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Abstract—�Places in an environment are locations where 
activities occur, and can be described by the objects they 
contain. This paper discusses the completely automated 
integration of object detection and global image properties for 
place classification. We first determine object counts in various 
place types based on LabelMe images, which contain 
annotations of places and segmented objects. We then train 
object detectors on some of the most frequently occurring 
objects. Finally, we use object detection scores as well as global 
image properties to perform place classification of images. We 
show that our object-centric method is superior and more 
generalizable when compared to using global properties in 
indoor scenes. In addition, we show enhanced performance by 
combining both methods. We also discuss areas for 
improvement and the application of this work to informed 
visual search. Finally, through this work we display the 
performance of a state-of-the-art technique trained using 
automatically-acquired labeled object instances (i.e., bounding 
boxes) to perform place classification of realistic indoor scenes. 
 

Keywords-place classification; object recognition; scene 
recognition 

I.  INTRODUCTION 
Scene understanding is a challenging and important 

problem in computer vision and robotics. Unlike rooms that 
are defined by geometric properties of the environment (e.g., 
walls), places are often defined by the objects that they 
contain and the set of related tasks that occur within them 
[1]. Place classification can thus benefit greatly from the 
ability to recognize objects in the environment. Several 
researchers have attempted to classify scenes using semantic 
place labels such as “kitchen”, “bathroom”, etc., using 
vision- and laser-based methods [2] [3] [4] [5]. However, 
most of these methods rely on global properties of images 
and also compute local image properties using feature-based 
methods, but do not explicitly attempt object recognition. 
Recently, some systems have demonstrated the ability to find 
query objects (specific instances as well as generic classes) 
in controlled indoor environments in the Semantic Robot 
Vision Challenge (SRVC) [6], an international competition 
to evaluate embodied object recognition systems. One of the 
winning teams constructs object recognition models based on 
training imagery collected from the Internet, and employs a 
peripheral-foveal vision system to collect a visual survey of 
objects in a real environment [7]. The success of these 
platforms in the embodied object recognition scenario 

presents the opportunity to leverage object detection for 
higher-level environment understanding.  

Recognized objects and their locations can be used to 
automatically label places in the environment through the use 
of annotated databases, as demonstrated by our spatial-
semantic modeling system [8]. This system, however, 
assumes the ability to recognize objects perfectly and does 
not address the recognition problem. In this paper, we use a 
state-of-the-art object detection technique to demonstrate the 
use of object detection in place classification. In addition, we 
also combine detected objects with global properties of the 
image to further enhance performance. 

We seek to provide a robotic system with the ability to 
understand and explore the environment in an automated and 
scalable fashion, without extensive effort from a system 
designer. To this end, we use the images present in the 
LabelMe database [9]: a free online data source that provides 
a large and growing amount of human-labeled images of 
indoor scenes suitable for place labeling and object 
recognition. The use of Internet imagery gives the system 
access to training data for a large number of visual classes 
with no extra manual effort. In addition to containing object 
text labels, LabelMe images also contain segmentations of 
objects within them, which can be used to construct accurate 
bounding boxes. For object detection, we use a system 
created by Felzenszwalb�et al. [10] based on mixtures of 
multiscale deformable part models (DPM) to�perform object 
detection, due to its success in the PASCAL object detection 
challenge. Global properties of an image are computed using 
“Gist” and used to perform place classification, since they 
achieve state-of-the-art performance on several scene 
categories as seen in [4]. We use Boosted Decision Trees 
[12] (BDTs) to combine detections as well as Gist 
information.  

The rest of�the paper is structured as follows. In section 
II, we review related work in place classification, and state 
our contributions in section III. In section IV, we present the 
methods used to 1) perform automated data collection, 2) 
determine useful objects, 3) train object detectors, and 4) 
classify scenes. Experiments and results are discussed in 
section V. We conclude with future directions for this 
research.  

