
Parallel and Distributed Algorithms

for Constraint Networks

by

Ying Zhang and Alan K. Mackworth

Technical Report 91-6

May 1991

Department of Computer Science

The University of British Columbia
Vancouver, B. C. V6T 1W5

Canada

email: zhang@cs.ubc.ca, mack@cs.ubc.ca

c1991 Ying Zhang and Alan K. Mackworth

Parallel and Distributed Algorithms

for Constraint Networks

Ying Zhang and Alan K. Mackworth�

Department of Computer Science

University of British Columbia

Vancouver, B.C.

Canada, V6T 1W5
Email: zhang@cs.ubc.ca, mack@cs.ubc.ca

Abstract

This paper develops two new algorithms for solving a �nite constraint satisfac-

tion problem (FCSP) in parallel. In particular, we give a parallel algorithm for the

EREW PRAM model and a distributed algorithm for networks of interconnected pro-

cessors. Both of these algorithms are derived from arc consistency algorithms which

are preprocessing algorithms in general, but can be used to solve an FCSP when it is

represented by an acyclic constraint network. If an FCSP can be represented by an

acyclic constraint network of size n with width bounded by a constant then (1) the

parallel algorithm takes O(logn) time using O(n) processors and (2) there is a map-

ping of this problem to a distributed computing network of poly(n) processors which

stabilizes in O(logn) time.

1 Introduction

A Finite Constraint Satisfaction Problem (FCSP) can be informally described as follows.

Given a set of variables, each with a �nite domain, and a set of constraints, each specifying

a relation on a subset of the variables, �nd the relation on the set of all the variables

�Shell Canada Fellow, Canadian Institute for Advanced Research

1

which satis�es all the given constraints simultaneously. FCSPs are useful abstractions of

many problems in image understanding, planning, scheduling, database retrieval and truth

maintenance [Mac87] [Dec91]. However, it is well known that the FCSP decision problem

is NP -complete. In order to cope with the intractability of FCSPs, two strategies have

been followed: (1) �nding e�cient algorithms for preprocessing, such as arc consistency

[Mac77], path consistency [Mon74] and k-consistency [Fre78] algorithms and (2) exploiting

the topological features of FCSPs to guide e�cient algorithms for solving these problems

[Dec91]. In this paper, we develop an approach to combining these two strategies. We

generalize the binary arc consistency problem [Mac77] to an arc consistency problem on any

constraint network. A class of arc consistency (AC) algorithms, which enforce arc consistency

in a constraint network, will be studied in detail. AC algorithms are preprocessing algorithms

in general, but can be used to solve an FCSP if it is represented by an acyclic constraint

network. The complexity of AC algorithms for solving FCSPs is related to two parameters

of acyclic constraint networks: size and width, which depend only on the topological features

of FCSPs. The width of an acyclic constraint network, which is related to tree-width or

armwidth [Jud90], induced width [DP89] and front length [Sei81], is one of the essential

factors for the complexity. If an FCSP can be represented by an acyclic constraint network

with width bounded by a constant, the problem can be solved in linear sequential time

[MF85] [DP89] [RM89] [Fre90]. We will show that such a problem also has e�cient parallel

algorithms in the PRAM model and the distributed message passing model.

Research on parallel and distributed FCSPs started very recently. Theoretically, Kasif

in [Kas90] [KD91] proved that the arc consistency problem for a binary constraint network

is in NC if the constraint network is acyclic, but P -complete in general. Some work on the

connectionist approach to constraint satisfaction has also been reported [Coo89] [Gue91],

but worst case time is not essentially improved by massive parallelism. In this paper, we

2

generalize Kasif's result on the parallel complexity of the arc consistency problem in acyclic

constraint networks, from width bounded by 2 to width bounded by any constant.

