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Abstract

Robots are generally composed of multiple sen-
sors, actuators and electromechanical parts.
The overall behavior of a robot is emergent
from coordination among its various parts and
its interaction with its environment. Designing
a ‘correct’ tobot which does ‘the right thing’ in
a given environment is an important and chal-
lenging problem. The question posed in the
title is decomposed into two questions. First,
what is the right thing? Second, how does one
guarantee the robot will do it? We answer these
questions in this paper by establishing a formal
approach to the design and analysis of robotic
systems and behaviors.

1 Motivation and Introduction

Building control systems for intelligent, reliable, robust
and safe autonomous robots working in complex environ-
ments is an increasingly important challenge for research
in electrical and mechanical engineering, and computer
science.’

Robots are generally composed of multiple sensors, ac-
tuators and electromechanical parts. Robots should be
reactive as well as purposive systems, closely coupled
with their environments; they must deal with inconsis-
tent, incomplete and delayed information from various
sources. Such systems are usually complex, hierarchical
and physically distributed. Each component functions
according to its own dynamics. The overall behavior of a
system is emergent from coordination among its various
parts and its interaction with its environment. We call
the integration of a robot and its environment a robotic
system, and the relation on the state of a robot and its
environment over time the robotic behavior.

The current trend for developing intelligent robots is
to combine ‘Al techniques with traditional control the-
ory [Schoppers, 1991]. However, most of this work is ad
hoc: there is no well defined interface between the higher
level (AI) and the lower level (control). The coordina-
tion between these levels is not fully understood, and the
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behavior of the whole system cannot be analyzed. One
fundamental problem is the mismatch of the underlying
computational models. Al is based on off-line compu-
tational models and control is based on on-line compu-
tational models. (The distinction between off-line and
on-line models is analogous to the distinction between
functions and processes.)

In this paper, we advocate a formal approach to mod-
eling a robotic system. We have developed a formal
model, Constraint Nets (CN),.for general dynamic sys-
tems [Zhang and Mackworth, 1994a). CN is an abstrac-
tion of general dynamic systems 50 that a system with
discrete as well as continuous time, and asynchronous
as well as synchronous event structures can be modeled
in a unitary framework. Using aggregation operators, a
system can be modeled hierarchically in CN; therefore,
the dynamics of the environment as well as the dynam-
ics of the robot can be modeled individually and then
integrated. Based on abstract algebra and topology, CN
supports multiple levels of abstraction, so that a sys-
tem can be analyzed at different levels of detail. With
a rigorous formalization, CN provides a programming
semantics for the design of robot control systems.

We believe that the intelligence of an agent should be
judged by the quality of the agent’s interaction with the
environment [Brooks, 1991]. The intelligence of an agent
is measured by its ability to accomplish difficult tasks in
complex, hazardous or uncertain environments. How-
ever, because there is, as yet, no rigorous definition for
intelligent behaviors, we shall use the concept of desired
behaviors.

In this paper, we advocate a formal approach to spec-
ifying desired behaviors and to verifying. the relation-
ship between a dynamic system and its behavior spec-
ification. Since robotic behaviors are the relationships
between robots and their environments over time, the .
specification language should at least be able to represent
temporal behaviors: states of a system over time. Vari-
ous forms of temporal logics [Emerson, 1990] have been
proposed in both the systems [Manna and Pnueli, 1992;
Lamport, 1991; Ostroff, 1989; Alur and Henzinger, 1989
and Al [Allen, 1990; Shoham, 1988; McDermott, 1990;
Rosenschein, 1985] communities. We have adopted
an automaton-based specification language, called V-
automata [Manna and Pnueli, 1987], which is capa-
ble of representing a large class of temporal properties
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such as safety, liveness (recurrence, persistence, stability
or controllability), goal achievement (reachability) and
bounded response. Furthermore, a system modeled by a
constraint net can be verified against its desired behavior
specification by a general verification method.

