled dump of the ACM Dig-
ital Library. We obtained the items by combining result paper
lists of 3 queries: (1) “xml” (2) “histogram” (3) “privacy”. We
chose these queries because they are all representative interesting
research fields in the database community and also feature a good
number of publications. The attributes we use for each paper are
the average author publication number and the citation count. Val-
ues of both attributes are normalized into the range [0, 1]. For each
paper, we extract its keywords from the title, keywords list and ab-
stract. Stop words are removed and also stemming is done on all
the keywords obtained. For each paper under consideration, we se-
lect the top 15 BM25 scored [20] keywords as its topic keywords.
A manually created mapping table is used to map similar keywords
into a common keyword, namely the most frequent among them.
Note that some recent work on tag clustering/recommendation [22]
can be leveraged to automate the creation of the mapping table.

After preprocessing, there are in total 48656 papers in the dataset,
and 9000 distinct topic keywords. The quality of the expansions
(keywords) generated is manually evaluated by domain experts con-
sisting of grad students, who investigated the top expansions dis-
covered, and checked whether the keywords make sense for the
field.

5.2 Efficiency Study
First, the efficiency comparison of various algorithms on the syn-

thetic datasets with fixed N and k is presented in Figure 4 A (N =
k = 10). Note that for the path exclusive algorithm, we choose
α = 0.1 and α = 0.3 as two settings for the algorithm. The run-
ning time, the number of items accessed and the number of expan-
sions generated during execution of these algorithms are presented
in Figure 4 A(1)-A(3) respectively.

For running time, both TopExp-Lazy and TopExp-LazyW (Weig-
hted TopExp-Lazy) run much faster than the baseline TopExp-Naive
algorithm. And the running time of PekExp based algorithms highly
depend on the α parameter chosen.

For the number of items accessed, TopExp-LazyW, TopExp-Lazy
and TopExp-Naive access roughly the same number of items. And
for PekExp based algorithms, the number of items accessed may
vary depending on the parameter α. With relatively small α, PekExp

accesses significantly less items compared with other algorithms,
hence much more efficient. Through our observation, for small α,
PekExp usually stops very soon, and as we will illustrate in the next
section, the quality of the expansions returned by PekExp based al-
gorithms are also comparable compared with other algorithms. If
the application needs immediate response in most cases and tolera-
ble for occasion failure, PekExp would be a reasonable choice from
the aspect of efficiency.

For the number of expansions generated, while accessing the
same number of items, both TopExp-LazyW and TopExp-Lazy gen-
erate much less expansions than TopExp-Naive does. This could
significantly lessen the space required and the related computations
of generating and updating expansions. For TopExp-LazyW and
TopExp-Lazy, the weighted algorithm takes more time and gen-
erates more expansions. This is because the weighted algorithm
needs to keep different bounds for expansions which correspond to
the same set of seen items but with different number of keywords.
However, the space and time cost is still reasonable considering the
flexibility we could achieve by customizing the weights.

In Figure 4 B(1)-B(3), we show efficiency comparison of the
algorithms with k ranging from 10 to 15(number of items=10000,
N = 10). With larger k, more information needs to be kept for
the top expansions, so the updating cost is higher. Furthermore,
because more items need to be accessed before the algorithm stop,
the algorithm needs longer running time. This coincides with what
shows in Figure 4 B(1)-B(2). The only exception is PekExp-alpha=
0.3, for this setting, the number of items accessed and the running
time may decrease as k increases. This is because that as k grows,
the upper bound of the top-k expansions will drop much faster as
more low utility value expansions are included.

Similarly, in Figure 4 C(1)-C(3), we compare the algorithms
with N ranging from 10 to 15(number of items=10000, k = 10).
With larger N, because we need to keep track of more items to
determine the bounds for each expansion, we could expect longer
running time, more items to be accessed and more expansions to be
generated.

We can conclude from these plots that the performance of our
proposed algorithms are very robust with respect to different set-
tings, and the performance of the algorithms grows linearly with
respect to the size of the dataset, so these algorithms can easily
scale to larger datasets. Furthermore, it is clear that the TopExp-
Lazy algorithms (weighted and unweighted) always outperform the
TopExp-Naive algorithm. PekExp based algorithms is an exception
to these observations. With proper configuration it could give good
performance, but generally the performance varies depending on
the value selected for the parameter α.