Even though the PRAM model is theoretically elegant for studying parallel complex-

ity, many parallel machines are designed as recon�gurable interconnected processors with

distributed memory. Collin and Dechter in [CD91] gave a distributed computation model

and concluded that a distributed uniform daemon does not work even for a tree-structured

constraint network. In this paper, we use a message passing distributed model and develop a

method for mapping a constraint network to a distributed computing network. A distributed

AC algorithm is discussed in this model. We show that for an acyclic constraint network

of size n with width bounded by a constant (1) if the constraint network can be mapped

to a distributed network whose topology is a tree of bounded degree, then the distributed

computing network can stabilize in O(D) time, where D is the diameter of the distributed

network and (2) there is a mapping of the constraint network to a distributed computing

network consisting of poly(n) processors which stabilizes in O(log n) time.

2 Properties of Constraint Networks

Many problems can be formalized as constraint satisfaction problems, which can be repre-

sented by constraint networks. In this section, we use the Course Scheduling (CS) problem as

an example to illustrate the major ideas. CS is a simpli�ed version of the general timetabling

problems [EIS76] [SS80]. CS(N;n; k) can be informally stated as follows. Given a set of

courses, fc1; c2; : : : ; cNg, each of which can be scheduled in one of k timeslots, and a set of

students, fs1; s2; : : : ; sng, each of whom takes some of the courses, the problem is to �nd a

timetable such that no two courses taken by any student are scheduled in the same times-

lot. We will come back to this example later when we discuss the properties of constraint

networks.

3

Formally, a constraint, written r(R), can be considered as a relation r on a relation scheme

R [Mai83]. A relation scheme R is a set of variables, fv1; v2; : : : ; vkg. Associated with each

variable vi is a domain di. Let d = d1 [d2 : : : [dk. A relation r on a relation scheme R is a

set of mappings, ft1; t2; : : : ; tpg, from R to d, with the restriction that if t 2 r then t(vi) 2 di.

We call r(R) a universal constraint if r includes all the possible mappings from R to d with

that restriction. Projection, join and semijoin are operations de�ned on constraints. Let

r(R) be a constraint and X � R. The projection of r onto X, written �X(r), is a relation

on the relation scheme X, �X(r) = ft(X)jt 2 rg, where t(X) is the mapping restricted to

X. The join operation of two constraints r(R) and l(L), written r 1 l, is a relation on the

relation scheme R [L, r 1 l = ft(R [L)j9tr 2 r; tl 2 l; t(R) = tr(R); t(L) = tl(L)g. The

semijoin operation of r(R) and l(L), written r / l, is a relation on the relation scheme R,

r / l = �R(r 1 l). Projection, join and semijoin are the basic operations in our algorithms.

Any FCSP can be represented by a constraint network. Graphically, a constraint network

is a labelled hypergraph, in which nodes represent variables and arcs represent constraints.

Formally,

De�nition 2.1 Constraint Network CN � hV; dom;A; coni where

� V is a set of variables, fv1; v2; : : : ; vNg.

� Associated with each variable vi is a �nite domain di = dom(vi).

� A is a set of arcs, fa1; a2; : : : ; ang.

� Associated with each arc ai is a constraint ri(Ri) = con(ai).

Let C be the set of constraints of a constraint network CN , C = fcon(ai)jai 2 Ag. The

hypergraph of CN is called the scheme of CN [Dec91], scheme(CN) = fRjr(R) 2 Cg.

4

Clearly, CS can be represented by a constraint network CN with V = fc1; c2; : : : ; cNg,

dom(ci) = f1; 2; : : : ; kg, A = fs1; s2; : : : ; sng, and con(si) = ri(Ri) where Ri is the set of

courses which si takes and ri = ftj8cp; cq 2 Ri; cp 6= cq ! t(cp) 6= t(cq)g.

A solution s of a constraint network CN is a mapping from the set of all variables to their

corresponding domains which satis�es all the given constraints. Formally, s 2 sol(CN) i�

8r(R) 2 C, s(R) 2 r. A constraint network CN isminimal i� 8r(R) 2 C, �R(sol(CN)) = r.

Two constraint networks CN and CN 0 are equivalent, written CN = CN 0, i� V = V 0; dom =

dom0; sol(CN) = sol(CN 0).