The rest of the paper is organized as follows. Section
2 depicts the structure of robotic systems and the speci-
fication of robotic behaviors, illustrated by two running
examples: a hand coordinator and a maze traveler. Sec-
tion 3 gives the formal model for robotic systems, the
Constraint Net model, and demonstrates constraint net
modeling via the examples. Section 4 presents the for-
mal specification language and its relationship with the
Constraint Net model. Section 5 describes the formal
verification method. Section 6 concludes the paper and
points out some related research.

2 Robotic Systems and Behaviors

From a systemic point of view, a robotic system is a
coupling of a robot to its environment, while the robot
is an integration of a plant and its controller (Fig. 1).
Basically, the roles of these three subsystems can be char-
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Figure 1: A robotic system

acterized as follows:

e Plani: a plant is a set of entities which must be con-
trolled to achieve certain behaviors. For example, a
robot arm with multiple joints, a car with throttle
and steering, an airplane or a nuclear power plant
can bé considered as the plant of a robotic system.

e Controller: a controller is a set of sensors and ac-
tuators together with software/hardware computa-
tional systems which sénse the states of the plant
(X) and the environment (Y'), and compute desired
inputs (U) to actuate the plant. For example, an
analog circuit, a program in a digital computer, var-
lous motors and sensors can be considered as parts
of the controller of a robotic system.

e Environment. an environment is a set of entities
beyond the control of the controller, with which the
plant may interact. For example, obstacles to be
avoided, objects to be reached, and rough terrain to
be traversed can be considered as the environment
of a robotic system.

We introduce two running examples to illustrate the
general structure of robotic systems.

Example 2.1 The Hand Coordinator: Suppose a
two-handed robot is required to fit caps on jars on an
automated assembly line. The robot must pick up a jar
and hold it with one hand and then fit a cap on the

jar with its other hand. However, the hands work asyn-
chronously at their own speed; for example, jars or caps
may occasionally be unavailable, but we can assume that
the acts of jar picking and cap fitting take some constant
time. We will design a hand coordinator so that the right
hand will cap only if the left hand is holding a jar; the
left hand will put down the jar and pick up a.new one
only if the right hand has done the capping.

The robotic system, shown in Fig. 2, consists of the
hand coordinator, and the left and right hands.
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Figure 2: The hand coordinator system

The whole system should work as follows. Whenever
there are more jars available, the left hand will request
permission (R1) to pick up a jar, and the coordinator
will grant the request (C1) if the previous jar has been

capped. ‘On the other hand, whenever there are more’

caps available, the right hand will request permission
(R2) to cap a jar, and the coordinator will grant the

- request (C2) if the left hand is holding a jar in place.

Example 2.2 The Maze Traveler: Consider a maze
composed of separated T-shaped obstacles of bounded
size placed in one of four orientations on an unbounded
plane. A simple robot (Fig. 3 (a)) is required to traverse
the maze from west to east (Fig. 3 (b)).
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Figure 3: (a) A simple robot (b) A simple maze

In this example, the plant is the body of the robot
which can move in one of four directions; the environ-
ment is the maze; and the controller connects sensing
signals to motor commands (Fig. 4). For example, when
the north sensor SN is on, the robot is touching a wall
directly to its north; when the east motor M F is on, the
robot moves east, if it is not blocked. )

While the model of a robotic system states how the
system is composed and how the system works formally.
the specification of a robotic behavior represents what
should the robot do overall. For the hand coordinator.
one desired behavior is that the acts of jar picking and
cap fitting should interleave. For the maze traveler, one
desired behavior is that the robot should move to the
east persistently. Given a formal model of a designed
system and a formal specification of a desired behavior.
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Figure 4: The maze traveler robotic system

one should be able to prove that the model does satisfy
the specification, that is, that the robot will do the right
thing.

Tﬁerefore, ‘do the right thing’ here does not necessar-
ily mean that the robot has rationality built in [Russell
and Wefald, 1991]; it simply means that the robot does
what it is designed to do. Furthermore, the specification
language we propose focuses only on temporal aspects;
probability and stochastic analysis will be incorporated
into this modeling framework in the future.