II. RELATED WORD 
The concept of labeling areas of a 2D map, such as that 

captured with Simultaneous Location and Mapping (SLAM) 
[13], with descriptive tags has most commonly been done in 
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topological mapping. Topological maps describe a location 
as a set of “places” and “connections”. Kuipers [14] proposes 
the Spatial Semantic Hierarchy, where space is represented 
at many levels that contain different degrees of detail and 
semantic information. In work by Ranganathan et al. [15] 
graph-like maps are constructed where nodes are classified 
using visual object recognition. Kröse et al. have developed a 
series of practical systems [16] [17] in which the visual 
similarity between images is used to cluster regions in the 
environment. Place labels for the clusters, however, are 
provided by a human through speech. 

For classifying scenes, Torralba et al. [18] [11] use global 
properties of a scene (Gist) to classify scenes. Pronobis et al. 
[19] [5] [20] combine Composed Receptive Field 
Histograms, SIFT and laser data to perform scene 
classification in indoor environments, under different 
illumination conditions. Local regions are used to infer an 
intermediate “theme” of an image in [21] to aid in scene 
classification. Several other context- and region-based 
approaches have been implemented, and can be found in 
[22]. The authors of [4] find that most methods that achieve 
state-of-the-art performance in classification of outdoor 
scenes perform significantly worse on indoor scenes. They 
observe that some indoor scenes are better described by the 
objects in them and thus combine global and local properties 
(Gist and spatial pyramid of visual words) to achieve 
increased performance. However, the reported multi-class 
average precision rates for the�indoor dataset are still low.  

Object-based methods have also been used for scene 
classification, as in [23], where places and functional regions 
of the environment are labeled based on object occurrences. 
However, the main drawbacks of these methods are that they 
are trained on specific instances of objects and tested on the 
same objects under different viewpoints and lighting 
conditions. It remains a challenge to determine which objects 
are strong cues for place classification. In addition, generic 
object class recognition has been a challenging task in 
computer vision research. More recently, part-based models 
have shown themselves to be highly effective for detection 
of both rigid and deformable objects [24]. This method, 
however, requires a large amount of training data with 
segmented examples of objects. 
�

III. CONTRIBUTIONS 
In this paper, we present a novel method of place 

classification that uses object detections in order to perform 
place labeling. We pursue object-based scene classification 
since we believe that this method is more effective for indoor 
scenes and generalizable to a large number of previously-
unseen indoor environments.  

We use object occurrence information from the LabelMe 
database to inform classes of useful objects for detector 
training. We train these detectors automatically using DPMs 
on readily-available segmented and annotated images in the�
LabelMe database. We then train a Boosted Decision Tree 
that uses detection scores to predict the place. We compare 
this method to using Gist alone on an indoor dataset. We 
then present another method that combines Gist as well as 

object detections, and show that the two types of cues, when 
combined, lead to better performance than when used alone. 
Finally, we demonstrate our system on images taken by a 
robot in a real home. 

IV. AUTOMATED PLACE LABELING 
We have developed a system to categorize scenes based 

on object detectors learned from LabelMe images. Our 
system is composed of four separate components. Firstly, we 
perform fully automated data collection from LabelMe, thus 
facilitating the collection of training images used to 
recognize a large number of object categories. We compute a 
Count Model that represents the number of times an object is 
observed in each place type in the LabelMe data based on 
user-provided text labels. We then use images from LabelMe 
to train windowed object detectors for the most frequently 
occurring objects. Finally, we use a Boosted Decision Tree 
to predict the most likely place type given the detected 
objects in a scene. Furthermore, we show that enhanced 
performance can be achieved by incorporating global cues 
(such as Gist in this paper) into our framework. 

A. LabelMe Data collection 

LabelMe [9] is an online database of user annotated 
images. In LabelMe, the user can annotate an object in an 
image by selecting a region of the image using a polygon and 
giving that region a label. The entire scene can also have a 
description contained in the filename. Fig. 1 shows a kitchen 
scene from LabelMe with several labeled objects. We use 
LabelMe in two ways. Training of object detectors requires 
tight bounding boxes that we can acquire using the LabelMe 
polygons. Our Count Model is computed using the 
correspondence between labels of objects in an image and 
the place name descriptor found in the image filename. Note 
that in creating this model, we do not directly analyze the 
images in the dataset, and instead focus on the textual 
annotations in each image.  