A constraint network is a binary constraint network i� 8r(R) 2 C; jRj � 2. Arc consis-

tency in a binary constraint network has been de�ned in [Mac77]. Enforcing arc consistency

in a constraint network CN results in an arc consistent constraint network AC(CN) such

that CN = AC(CN). Various arc consistency (AC) algorithms have been proposed and

analyzed [MF85]. In the rest of this section, we give a generalized de�nition for arc consis-

tency on any constraint network, and discuss the properties of constraint networks and the

relationship between equivalent constraint networks.

The dual network DN of a constraint network CN can be considered as an alternative

representation of an FCSP. DN is a labelled undirectional graph, in which the nodes are

the arcs of CN labelled by constraints. A dual network can be regarded as a binary con-

straint network with constraints of equality. Formally, for any two nodes ai; aj in DN , with

con(ai) = ri(Ri) and con(aj) = rj(Rj), if I = Ri \ Rj 6= ;, then e = (ai; aj) is an edge in

DN . The label of e, denoted L(e), is I. For any ti 2 ri and tj 2 rj , ti and tj are consistent on

e i� ti(L(e)) = tj(L(e)); e is directional arc consistent from ai to aj i� �L(e)(ri) � �L(e)(rj);

e is arc consistent i� e is arc consistent in both directions. A dual network is arc consistent

i� all the edges are arc consistent. We say a constraint network is arc consistent i� its dual

network is arc consistent. Clearly, the de�nition reduces to the de�nition given in [Mac77]

5

for binary constraint networks.

A join network JN of a constraint network is a subnetwork of the dual network DN , with

redundant edges removed. Formally, for any two nodes ai, aj in JN , with con(ai) = ri(Ri),

con(aj) = rj(Rj), and I = Ri \ Rj 6= ;, if there is a path between ai and aj in JN ,

consisting of he1; e2 : : : ; eli, such that 81 � k � l, I � L(ek), then e = (ai; aj) is not an edge

in JN , otherwise e is an edge in JN . A dual network can have many join networks with

di�erent redundant edges removed. Consider a CS example with N = 7, n = 6, k = 4 and

R1 = fc1; c2; c3g; R2 = fc1; c4g; R3 = fc4; c5g; R4 = fc5; c6g; R5 = fc2; c6g; R6 = fc1; c2; c7g.

Figure 1 shows the graphs of the constraint network, the dual network and two of its join

networks for this example.

A join network is arc consistent i� all the edges are arc consistent. Clearly all the join

networks of a dual network are equivalent, in the sense that a dual network is arc consistent

i� any of its join networks is arc consistent. In other words, a constraint network is arc

consistent i� any of its join networks is arc consistent.

If a binary constraint network CN is acyclic, a tree, AC(CN) is a minimal network

[MF85]. Generalizing, we say a constraint network CN is acyclic i� its hypergraph is acyclic,

a hypertree [Mai83] [SS88]. On the other hand, CN is acyclic i� its join networks are trees

[Mai83]. Applying an AC algorithm to any of its join networks results in a minimal constraint

network. In other words, AC(CN) is a minimal constraint network if CN is acyclic.

Since a constraint network CN may not be acyclic in general, as in the example shown

in Figure 1, the solutions for CN can be computed in three steps. First, construct an

acyclic constraint network ACN which is equivalent to CN . Second, enforce arc consistency

in ACN . Third, construct the solutions for AC(ACN). Each solution can be e�ciently

constructed for an acyclic minimal constraint network. The �rst step is called tree clustering.

A tree-clustering scheme TC for a constraint network CN is a set of relation schemes such

6

c1{

4c1c

6cc2

5c 6cc54c

c11c 3cc2c1

c7c1 c21cc1

c2c1{ }
2c{ }

1c{

4c{ } c5{ }

6c{ }}

4c1c

6cc2

5c 6cc54c

c11c 3cc2c1

1cc1 2c1c 7c

1c 2c{ }

c2{ }

c1{

c4 }{ 5c }{

c6{ }}

c1

c2

3c

4c

c5

6c

c7

c1 c4

2c c6

c6c5
c4 5c

1c 2c c3c11c

c7c1 c21cc1

c2c1{ }

c2{ }

2c{ }

1c{

4c{ } c5{ }

6c{ }

}

Two Join Networks

Dual NetworkConstraint Network

}

Figure 1: Constraint Network, Dual Network and Two Join Networks for the CS Example