3 Model for Robotic Systems

In this section, we introduce the Constraint Net model
and characterize its composite structure and modularity.
The formal semantics of the model, based on the fix-
point theory of continuous algebras, has been presented
in [Zhang and Mackworth, 1994a).

3.1 Dynamic systems

Since a robotic system is a dynamic system in general, we
start with some basic concepts of dynamic systems. Let
a lime structure be a totally ordered set, which could
be intervals of reals or ordered events, with a metric
topology. Let a domain be a set of values, which could
be numbers, symbols or strings. Both time and domains
can be either continuous or discrete. In this paper, we
mainly discuss discrete systems. However, all definitions
here works for the general case.

o . Trace: A trace v: T — A is a function from a time
structure 7 to a domain A. The set of traces is de-
noted by trace space AT . Traces can be transformed
from one to another via transductions.

o Transduction: A transduction is a function from in-
put traces to output traces which satisfies the causal
relationship between its inputs and outputs, viz. the
output values at any time are determined by the
input values up to that time. Transductions can
be considered as transformational processes. For
example, a temporal integration is a typical trans-
duction in continuous time; a state automaton de-
fines a transduction in discrete time. Clearly, trans-
ductions are closed under functional composition.
There are two basic types of transductions: translit-
erations and delays.

e Transliteralion: A transliteration fr is a pointwise
extension of function f on time structure 7, that is,
the output value at any time is the function of the

input value at that time only. Let v be the input
trace then we have fr(v) = At.f(v(¢)). Intuitively,a
transliteration is a transformational process without
memory or internal state, for example, a combina-
tional circuit. We use f to denote the transliteration
fr if no ambiguity arises.

o Unil delay: A unit delay 6(vo) is a transduction de-
fined mainly for discrete time structures, such that
the output value at initial time 0 is vg and the rest
of the output values are the input values at the pre-
vious time:

ift=0
6(vo)(v) = ’\t'{ z(()pre(t)) :)therwise

where pre(t) indicates the previous time point ad-
jacent to ¢t in the total order. The definition of
pre(t) can be generalized to arbitrary time struc-
tures [Zhang and Mackworth, 1994a). A unit delay
acts as a unit memory in discrete dynamic systems.

Any discrete dynamic system can be modeled using
only transliterations and unit delays. A hybrid dynamic
system, composed of both discrete and continuous com-
ponents, can be modeled by event-driven transductions
and transport delays, in addition to these two types of
transductions {Zhang and Mackworth, 1994a).

3.2 Constraint nets

A dynamic system can be modeled by a constraint net.
Influenced by some dataflow-like models [Ashcroft, 1986;
Lavignon and Shoham, 1990; Benveniste and LeGuernic,
1990; Caspi et al., 1987}, the Constraint Net model is de-
veloped on an abstract dynamics structure, with abstract
time and domains.

Intuitively, a constraint net consists of a finite set of
locations, a finite set of transductions and a finite set
of connections. A location can be regarded as a wire, a
channel, a variable, or a memory location, whose value
may change over time. Each transduction is a causal
mapping from input traces to output traces. Connec-
tions relate locations with ports of transductions.

Syntactically, a constraint net is a triple CN =
(Le,Td,Cn), where Lc is a finite set of locations, each
of which is associated with a domain; T'd is a finite set of
labels of transductions, each of which is associated with a
set of tnput ports and an output port; Cn is a set of con-
nections between locations and ports of transductions,
with the following restrictions: (1) there is at most one
output port connecting to each location, (2) each port
of a transduction connects to a unique location and (3)
no location is isolated.

A location { is an output location of a transduction F' iff
there is a connection between the output port of F and {;
lis an input location of F iff there is a connection between
an input port of F' and [. A location is an output of the
constraint net if it is an output location of a transduction
otherwise it is an inpui. The set of input locations of
a constraint net CN is denoted by I(CN), the set of
output locations is denoted by O(CN). A constraint
net is open if there is an input location otherwise it is
closed.
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A constraint, net is represented by a bipartite graph
where locations are depicted by circles, transductions are
depicted by boxes and connections are depicted by arcs.
We have seen examples of constraint nets in Fig. 1, Fig.
2 and Fig. 4.

