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ABSTRACT  

There are now so many architectures for intelligent systems: 
deliberative planning vs. reactive acting, behavioral subsuming 
vs. hierarchical structuring, machine learning vs. logic reasoning, 
and symbolic representation vs. procedural knowledge. The 
arguments from all schools are all based on how natural systems 
(i.e., biologically inspired, from basic forms of life to high level 
intelligence) work by taking the parts that support their 
architectures. In this paper, we take an engineering point of view, 
i.e., by using requirements specification and system verification 
as the measurement tool. Since most intelligent systems are real-
time dynamic systems (all lives are), requirements specification 
should be able to represent timed properties. We have developed 
timed ∀-automata that fit to this purpose. We will present this 
formal specification, examples for specifying requirements and a 
general procedure for verification.  
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1. INTRODUCTION AND MOTIVATION 
Over the last half a century, intelligent systems have 
become more and more important to human society, from 
everyday life to exploration adventures.  However, unlike 
most other engineering fields, there has been little effort 
towards developing sound and deep foundations for 
quantitatively measurement and understanding such 
systems. The lack of measurement and understanding leads 
to unsatisfactory behavior or even potential danger for 
customers. The systems may not achieve desired 
performance in certain environments, or, the systems may 
even result in catastrophe in life-critical circumstances. 
      Many researchers have suggested measures of 
performance for intelligent systems, such as the Turing 
Test [12], Newell’s expanded list [9,10] and Albus’s 
definition of intelligence [4]. However, most of these 
measures are not based on formal quantitative metrics. 
There are also efforts on comparing performance on pre-
defined tasks, such as a soccer competition [11]. However, 

these methods are domain specific therefore hard to apply 
to general cases. We advocate formal methods for 
specifying performance requirements of intelligent 
systems. Much research has been done on formal methods 
(http://archive.comlab.ox.ac.uk/formal-methods.html) over 
the last twenty years. In this paper, we explore one of the 
approaches, namely, using timed ∀-automata for 
specifying performance requirements.  
      The timed ∀-automata model was developed in [13, 
17] as an extension of discrete time ∀-automata [8] to 
continuous time, annotations with real-time. Timed ∀-
automata are simple yet able to represent many important 
features of dynamic systems such as safety, stability, 
reachability and real-time response. In the rest of this 
paper, we introduce the formal definition of timed ∀-
automata first, then present examples of timed ∀-automata 
for representing performance metrics, and finally describe 
a general verification procedure for this type of 
requirements specification. 
 

2. TIMED ∀-AUTOMATA 
In general, there are two uses of automata: 1. to describe 
computations, such as input/output state automata, and 2. 
to characterize a set of sequences, such as regular 
grammars/languages. Examples of the first category are 
mostly deterministic and examples of the second category 
are mostly non-deterministic. However, all the original 
automata work is based on discrete time steps/sequences. 
Approaches to extending automata to continuous time have 
been explored in hybrid systems community over the last 
decades [1,2,7]. The timed ∀-automata model that we 
developed belongs to the second category, i.e., non-
deterministic finite state automata specifying behaviors 
over continuous time. The discrete time version of ∀-
automata was originally proposed as formalism for the 
specification and verification of temporal properties of 
concurrent programs [8].  



2.1. Syntax 

Syntactically, a timed ∀-automaton is defined as follows.  
 
[Definition 1] A ∀-automaton A is a quintuple (Q, R, S, e, 
c) where Q is a finite set of automaton-states, R ⊆ Q is a 
set of recurrent states and S ⊆ Q is a set of stable states. 
With each q ∈ Q, we associate an assertion e(q), which 
characterizes the entry condition under which the 
automaton may start its activity in q. With each pair q, q’ 
∈ Q, we associate an assertion c(q, q’), which 
characterizes the transition condition under which the 
automaton may move from q to q’. R and S are 
generalizations of accepting states. We denote by B = Q – 
(R ∪ S) the set of non-accepting (bad) states. Let R+ be the 
set of non-negative real numbers representing time 
durations. A timed ∀-automaton is a triple (A, T, τ) where 
A is a ∀-automaton, T ⊆ Q is a set of timed automaton-
states and τ: T ∪ {B} → R+ ∪ {∞} is a time function. 
 
      One of the engineering advantages of using automata 
as a specification language is its graphical representation. 

It is useful and illuminating to represent timed ∀-automata 
by diagrams. A timed ∀-automaton can be depicted by a 
labeled directed graph, where automaton-states are 
depicted by circle nodes and transition relations are by 
directional arcs. In addition, each automaton-state may 
have an entry arc pointing to it; each recurrent state is 
depicted by a diamond and each stable state is depicted by 
a square, inscribed within a circle. Nodes and arcs are 
labeled by assertions as follows. A node or an arc that is 
left unlabeled is considered to be labeled with true. 
Furthermore, (1) if an automaton-state q is labeled by ψ 
and its entry arc is labeled by ϕ, the entry condition e(q) is 
given by e(q) = ψ ∧ϕ; if there is no entry arc, e(q) = false, 
and (2) if arcs from q to q’ are labeled by ϕi, i = 1…n, and 
q’ is labeled by ψ, the transition condition c(q, q’) is given 
by c(q, q’) = (ϕ1 ∨…∨ϕn) ∧ψ; if there is no arc from q to 
q’, c(q, q’) = false. A T-state is denoted by a nonnegative 
real number indicating its time bound. Some examples of 
timed ∀-automata are shown in Figure 1. 
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Figure 1. Examples of timed ∀-automata 
 