 

 
Figure 1. A kitchen scene from the LabelMe database. The polygons used 
to segment objects in the scene are shown as colored lines. 
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�

B. Count Model�
In order to perform place classification based on objects, 

we first need to learn a model of objects and their number of 
occurrences in each place type. We can obtain this 
information from the LabelMe database by querying for 
scenes and recording the number of annotated occurrences of 
each object in the scene, as in Vasudevan et al. [23] and [8]. 
The counts table ctp(o) contains the number of times object 
o occurs in�images of place type p. If the number of images 
of place type p is np, the likelihood of observing object o in 
place p is computed as �

P(ojp) = ctp(o)/np  +1,  

(1) 
We refer to this likelihood as the Count Model, which is 

used to inform detector training and learning of the Place 
Model described below. 

C. Useful Objects�
The most informative objects are often the most 

frequently occurring, in the domain of place labeling. In 
addition, since most LabelMe scenes contain objects in 
realistic home settings, objects that have high counts in the 
learned model are more likely to be present in the intended 
test environment. Thus, we compute the most frequently 
occurring objects in each place type to train object detectors. 
A histogram of these objects for some place types can be 
found in the Fig. 2. 

D. �Detector Training 
To train object detectors, we use the mixtures of 

multiscale DPM described in [10]. The DPM models both 
the entire object as well as its parts. It learns�the number of 
parts comprising an object, the positions of these parts, and 
the variation in positions. The system employs a margin-
sensitive technique for data-mining hard negative examples 
to improve classification. The underlying model is called 
latent SVM, which is a reformulation of MI-SVM [26] in 
terms of latent variables. The approach alternates between 
fixing latent values for positive examples and optimizing the 
SVM object function.  

The approach described above must be trained on images 
of the target objects with accurate bounding boxes, making 
many conventional data sources unusable. However, 
LabelMe provides user-defined bounding polygons that we 
use to determine training image bounding boxes. We 
optimized the parameters of the DPM to train each detector 
in less than three hours on machines with 2 Intel quad-core 
Xeon 3.2 GHz processors with 32GB of memory. We trained 
detectors for a subset of the most frequently occurring 
objects based on the object counts. A total number of 61 
objects were used (corresponding to approximately 15 
objects in each place type). The precision-recall rates for a 
few categories, as well as visualizations of a detector model 
can be found in the Experiments section. �

E. Place Labeling using Boosted Decision Trees 
Decision trees are a hierarchical model for supervised 

learning that identify local regions in the input space using a 
sequence of recursive splits. Boosting is a learning technique 
that determines how to combine and weight many weak 
classifiers to produce a single strong classification result. 
Adaboost (adaptive boosting) by Freund and Schapire [27] 
was an improvement on earlier boosting techniques that built 
classifiers iteratively and adapted them based on the 
performance of previous iterations. The Adaboost algorithm 
focuses on so called “hard to solve”� samples from the 
training distribution by increasing weights on samples 
incorrectly labeled by previous iterations and decreasing 
weights on those that were successfully classified. 
Significantly, boosted decision trees [12] require no 
knowledge about the properties of the weak classifiers used 
and can be combined with any weak classifier that is more 
accurate than random guess, allowing us to test a wide 
variety of features. Also, they are not prone to over-fitting 
and have no parameters to tune except for the number of 
rounds they run for and can usually just be run until the test 
accuracy (on a hold-out set) plateaus. To achieve multiclass 
classification, we trained a decision tree for each place type 
using a 1 vs. all approach. We describe the inputs to the 
boosted decision trees in section V since they vary between 
experiments. 

�

(a) Kitchens (b) Offices 
Figure 2.  Counts of the types of objects found in kitchen and office scenes 

3



 

V. EXPERIMENTS 
In this paper, we attempt to classify kitchens, offices, 

bathrooms and bedrooms. However, due to the automated 
nature of our system, we can easily learn models for other 
types of places including living rooms and dining rooms by 
simply querying LabelMe for more scenes. 

A. Count Model �
Fig. 2 shows the object counts learned for kitchens and 

offices. We display the 15 most frequently occurring objects 
in each place type. As seen in the figures, some of the objects 
have unusable labels due to ambiguous user entries. We thus 
select a limited number of the objects, and show later on that 
these are in fact sufficient for the task of place classification. 
Future work could involve language processing to eliminate 
ambiguous labels as well as combine synonymous labels. 