Semantically, a constraint net is a set of equations,

& = F(i,8), where each left-hand side is an individual
output location and each right-hand side is an expres-
sion composed of transductions and locations. The se-
mantics is defined as a solution of the set of equations
[Zhang and Mackworth, 1994a). If CN is a constraint
net with time structure 7 and domain A for | € Le, the
semantics is a transduction from input traces to output
traces: [[CN_H ¥ X”CN)A;-T — xO(CN)A: where XLA;T
denotes the product of a family of trace spaces.

A constraint net can be hierarchically organized. A
module is a triple (CN,I,0), denoted by CN(I,0),
where C'N is a constraint net, ] C I(CN) and O C
O(CN) are subsets of the input and output locations of
CN; TUQO defines the interface of the module. Locations
I(CN)~1 and O(CN) — O are called hidden input and
hidden output locations respectively.

Graphically, a module is depicted by a box with
rounded corners. If [CN] is the semantics of CN, the
semantics of CN (I, O) is the semantics of CN projected
onto the interface, i.e. [CN(I,0)] = H;uo[[CN] =
{(7,0)|o = [CN]o(,7), @ € xy AT } where U = I(CN)-
I is the set of hidden input locations. If U # 0, i.e.
I' CI{CN), [CN(1,0)] is a relation between input and
output traces in general, rather than a function. Thus,
while more powerful, and simpler, than most inherently
nondeterministic models, nondeterminism can be mod-
eled with hidden inputs, and probabilistic and stochastic
analysis can be incorporated (if we provide random dis-
tributions on hidden inputs). :

Generally speaking, modularity provides a kind of ab-
straction: hidden inputs capture nondeterminism and
hidden outputs encapsulate internal state.

Furthermore, a complex module can be constructed
from simple ones with aggregation operators (Zhang and
Mackworth, 1994a), and the semantics has compositional
properties. :

Given a system modeled as a module CN(I,0), the
behavior of the system can be formally defined as a set
of observable input/output traces {V € x1uAf|7 €
[CN(1,0)]}. We also use [CN(I,0)] to denote the be-
havior of the system.

So far, we have briefly presented the Constraint Net
model (CN). CN is as powerful as the existent compu-
tational models, in either discrete sequential computa-
tions (Turing Machines) or continuous analog computa-
tions (smooth non-hypertranscendental functions [Shan-
non, 1941]) [Zhang, 1994]. CN is able to represent a
hybrid system, consisting of a non-trivial mixture of dis-
crete and continuous components. For the two running
examples given in the previous section, we focus here
only on their discrete models. Examples of hybrid sys-
tem modeling can be found in (Zhang and Mackworth,
1993b).

In general, a robotic system is modeled as an integra-
tion of a plant module, a control module and an environ-

ment module (Fig. 1), and each of which may be further
decomposed into a hierarchy of modules. The overall be-
havior of the system is not determined by any one of the
modules, but emerges from the coupling of the interac.
tion among all the components. Formally, the behavior
of the system is the solution of the following equations:

X PLANT(U.,Y),
U CONTROLLER(X,Y),
Y = ENVIRONMENT(X).

As we can see here, a robot, composed of a plant and
a controller, is an open system in general, and a robotic
system, with a robot coupled to its environment, is a
closed system.

Now we illustrate the constraint net modeling using
the two examples: the hand coordinator and the maze
traveler.

Example 3.1 The Hand Coordinator: The hand
coordinator can be designed using negated Muller C-
elements (Sutherland, 1989), since the desired behavior
of the hand coordinator is similar to a buffer synchro-
nizer.