2.2. Semantics 
Semantically, each assertion denotes a constraint defined 
on a domain of interest. Let D be a domain of interest; D 
can be finite, discrete, or continuous, or a cross product of 
a finite number of domains. Physically, D can represent, 
for example, speeds, distances, torques, sentences, 
commands or a combination of the above. A constraint C 
defined on D is a subset of D, C ⊆ D. Physically, a 
constraint represents certain relation on a domain, such as 
a relation between external environment stimuli and an 
agent’s internal knowledge representation, or, a relation 
between internal states and actions, or, the relation 
between the current and next state. An element d in 
domain D satisfies constraint C, if and only if d ∈ C. 
      The semantics of timed ∀-automaton is defined as 
follows. Let T be a time domain, which can be continuous, 
for example, R+. First, let us define runs of ∀-automata. 
Let A = (Q, R, S, e, c) be a ∀-automaton and v: T → D be 
a function of time. A run of A over v is a function r: T →Q 
satisfying: 

1. Initiality: v(0) ∈ e(r(0)); 
2. Consecution: 

a. Inductivity: ∀t>0, ∃q∈Q, t’<t,∀t”, 
t’≤t”<t, r(t”)=q and v(t) ∈ c(r(t”), r(t)) 
and 

b. Continuity: ∀t, ∃q∈Q, t’>t, ∀t”, t<t”<t’, 
r(t”)=q and v(t”) ∈ c(r(t), r(t”)). 

When T is discrete, the two conditions in 
Consecution reduce to one, i.e., ∀t>0, v(t) ∈ 
c(r(pre(t)), r(t)) where pre(t) is the previous time 
point of t.  

      If r is a run, let Inf(r) be the set of automaton-states 
appearing infinitely many times in r, i.e., Inf(r) = 
{q|∀t∃t’≥t, r(t’)=q}. A run is called accepting if and only if 

1. Inf(r) ∩R≠0, i.e., some of states appearing 
infinitely many times in r belong to R, or 

2. Inf(r) ⊆ S, i.e., all the states appearing infinitely 
many times in r belong to S. 

      For a timed ∀-automaton, in addition for a run to be 
accepting, it has to satisfy time constraints. Let I ⊆ T be a 
time interval and |I| be the time measurement, and let r|I be 
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a segment of r over time interval I. A run satisfies time 
constraints if and only if: 

1. Local: For any q ∈ T any time interval I, if r|I is a 
segment of consecutive states of q, then |I| ≤τ(q); 

2. Global: For any time interval I, if r|I is a segment 
of consecutive states of B∪S, then ∫IχB(r(t))dt 
≤τ(B), where χB: Q→{0,1} is the characterization 
function for the set B. 

 
[Definition 2] A timed ∀-automaton TA = (A, T, τ) 
accepts a trace v, if and only if  

1. All runs are accepting for A; 
2. All runs satisfy the time constraints. 
 

      With the semantics defined, we can infer that, for the 
timed ∀-automata in Figure 1, (a) specifies the behavior of 
reachability, i.e., eventually the system should satisfy 
constraint G, (b) specifies the behavior of safety, i.e. 
constraint G is never satisfied, (c) specifies the behavior of 
bounded response, i.e., whenever constraint E is satisfied, 
constraint F will be satisfied within bounded time and (d) 
specifies the behavior of real-time response, i.e., whenever 
constraint E is satisfied, constraint F will be satisfied 
within 5 time units. 
 

3. EXAMPLES OF PERFORMANCE 
SPECIFICATION 
Timed ∀-automata are simple yet powerful for the 
specification of behaviors of dynamic systems, since it 
integrates constraint specification with timed dynamic 
behavior specification. 

3.1. Examples of Constraint Specification 
Constraint specification alone can specify many 
performance metrics. Constraints specify relations between 
external environment stimuli and an agent’s internal 
knowledge representation, or between internal states and 
actions, or between the current and next states.  Constraints 
can be finite, discrete or continuous, or any combination of 
the above. Constraints can be linear, nonlinear, equalities 
or inequalities. Moreover, constraints can also specify 
optimal conditions or optimality with extra constraints, or 
combinations of multiple optimal criteria and additional 
constraints.  
      Considering the following examples for specifying 
constraints: 

1. Inequality: f(x) ≤ 0 where x is a vector of 
variables and f is a vector of functions. 

2. Optimality: min |f(x)| where |x| is a norm for x. 
3. Negation: x ≠ y. 
4. Constrained Optimality: min|f(x)| given g(x)≤0. 
5. Robustness: Let f(x) be a set of output functions 

with x as inputs. The robustness can be 

represented by its Jacobian J = ∆f/∆x. There are 
many ways to state an optimal condition for 
robustness. One method is to minimize |w| where 
w is the diagonal elements of W in the singular 
value decomposition of J = UWVT. 