7

that (1) TC is a hypertree and (2) 8R 2 scheme(CN);9R0 2 TC;R � R0. TC can be

obtained by applying a tree-clustering algorithm [DP89] to scheme(CN). Figure 2 shows

two di�erent tree-clustering schemes for the constraint network given in Figure 1. Given a

c1 1cc3

c2

3c
2c

21 TC = {{c1,c2,c3}, {c1,c4,c5}, {c2,c5,c6}, {c1,c2,c5}, {c1,c2,c7}}TC = {{c1,c2,c3}, {c1,c2,c4,c5,c6}, {c1,c2,c7}}

4c

c5

6c

c7 7c

c6

5c

c4

Figure 2: Tree Clustering Schemes

tree-clustering scheme TC for CN , we can construct ACN for CN as follows. Let ACN �

hV; dom;A[A0; con0i such that 8R0 2 TC and R0 62 scheme(CN);9a0 2 A0; con0(a0) = r0(R0)

is a universal constraint and 8a 2 A; con0(a) = con(a). It is easy to see that (1) ACN = CN

and (2) ACN is an acyclic constraint network. For the CS problem, if TC is TC2 in Figure

2 then A0 = fa1; a2; a3g, with universal constraints con0(a1) = r1(fc1; c4; c5g), con
0(a2) =

r2(fc2; c5; c6g), and con0(a3) = r3(fc1; c2; c5g). A join network for this acyclic constraint

network is shown in Figure 3.

The complexity of the arc consistency problem is related to two parameters of con-

straint networks, size and width. The size of a constraint network is the number of arcs,

size(CN) = jAj. The width of a constraint network is the maximum size of the relation

schemes, width(CN) = maxR2scheme(CN)fjRjg. For the constraint network CN given in Fig-

ure 1, size(CN) = 6; width(CN) = 3. Its acyclic constraint network with tree-clustering

scheme TC1 has size 7, width 5; while its acyclic constraint network with tree-clustering

scheme TC2 has size 9 and width 3. For an acyclic constraint network of size n and width

8

{c c }5 6

54{c c }41{c c }

{c c }2 6

{c c }1 5

52{c c }

21{c c }

{c c }1 2

1cc1 2c1c 7c

c11c 3cc2c1 1cc1c1 c2 5c

1cc1c2 c5 6c

1cc1c1 c4 5c

c1 4c 5cc4

2c c6 c5 6c

Figure 3: Join Network

w, arc consistency in any of its join networks takes O(nl log l) sequential time [DP89] where

l = mw and m = max1�i�Nfjdom(vi)jg. Since w is the only exponential factor, it is critical

for an acyclic constraint network to have small width. Even though �nding a tree-clustering

scheme with minimum width is an NP -complete problem [Fre90], there are many e�cient

algorithms for building sub-optimal tree-clustering schemes [DP89]. Furthermore, in many

cases, the relation schemes are �xed, such as a relational database subjected to repeated

queries, or have a regular topology such as an array, ring or mesh structure. The paral-

lel and distributed AC algorithms assume that the equivalent acyclic network and its join

network are constructed o�ine.

3 Parallel Algorithms and Complexity

Arc consistency on a binary acyclic constraint network is in NC [KD91]. In this section,

we generalize this result to any acyclic constraint network of bounded width. We show

that, given a join network of an acyclic constraint network CN of bounded width, there is

an e�cient parallel AC algorithm which takes O(log n) time using O(n) processors in the

9

EREW PRAM model, where n is the size of CN . One key idea is to apply the parallel tree

contraction and expansion algorithm to the problem. The techniques of tree contraction

and expansion are abstracted from many applications dealing with trees. Tree contraction

reduces a tree to a single node, processing the information on the nodes as they are removed.

Tree expansion is an inverse of contraction, propagating the information from the single

node back to other nodes. It is known that there exist e�cient parallel algorithms for tree

contraction and expansion [MR85] [ADKP89]. We can obtain an e�cient parallel algorithm

for the problem by associating a procedure with each tree contraction and expansion step and

proving that such a procedure executes in parallel quickly. The parallel algorithm is based

on the parallel tree contraction algorithm in [MR85]. The procedures can be associated with

other parallel tree contraction algorithms [ADKP89].