Consider the request and grant signals as events, tran-
sitions from 0 to 1 or 1 to 0. The Muller C-element acts
as the ‘and’ for events: if both of its inputs have the
same value, the output and its next state are copies of
that value, otherwise the output and its next state are
unchanged: -

A Muller C-element can be modeled by a module
C({41,42}, 0) composed of a transliteration ¢ and a unit
delay:

o =c(iy,12,9),q = 6(0)(0)
where

OBl _ il if il = i2

c(i1,92,q) = { q otherwise.
We use the standard ‘and’ logic symbol with a ‘C’ inside
it to represent Muller C-elements and ‘bubbles’ on input
or output ports to represent inversions, :
Assume that jar picking and cap fitting each take con-

stant time. Two negated Muller C-elements and' two

delay elements are used to synchronize events in the con-
troller (Fig. 5).

Figure 5: The hand coordinator

Example 3.2 The Maze Traveler: The controller for
the maze traveler can be built using ‘and’ and ‘not’ gates
with a flip-flop memory unit (Fig. 6).

The flip-flop FF({iy, .}, 0) is composed of a translit-
eration ff and a unit delay:

o= ff(ilii'.’,Q)l q= 6(0)(0)
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Figure 6: The controller for the maze traveler

where
' . 1 ifi; =1 (set)
ffi1,i0,9) = { 0 elseif i3 = 1 (reset)

¢ otherwise.

The control outputs to the robot body are: ME =
~SE,MN =~-FFASE and MS= FFASE.

The robot body BODY ({ME,MN,MS},{X,Y}) is
composed of a transliteration fzy and a unit delay:

(NX,NY) = f,,(ME,MN,MS,X,Y),
(X,Y) 6(30,3/0)(NX:NY)

wherq
fey(ME,MN,MS,X,Y)=(X+ME,Y+MN -MS),

i.e. the next (X,Y) position is displaced by a grid point
depending on the motion.commands.

Even though sensor and command domains are
Boolean {0,1}, notice that this robotic system is not
finite, since the domain of both X and Y is the integers.

Will these robots do the right thing? We have given
informal descriptions of what these two robotic systems
are supposed to do in the previous section. Enthusi-
astic readers will check by hand that they seem to do
the ‘right thing’. However, even though a constraint net
model gives a precise definition of what the behavior of
the system is, it is infeasible to generate the behavior and
check all the traces of the behaviot. In the next two sec-
tions, we will present a behavior specification language

for representing the desired behaviors of a system and a .

verification method for ensuring that the behavior of the
system does satisfy its specification.

4 Specification for Robotic Behaviors

While modeling focuses on the underlying structure of
a system, the organization and coordination of compo-
" nents or subsystems, the overall behavior of the modeled
system is not explicitly expressed. However, for many
situations, it is important to specify some global proper-
ties and guarantee that these properties hold in this de-
sign. For example, the acts of jar picking and cap fitting
must interleave, the maze traveler should persistently
move east. In this section, we present an automaton-
based language for formally specifying robotic behaviors,
and establish the relationship between a constraint net
and a behavior specification.

A trace v : 7 — A is a generalization of a sequence.
In fact, when 7 is the set of natural numbers, v is an
ifinite sequence. A set. of sequences defines a conven-
tional formal language. 1f we take the abstract behavior

of a system as a language, a specification can be rep-
resented as an automaton, and verification checks the
inclusion relation between the language of the system
and the language accepted by the automaton. .

There is always a trade-off between the power of rep-
resentation, l.e., the class of languages the type of au-
tomaton can accept. and the power of analysis. i.e.
the computability of checking the acceptance of traces.
We would like the type of automaton to be powerful
enough to state certain temporal and real-time proper-
ties, yet simple enough to have formal, semi-automatic
or automatic verifications. We have adopted V-automata
[Manna and Pnueli, 1987] for our purpose.

V-automata are non-deterministic finite state au-
tomata over infinite sequences. These automata were
proposed as a formalism for the specification and verifi-
cation of temporal properties of concurrent programs. It
has been shown that V-automata have the same expres-
sive power as Buchi automata [Thomas, 1990] and the
extended temporal logic (ETL) [Wolper, 1983], which
are strictly more powerful than the linear propositional
temporal logic [Thomas, 1990; Wolper, 1983]. More im-
portantly, there is a formal verification method. We have
been able to generalize V-automata for accepting general
traces [Zhang and Mackworth, 1994b). In this paper, we
focus only on discrete systems and infinite sequences.