5.3 Quality of the Generated Expansions
The quality of the expansions generated can be measured by the

quality of the keywords of each top expansion. In Table 2, we show
the top-20 expansions generated by the TopExp-Lazy and PekExp
(shown as Path-exclusive in Table 2) algorithms on the ACM Dig-
ital Library dataset, as well as the corresponding keywords for the
3 selected queries for which expansions were generated. By man-
ually analyzing the expansions generated, we can see that TopExp-
Lazy works fairly well in generating expansions related to major
subtopics of each query. E.g., for the query “histogram”, accord-
ing to the survey [17], the two most important applications of his-
togram techniques in databases have been “selectivity estimation”
and “approximate query answering”. For both topics we can find
corresponding expansions in the list of expansions generated, e.g.
“select”, “approxim”. Furthermore, Approximation is an estab-
lished application of histograms, which constitutes a large portion

Figure 4: Efficiency experiments

of [17]. Indeed, accordingly we can see various low level expan-
sions like “approxim wavelet”, “approxim olap” and so on. Notice
that other expansions of “histogram” also correspond to important
aspects in the survey. For example, “multi-dimension” histogram
is a relatively new and important subfield of histogram, and “op-
tim” refers to an important application of approximation using his-
togram – query optimization. So in general, the expansions gener-
ated can cover most important aspects of the survey. Similar results
can be observed for the other two queries as well.

While the quality of expansions returned by TopExp-Lazy are
quite good, as can be found in Table 2, these expansions may con-
tain redundant information. E.g., for query “histogram”, the expan-
sions returned include both the high level expansion “approxim”
and low level (i.e., more refined) expansions “approxim wavelet”,
“approxim olap”. Similarly, for query “privacy”, we have “anonym”
returned along with “anonym protect” and “anonym k”, and for
query “xml”, we have “query” returned along with “query xpath”
and “query store”. Our path exclusive algorithm can avoid this
problem by making sure that no expansion in the returned result
set is a subset of other expansions in the result, thus avoiding such
redundancy. By a manual inspection of the list of expansions in Ta-
ble 2, it is easy to see that such redundancy is avoided by PekExp
and also that the set of expansions returned by the that algorithm
can also cover most of the important expansions for each query.

In sum, while both TopExp-Lazy and PekExp provide good qual-
ity results in terms of meaningful and most important expansions
of queries on a real data set, as demonstrated by our experiments,
PekExp has the added advantage that it can avoid redundancy in the
returned expansions.

6. RELATED WORK
The area of top-k query processing has been studied extensively

in the past several years [16]. Most of the top-k algorithms are
based on the TA and NRA family of algorithms and their variants
or enhancements [13]. The majority of them assume a monotone
aggregation function for combining scores of items for different at-
tributes. For each attribute, a non-increasing score-sorted list of
items is maintained. In [11], Chakrabarti et al. consider the prob-
lem of finding top-k entities in a document corpus, where the score
of an entity is defined as a weighted aggregation of the scores of its
related documents. The proposed algorithm is similar to our naïve
algorithm for the top-k expansion problem, and both algorithms are
extensions of the NRA algorithm. However, the number of entities
arising in [11] can be considered as a constant, whereas in our con-
text, the number of expansions is exponential w.r.t. the total number
of keywords, which can be huge. Thus, it is critical to generate the
expansions as lazily as possible.

Our top-k expansion problem is also related to the recent efforts
on faceted search [23, 15]. Li et al. [19] propose the problem of
automatic generation of top-k facets for query results on Wikipedia.
However, their work makes crucial use of a pre-defined category hi-
erarchy in Wikipedia whereas we don’t need to make such assump-
tions. In fact, as mentioned in the introduction, for the applications
we consider, this assumption cannot be made.

Citation recommendation is another area where previous works
[12, 9, 14, 12] often generate results as a ranked list of documents.
By contrast, in our work we automatically group all the results into
different expansions, and return to the user the top-k interesting
expansions along with the relevant items.

histogram privacy xml

TopExp-Lazy Path-Exclusive TopExp-Lazy Path-Exclusive TopExp-Lazy Path-Exclusive

approxim optimal preserve mining mining preserve dtd conform twig

bucket approxim wavelet anonym protect anonym protect twig holist join

select approxim olap preserve mining rule query ancestor-descend parent-child

optim multi-dimension mining anonym mining query xpath conform

wavelet approxim stream anonym publish individual dtd dtd tractable

approxim wavelet approxim summary anonym perturb reconstruct twig pattern decide

approxim olap frequency anonym k disclose disclosure index dissemin secure

multi-dimension provable protect individual breach access control sql store

approxim stream cost select protect mining reconstruct holist pattern typecheck

maintain maintain remark mining rule access dtd schema node

approxim optim alloc bucket locat cloak k secure encrypt secure

bucket multi-dimension maintain size access control mining protect index twig control enforce

attribute join select mining anonym control query store dynamic query

approxim construct bucket workload-aware anonym attack location-based twig index subsequence

approxim summary bucket reconstruct anonym locate categorize query index extension select

query approxim near locate vertice join native timber

construct predict range individual microdata quasi-identify ancestor-descend parent-child secure subject

sample interval partition disclosure pose preserve index holist portion secure

frequency build maintain preserve anonym anonym multi-dimension conform prevalence secure

stream summary prohibit self-tuning reconstruct perturb scheme secret holist index indice

Table 2: Expansions generated by various algorithms.