 

3.2. Examples of ∀-Automata 
With automata, timed dynamic behaviors can be specified. 
Here is a set of examples for specifying performance using 
timed ∀-automata, as shown in Figure 1: 

1. Let G be a constraint that the distance between 
the robot and its desired position is less than some 
constant value. Then Figure 1(a) specifies that the 
robot will eventually arrive its desired position. 

2. Let G be a constraint that the error of a learning 
algorithm is less than a desired tolerance. Then 
Figure 1(a) specifies that the learning will 
eventually convergence. If let the state of ¬G in 
Figure 1(a) as a timed state with time bound t, it 
further specifies that the learning will be done 
within time t. 

3. Let G be a constraint that the distance between 
the robot and obstacles is less than some constant 
value. Then Figure 1(b) specifies that the robot 
will never hit any obstacle. If G denotes that the 
current memory usage is out of the limit, Figure 
1(b) specifies that the memory usage at any time 
is within its limit. 

4. Let E be an external stimuli and F be a response. 
Then Figure 1(c) specifies that there is a response 
after stimuli within bounded time. Figure 1(d) 
specifies that such a response is within 5 time 
units. 

      Even though timed ∀-automata are powerful, still they 
are not able to represent all forms of performance metrics. 
For example, optimal performance over time min∫f(t)dt is 
not specifiable with timed ∀-automata. This form is mostly 
used for characterizing energy, efficiency or overall errors. 
Furthermore, specification with probability behaviors are 
not included either. However, it is not hard to add 
probability, for example, instead of “all runs” must be 
accepting and satisfying time constraints, we can say “x% 
runs” must be accepting and satisfying time constraints.  

3.3 Performance Comparisons 
Note that requirements specification defines what the 
system should do, rather than defining how the system is 
organized, i.e., its architecture. For example, behavior-
based control [4,6] (which is arbitration based or a 
horizontal hierarchy) has a different form of architecture 
from function-based control [5] (which is abstraction-
based or a vertical hierarchy); model-based systems have a 
different form of architecture from learning-based systems, 



event-driven systems have a different kind of architecture 
from time-driven systems. Different systems with different 
architectures can still be compared based on the behavioral 
interface under the formal performance specification. For 
example, given a set of requirements specification Rs and 
system A satisfies a subset As ⊆ Rs and system B satisfies 
a subset Bs ⊆ Rs. If As ⊆ Bs, system A is not better than 
system B with respect to requirements Rs. Similarly, if 
system A satisfies requirement α and system B satisfies 
requirement β and if α implies β, system A is better than 
system B with respect to the requirement. 
      However, this specification does not define metrics on 
architectures. The measurement of performance should 
come from the customer’s point of view, but the 
measurement of architecture should come from the 
developer’s point of view, i.e., design time, debug time, 
upgrading time, modularity and the percentage of re-usable 
components.  

4. SYSTEM VERIFICATION 
For most dynamic systems, stability or convergence is the 
most important property that needs to be verified. For 
example, we can verify that equation dx/dt = 0 satisfies the 
property of ∀-automaton in Figure 1(a) with G as |x|≤ε for 
any positive number ε. The most commonly used method 
for the verification of such properties is the use of 
Liaponov functions. We developed a formal method based 
on model-checking, that generalizes Liaponov functions 
[13,17]. This method is automatic if the domain of interest 
is finite discrete and time is discrete [13].  
      The details of the model-checking method are out of 
the scope of this paper. The basic principle is to first find a 
set of invariants, each associated with an automaton-state 
in the timed ∀-automaton. Then, find a set of Liaponov 
functions, which are non-increasing in stable states and 
decreasing in bad states. Finally, find a set of local and 
global timing functions, where local timing functions are 
decreasing in timed states and global timing functions, like 
Liaponov functions, are non-increasing in stable states and 
decreasing in bad states, in addition to be bounded in 
values. 
 

5. RELATED WORK AND CONCLUSION 
Much work has been done in formal approaches to system 
specification and verification [1,2,7,8]. In general, there 
are two schools. One is to develop a uniform specification 
for both systems and their requirements; the other is to use 
two different specifications, one for systems and one for 
requirements. The advantage of the former is that the same 
formal approach can apply to both system synthesis and 
system verification. However, in most cases, if the 
specification language is powerful for both systems and 
requirements, the synthesis or verification tasks become 

hard. We advocate the latter approach, i.e., using timed ∀-
automata for requirements specification and using 
Constraint Nets [13,18,19] for system modeling. Control 
synthesis [13,14] and verification [13,15,16,17,20] are also 
studied in this framework. 
      In this paper, we have shown how to use formal 
methods to specify the performance metrics of intelligent 
systems, with timed ∀-automata as an example. The 
advantage of formal methods over other methods lies in 
their precision and generality. Timed ∀-automata, with its 
graphical depiction and constraint specification, is a simple 
yet powerful formalism for specifying many properties of 
dynamic systems. 
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