Let an assertion be a logical formula defined on states
of a dynamic system, i.e. any assertion « on a given state
s, denoted a(s), will be evaluated to either true,s = a,
or false,s - a.

A V-automaton A is a quintuple (Q, R, S, ¢, ¢) where Q
is a finite set of automaton-staies, R C Q is a set of recur-
rent statesand S C Q is a set of stable states. With each
g € Q, we associate an assertion e(g), which character-
izes the entry condition under which the automaton may
start its activity in ¢. With each pair ¢,¢' € Q, we asso-
ciate an assertion ¢(q,¢’), which characterizes the tran-
sition condilion under which the automaton may move
from g to ¢’. R and S are the generalization of accept-
ing states to the case of infinite inputs. We denote by
B = Q — (RUS) the set of non-accepting (bad) states.

For simplicity, let time be the set of natural numbers
N and v: N — A be a sequence. A run of A over v is
a mapping r : N' — @ such that (1) v(0) = e(r(0)), and
(2) for all n.> 0, v(n) E e(r(n — 1), r(n)). =

A V-automaton is called complete iff the following re-
quirements are met:

* Vyeq €(g) is valid.
o Forevery ¢ € Q, Vg (g, ¢') is valid.

These two requirements guarantee that any sequence has
a run over it, and that any partial run can always be
extended to an infinite sequence. We will restrict our-
selves to complete automata. This is not a real restric-
tion, since any automaton can be transformed 0 a com-
plete automaton by introducing an additional error state
ge € B, with the corresponding entry condition and
transition conditions [Manna and Pnueli, 1987].

If ris arun,let Inf(r) be the set of automaton-states
appearing infinitely many times in », that is Inf(r) =



{ri|Vn3m > n,r(m) = q}. A run r is defined to be

accepling iff: ’ ‘ .
1. Inf(r)N R # 0, i.e. some of the states appearing
infinitely many times in r belong to R, or

2. Inf(r) C S, i.e. all the states appearing infinitely
many times in r belong to S.

A V-automaton A accepls a sequence v, written v |= A,
iff all possible runs of A over v are accepting. A V-
automaton A accepts a discrete time system CN(I,0),
written CN(1,0) = A, iff for all v € [CN(I,0)], v E
A.

One of the advantages of using automata as a spec-
ification language is the graphical representation. It is
useful and illuminating to represent V-automata by di-
agrams. The basic conventions for such representations
are the following: :

e The automaton-states are depicted by nodes in a
directed graph.

¢ Each initial state is marked by a small arrow, called
the entry arc, pointing to it.

e Arcs, drawn as arrows, connect some of the states.

e Each recurrent state is depicted by a diamond shape
inscribed within a circle.

o Each stable state is depicted by a square inscribed
within a circle.

Nodes and arcs are labeled by assertions. A node or
an arc that is left unlabeled is considered to be labeled
with true. The labels define the entry conditions and
the transition conditions of the associated automaton as
follows:

e Let ¢ € Q be a node in the diagram. If ¢ is labeled
by % and the entry arc is labeled by ¢, the entry
condition e(q) is given by: e(q) = ¢ A . If there is
no entry arc, e(q) = false.

e Let ¢,¢' be two nodes in the diagram. If ¢’ is la-
beled by ¢, and arcs from ¢ to ¢’ are labeled by
@i, t = l..n, the transition condition ¢(q,¢’) is given
by: ¢(q,¢") = (p1 V...V ¢n) At If there is no arc
from q to ¢, ¢(q,q’) = false.

A diagram representing an incomplete automaton is
interpreted as a complete automaton by introducing an
error state and associated entry and transition condi-
tions. '

This type of automaton is powerful enough to spec-
ify various qualitative behaviors. Some typical desired
behaviors are shown in Fig. 7. Figure 7(a) accepts a
sequence which satisfles =G only finitely many times,
Figure 7(b) accepts a sequence which never satisfies B,
and Figure 7(c) accepts a sequence which will satisfy S
in the finite future whenever it satisfies R.