B. Detection�
Fig. 3 provides visualizations of the bowl detector using 

the DPM. We trained detectors using at most 600 positive 
examples, and 1000 negative examples for each class. We set 
the number of components of the mixture model, n, based on 
the size of the training data for each class (classes with few 
training examples were trained on 1 component, while 
classes with more training data were trained on up to 3 
components). Thus, training examples are split into 
n components based on the aspect ratio of the bounding 
boxes they contain. DPMs are trained on each component 
individually and merged together to form the final model. In 
order to produce precision-recall and average precision rates 
for each category, we validated the models on images of 
LabelMe objects that were not used in training. We used 
loosely cropped versions of these images to prevent 
unannotated true positive examples in an image from being 
detected as false positives. Fig. 4 shows some of the most 

 
(a) bowl side view (b) bowl side view parts (c) bowl top view (d) bowl top view parts 

Figure 3.  Visualizations of the Felzenszwalb et al. object classifier. Images a and c show the expected intensity of gradients in a grid pattern for the 
entire object. Images b and d show the gradients in the parts model. 

 

Figure 4.  The precision/recall rates of object detectors. The top row shows 2 of the most successful classifiers and the bottom row shows 2 of the least 
successful classifiers. 
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and least successful detection results. As seen, objects that 
are usually fairly obscured by other objects (furniture such as 
desks and tables) tend to perform the worst, because the 
training images for these classes mostly contain views of 
cluttered table/desk tops. 

C. Place Classification�
We designed experiments to test place classification in 

three different scenarios. In the first experiment, we attempt 
classification of places based on perfect labels of all 
annotated objects. In the second, we classify full images that 
depict a scene containing different types and numbers of 
objects, using real detection results. Finally, we evaluate 
place classification on images taken by a robot in a real 
home. 

 
1) Place Classification with Perfect Labels 

In this experiment, we want to determine the 
performance of the place classification system using BDTs if 
all objects can be recognized perfectly, that is, we used place 
names and object names from annotated objects in LabelMe. 
We run 10-fold-cross validation on all examples of 
bedrooms (37), bathrooms (52), offices (647) and kitchens 
(190). The number of examples for each place type is 
indicated in brackets. Only objects that occur in at least 10 
images are used as features in the BDTs. In this experiment, 
inputs are binary, indicating the presence or absence of an 
object. As seen in Table 1, our place classification algorithm 
produces assignments that closely match the ground-truth 
place labels for all place types, and outperform our weighted 
voting method used in [8]. Bathrooms produce the lowest 
recall rate due to the limited number of example images 
currently in LabelMe. This demonstrates that objects present 
in a scene are very useful in place classification. 

 
2) Place Classification on Indoor Dataset 

Our second experiment determines place labels using 
real, noisy objects detections in the image. These images 
only contain a portion of the scene, and can contain few to 
many objects. The highest SVM detector scores, produced 
by running each learned object detector on the image, are fed 
as input to the BDT, which then infers the place label. We 
found that using a higher number of detections per object 
class resulted in negligible improvement, and thus use only 
the top detection for each object class in this paper.  

TABLE I.  CLASSIFICATION RESULTS FOR PLACE CLASSIFICATION 
WITH PERFECT OBJECT LABELS. 

Place Precision Recall 

Bathroom 0.96 0.88 

Bedroom 0.92 0.92 

Kitchen 0.95 0.93 

Office 0.98 1.0 

Average 0.95 0.93 

We expanded the indoor dataset in [4] with 50 more 
images for each place type acquired from Photobucket to 
minimize overlap between the Torralba dataset (which uses 
LabelMe as a data source) and the images used in detector 
training. Our new database will be made available online 
soon. We compare our object-centric method with the 
technique in [11], which uses Gist for place classification 
using an SVM. We perform 10-fold cross-validation on the 
entire dataset for both methods. Results of place 
classification on the combined indoor dataset are shown in 
Table 2, in columns 1 and 2. Given the difficulty of the task, 
our model performs extremely well at distinguishing 
between the various place types based on a relatively small 
set of trained detectors. This demonstrates object detections 
using DPM with our automated training method are reliable 
for the task of place classification. We also notice that our 
object-centric method is comparable to Gist (columns 3 and 
4), outperforming it in most cases.  