In [21], the authors propose a way to facilitate the search process
by suggesting interesting additional query terms. To measure the
interestingness of an additional query term or keyword, they pro-
posed the surprising score which is based on the co-occurrence of
two keywords. Compared with our work, they don’t consider the
overlap between different sets of query keywords. Besides, their
score function needs to access all items which are relevant to the
query. Since this cannot be calculated at the query time in a scal-
able manner, they instead propose an approximate solution.

7. CONCLUSION
In this paper, we started with the observation that years after

search engines first came into being, most current search services
still return results as a flat ranked list of items, which is not ideal
for users to easily get to the items they are really interested in. We
studied the problem of how to better present search/query results to
users. We considered a search scenario in which each item is anno-
tated with a set of keywords and is equipped with a set of attributes,
and proposed novel ways to automatically group query result items
into different expansions of the query, corresponding to subsets of
keywords. We proposed various efficient algorithms which can cal-
culate top-k expansions, and we also studied additional desirable
properties for the set of expansions returned, from a semantic per-
spective, whereby certain redundancies in the expansions returned
can be avoided. With a detailed set of experiments, we not only
demonstrated the performance of the proposed algorithms, we also
validated the quality of the expansions returned by doing a study on
a real data set. It is interesting to explore more desirable properties
of the expansions returned, and to investigate more efficient algo-
rithms which can return high quality expansion set and can handle
the web scale.

8. ACKNOWLEDGEMENT
This work was supported in part by the Institute for Computing,

Information and Cognitive Systems (ICICS) at UBC.

9. REFERENCES
[1] http://scholar.google.com.

[2] http://www.bing.com.

[3] http://www.delicious.com.

[4] http://www.flickr.com.

[5] http://www.google.com.

[6] http://www.quora.com.

[7] http://www.yahoo.com.

[8] Sihem Amer-Yahia. I am structured: Cluster me, don’t just rank me.
In BEWEB, 2011.

[9] Steven Bethard and Dan Jurafsky. Who should i cite: learning
literature search models from citation behavior. In CIKM, pages
609–618, New York, NY, USA, 2010. ACM.

[10] Christopher M. Bishop. Pattern Recognition and Machine Learning.
Springer, 2006.

[11] Kaushik Chakrabarti, Venkatesh Ganti, Jiawei Han, and Dong Xin.
Ranking objects based on relationships. In SIGMOD, pages 371–382,
New York, NY, USA, 2006. ACM.

[12] Michael D. Ekstrand, Praveen Kannan, James A. Stemper, John T.
Butler, Joseph A. Konstan, and John T. Riedl. Automatically building
research reading lists. In ACM RecSys, pages 159–166, New York,
NY, USA, 2010. ACM.

[13] Ronald Fagin, Amnon Lotem, and Moni Naor. Optimal aggregation
algorithms for middleware. JCSS, 66(4):614–656, 2003.

[14] Qi He, Jian Pei, Daniel Kifer, Prasenjit Mitra, and Lee Giles.
Context-aware citation recommendation. In WWW, pages 421–430,
New York, NY, USA, 2010. ACM.

[15] Marti A. Hearst. Clustering versus faceted categories for information
exploration. Commun. ACM, 49:59–61, April 2006.

[16] Ihab F. Ilyas, George Beskales, and Mohamed A. Soliman. A survey
of top-k query processing techniques in relational database systems.
ACM Comput. Surv., 40(4), 2008.

[17] Yannis Ioannidis. The history of histograms (abridged). In VLDB,
pages 19–30. VLDB Endowment, 2003.

[18] Akihisa Kako, Takao Ono, Tomio Hirata, and Magnús M.
Halldórsson. Approximation algorithms for the weighted
independent set problem. In WG, pages 341–350, 2005.

[19] Chengkai Li, Ning Yan, Senjuti Basu Roy, Lekhendro Lisham, and
Gautam Das. Facetedpedia: Dynamic generation of query-dependent
faceted interfaces for wikipedia. In WWW, pages 651–660, 2010.

[20] S. E. Robertson, S. Walker, and M. M. Hancock-Beaulieu. Okapi at
trec-3. In TREC-3, pages 109–126. NIST, 1994.

[21] Nikos Sarkas, Nilesh Bansal, Gautam Das, and Nick Koudas.
Measure-driven keyword-query expansion. PVLDB, 2(1):121–132,
2009.

[22] Yang Song, Ziming Zhuang, Huajing Li, Qiankun Zhao, Jia Li,
Wang-Chien Lee, and C. Lee Giles. Real-time automatic tag
recommendation. In SIGIR, pages 515–522, New York, NY, USA,
2008. ACM.

[23] Roelof van Zwol, Börkur Sigurbjornsson, Ramu Adapala, Lluis
Garcia Pueyo, Abhinav Katiyar, Kaushal Kurapati, Mridul
Muralidharan, Sudar Muthu, Vanessa Murdock, Polly Ng, Anand
Ramani, Anuj Sahai, Sriram Thiru Sathish, Hari Vasudev, and
Upendra Vuyyuru. Faceted exploration of image search results. In
WWW, pages 961–970, New York, NY, USA, 2010. ACM.