Now we can formally specify the desired behaviors for
the hand coordinator and the maze traveler.

Example 4.1 The Hand Coordinator: Let the acts
of jar picking and cap fitting be controlled by the events
at C1 and C?2 respectively. Let E(X) be an assertion
denoting that there is an event at X. If E(C1), the
robot picks up a jar, and if E(C2), the robot fits the cap.

QO _ Q % s
@4-'-_11' (I;C.\—é_ %

Figure 7: V-automata: (a) goal achievement or reacha-
bility (b) safety (c) bounded response

One desired behavior for the hand coordinator is that
E(C1) and E(C2) must interleave and E(C1) always
precedes E(C2). This behavior can be represented by a
V-automaton in Fig. 8 (a).

Example 4.2 The Maze Traveler: Let ME be an
assertion denoting that the east motorison,or ME = 1.
One desired behavior for the maze traveler is the liveness
property represented by a V-automaton in Fig. 8 (b),
meaning that the robot will persistently move east.

= BCh A 2 ECD) = ECHA 2 B
f E ecnh - ECy 2 ;
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Figure 8: The specification of (a) the hand coordinator
(b) the maze traveler

5 A Formal Verification Method

In this section, we present a verification method modi-
fied from [Manna and Pnueli, 1987] with concurrent pro-
grams replaced by discrete constraint nets.

Any discrete constraint net CN is composed of two
types of transductions, transliterations and unit delays.
Therefore CN can be represented by two sets of domain
equations, each of the form lj = {, if lp is an output
location of a unit delay from the input location {, or
lo=f(l1,...,1n), if lp is an output location of a translit-
eration f from the input location tuple (l;,...,1,).

The domain equations for the hand coordinator and
the maze traveler are as follows.

Example 5.1 The Hand Coordinator: For simplic-
ity, assume that the delays in the hand coordinator in
Fig. 5 are unit delays. The set of equations for the hand
coordinator is: .

C1 = ¢(R1,-Q2,Q1), Q' =C1,
C2 = ¢(Q1,~R2,Q2), Q2 = C2.

Example 5.2 The Maze Traveler: The set of equa-
tions for the maze traveler is:

FF = ff(SN,-SE,Q),Q = FF,
ME = -~SE,MN = ~FFASE,MS = FF A SE,
(X",Y'Y = foy(ME,MN,MS, X,Y)
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A state s of CN is a mapping from locations to do-
mains, i.e. s € xgeA; where Lc = I(CN)U O(CN).
A pair of states (s,s') is said to be consistenl with
C'N. denoted CN(s,s'), iff for every equation of the
form lg = f(ly,---,Ia), 8(lo) = f(5(l1),...,5(lx)) and
s'(lo) = f(s'(l1),...,8'(In)), and for every equation of
the form I = {, 5'(lo) = s(1).

Let ¢ and 9 be assertions on states of a constraint
net. We write {¢}CN {¥} to denote that the consecutive
condition: @(s) A CN(s,s') — (s') is valid.

Let © be an assertion indicating the initial state of
CN,and A= (Q,R,S,e,c) be a V-automaton. A set of
assertions {ag}seq is called a set of invariants for CN

and A iff

o [nitiality: ¥Vq € Q.© Ae(q) — aq.

e Consecution: ¥q,q¢' € Q.{a,}CN{c(q,¢') — a¢'}.

Given that {ag}qeq is a set of invariants for CN
and A and W is a well-founded sei, i.e. any decreas-
ing sequence of W is finite, a set of partial functions

{Peleeq : XL Al — W is called a set of ranking functions
for CN and A iff the following conditions are satisfied:

o Definedness: Vg € Q. ag — Jw.p; = w.
e Non-increase: Vg € Q,¢ € S.

{ag Apg = w}CN{c(g,¢') = py S w}.
e Decrease: Vg € Q,¢' € B.
{ag Apg = w}CN{c(q,q) — py <w.}

We conclude that if the following requirements are sat-
isfied the validity of a V-automaton A over a constraint
net CN is proved:

(I) Associate with each automaton-state ¢ € Q a state

formula ay, such that {a,}eq is a set of invariants
for CN and A.