We also show results of combining object detections and 
Gist in the fifth and sixth columns. The input features in the 
BDT in this experiment are the highest SVM object detector 
scores as well as SVM output from Gist. We see that due to 
the complementary strengths of both methods, combining 
them results in enhanced performance for all place types in 
the indoor dataset.  

Finally, we assess the performance of the system as we 
vary the number of detectors. In Table 3, we report the 
precision and recall rates when the top 45, 30, and 15 
detectors of 61 are used. The results show that place 
classification requires a relatively small number of object 
detectors; however, using more detectors can improve 
performance. 

TABLE II.  PLACE CLASSIFICATION RESULTS USING OBJECT 
DETECTIONS, GIST AND BOTH COMBINED ON IMAGES ACQUIRED BY 

HUMANS 

 

TABLE III.  PLACE CLASSIFICATION RESULTS WITH VARYING NUMBER 
OF DETECTORS 

Number of detectors Precision Recall 

45 0.59 0.59 

30 0.54 0.54 

15 0.53 0.53 

 

Place 
Object Gist Object+Gist 

Prec. Recall Prec. Recall Prec. Recall 

Bathroom 0.56  0.58 0.63 0.56 0.68 0.63 

Bedroom 0.57  0.53 0.53 0.53 0.57 0.64 

Kitchen 0.61 0.62 0.53 0.57 0.64 0.67 

Office 0.58  0.60 0.53 0.52 0.66 0.60 

Average 0.58  0.58 0.56 0.55 0.63 0.64 
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TABLE IV.  PLACE CLASSIFICATION RESULTS USING OBJECT 
DETECTIONS, GIST AND BOTH COMBINED ON IMAGES ACQUIRED BY A  

ROBOT 

 
3) Place Classification on Robot Images  

In order to demonstrate the effectiveness of the system in 
a robotic platform, we evaluate the BDT trained on the 
indoor dataset above to perform place classification on 
images captured by a tele-operated Pioneer robot in an 
apartment. Since several images in the video sequence were 
difficult to classify even by a human due to the lack of 
objects in the image,�we report results on a subset of frames 
(classifiable by a human user) captured by the robot, and 
assume that in the future we can propagate these labels to 
nearby images based on location estimates (using SLAM or 
odometry data), or by using visual similarity as in�[28]. The 
results in Table 4 show that although both object-centric and 
Gist methods produce poor results on the data collected by 
the robot, the object detector is more generalizable to images 
that are significantly different from training data with regards 
to viewpoints, framing, lighting, etc. Here we see the benefit 
of using local properties of the image (specifically, the 
objects detected in it) that are more consistent across various 
environments rather than global properties such as Gist, 
which are more environment-specific. Since the BDT was 
trained on the� indoor dataset (where Gist is found to be 
more reliable) the combined model results in poor 
performance on the test data, where Gist performs 
significantly worse than object-based classification. 

VI. DISCUSSION �

In the future, we intend to extend this work to a larger 
number of place types using more object detections. One of 
the greatest challenges we encounter in this work is 
acquiring good training data from LabelMe. For many 
classes, such as “pot”, the images in LabelMe are of different 
types of sub-classes (such as flower pots, ornamental pots 
and cooking pots). In future work, we would like to automate 
clustering of objects into different types/views using 
techniques such as comparing the differences of LabelMe 
polygons.  

We would like to attempt place classification on data 
collected by a robot that can acquire 3D layouts of the 
environment using a panning laser range finder. This 3D data 
allows us to identify structures such as tables and desks and 
automatically segment and acquire multiple images of 
objects on their surface. We can also use the place labels to 
guide visual search of novel objects using our Location 
Model described in [8]. In addition, we need to investigate 

the use of place labels as context to enhance recognition of 
objects that are currently difficult to recognize. Finally, we 
need to incorporate spatial relationships between objects to 
enhance place classification and informed search. �

VII. CONCLUSION�

In conclusion, we have demonstrated a system that can 
perform place classification using object detection on both 
segmented images of objects from the environment and full 
scene images. In addition, we have shown that, with state-of-
the-art object detectors trained with large, freely available 
data sources like LabelMe, we can effectively both detect 
and classify a wide variety of objects in realistic indoor 
images.  
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