(R) Associate with each automaton-state ¢ € Q a partial
function p, : X A1 — W, such that {pg}ecq is a
set of ranking functions for CN and A. -

As in [Manna and Pnueli, 1987, the verification rules
(I) and (R) are sound and complete for a complete V-
automaton .A and a discrete constraint net CN, ie. A
accepts C'N iff there exist a set of invariants and ranking
functions.

Now we can prove that the hand coordinator in Fig. 5
does satisfy its specification in Fig. 8(a), and the maze
traveler controlled by the control circuit in Fig. 6 does
satisfy its specification in Fig. 8(b).

Example 5.3 The Hand Coordinator: The V-
automaton in Fig. 8(a) is not complete. To make it
complete, we add another automaton-state gz € B with
e(qe) = false, ¢(go,98) = E(C2), c(q1,qe) = E(C1),
c(qE, qi) = false for i = 0,1, and c(gg, qe) = true.

Let E(C1) be C1 # Q1 and E(C2) be C2 # Q2.
Let the initial condition ® be C1 = C2. It is easy to
check that C1 = C2, C1 # C2 and false are invariants
for qo.q1 and qg respectively. Therefore the verification
rule (I) is satisfied.

Since go, q1 € R and the invariant of the only bad state
g is false, the verification rule (R) is trivially satisfied.

As a result, we have proved that the acts of jar picking
and cap fitting, controlled by the hand coordinator, do
interleave.

Example 5.4 The Maze Traveler: Let qo, q; in Fig.
8(b) be associated with M E and ~M E respectively. The
verification rule (I) is trivially satisfied.

Suppose the maximum length of an obstacle is L. As-
sociate with each automaton-state the same function
p:{0,1} x {0,1} x {0,1} x Z — {0,1} x D where 2
is the set of integers and D is the interval [0, L + 1] of
natural numbers. Let p be defined as:

(1L1+L) ifME=1
AMEJHLM&W:{(LDN+H if MN =1
(0,Y = DS) ifMS=1

where DN (DS) is the Y-coordinate of the north (south) -
end of the current maze block. Obviously DN =Y
and Y — DS < L. The order on {0,1} x D is defined
as: (0,—) < (1,—) and (X,Y1> < (X,Yg) iff Yy < Y.
{0,1} x D is a well-founded set since L is finite. With
this function and the well-founded set, any transition
that ends up at q; € B would lead to a decrease. There-
fore, p is a ranking function.

As a result, we have proved that the maze traveler
does move east infinitely often, escaping any finite maze
of that type.

We should notice that the verification method is for-
mal but not necessarily amenable to automation if the
domains of the constraint net are not finite. In fact, there
is no verification algorithm, in general, since the discrete
constraint net is powerful enough to simulate a Turing
machine and the specification language is rich enough
to state the halting problem. However, an automatic or
semi-automatic theorem prover can be used for proving
the validity of the formulas derived from this method.

6 Conclusion and Related Work

Will the robot do the right thing? One can guarantee
the answer ‘yes’ by modeling the robotic system, includ-
ing the environment when necessary, at an appropriate
level of abstraction and proving that the model satisfies
the desired behavior specification. In this paper, we have
illustrated a formal approach to the modeling, specifica-
tion and verification of discrete robotic systems.

We have done some further related work on ‘this sub-
ject, (1) designing a verification algorithm for finite sys-
tems {Zhang and Mackworth, 1994c], (2) extending V-
automata to timed V-automata to deal with real-time.
responses [Zhang and Mackworth, 1994c), and (3) ex-
tending ranking functions to Liapunov functions to deal
with continuous time and domains [Zhang and Mack-
worth, 1994b]. We have also worked on control syn-
thesis based on constraint satisfaction using Liapunov
functions [Zhang and Mackworth, 1993a). In fact, the
problems of synthesis and verification are coupled in the
design and analysis of robotic systems.
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