Let T = hA;Ei be a rooted tree with nodes A and edges E. A sequence of nodes a1; : : : ; ak

is called a chain if ai+1 is the only child of ai for 1 � i < k, and ak has exactly one child and

that child is not a leaf. The parallel tree contraction algorithm de�nes two basic contract

operations: RAKE and COMPRESS. RAKE is the operation of removing all leaves from T .

COMPRESS is the operation on T which contracts all the maximal chains of T in half, by

identifying ai with ai+1 for i odd, where ai is a node on a maximal chain. CONTRACT is

the simultaneous application of RAKE and COMPRESS to the entire tree. After dlog5=4 ne

executions of CONTRACT on a tree of n vertices, the tree is reduced to its root [MR85].

The parallel AC algorithm ParAC consists of two phases: ContractAC and ExpandAC.

ContractAC, shown below, iterates tree contraction on a join network that is a rooted tree

T . Semijoin operations are associated with each RAKE; join and projection operations

are associated with each COMPRESS. The algorithm assumes that a tree-structured join

network T = hA;Ei, with constraints associated with A is allocated in common memory.

For a 2 A, let pt(a) be the parent of a. If a has only one child, let cd(a) denote that child. If

10

arg(a) is the number of children of a, let chain(a) be a boolean function de�ned as arg(a) = 1

and arg(pt(a)) = 1. We call p the contracting parent of a, if a is raked from p or a is

compressed to p. Let cp(a) denote the contracting parent of a. Whenever a RAKE operation

removes a leaf node with constraint l(L) from its parent with constraint r(R), a semijoin

r / l is performed and r, the relation on the parent, is updated. Correspondingly for the

COMPRESS operation, suppose ai; ai+1 are two consecutive nodes on a chain and let ai�1 be

the parent of ai and ai+2 be the child of ai+1 with con(ak) = rk(Rk) and Lk = Rk\Rk+1, where

i� 1 � k � i+ 1. Whenever ai is identi�ed with ai+1, an operation �Li�1[Li[Li+1(ri 1 ri+1)

is applied.

Algorithm ContractAC: Tree Contraction Phase

Iterate the following procedure until T is

reduced to a single node, its root:

In Parallel for all a in A\{root}

begin

r(R) := con(a); p(P) := con(pt(a));

if {a has a leaf child} then /* RAKE */

for {each leaf child c with constraint l(L)}

begin

r := r semijoin l; remove c; /* update links of a */

cp(c) := a

end

else if (chain(a)) then /* COMPRESS */

begin /* pt(a) is identified with a */

create a new node a';

c(C) := con(cd(a));

p'(P') := con(pt(pt(a)));

P" := C * R + R * P + P * P';/* + denotes union,* denotes intersection */

p" := project (r join p) on P";

con(a') := p"(P"); pt(cd(a)) := a'; cd(a') := cd(a);

cd(pt(pt(a)) = a'; pt(a') = pt(pt(a));

cp(a) := a'; cp(pt(a)) := a'

end

end

11

{0,5,6,7}

{0,5,7}

{0,4,5}

{0,3,4,5}

{0,5,6,7}

{0,3,4,5}

{0,6,7}

{0,7,8}

{0,8}{7,8}{6,7}

{5,6}

{4,5}

{3,4}

{2,3}

{1,2}{0,1}

{0,7,8}

{0,5,6}

{0,3,4}

{0,2,3}

{0,1,2}{0,1,2}

{0,2,3}

{0,3,4}

{0,4,5}

{0,5,6}

{0,6,7}

{0,7,8}

{0,1} {1,2}

{2,3}

{3,4}

{4,5}

{5,6}

{6,7} {7,8} {0,8}

{0,7,8}

{0,1,2}

{0,2,3}

{0,3,4}

{0,4,5}

{0,5,6}

{0,6,7}

{0,7,8}

{0,1} {1,2}

{2,3}

{3,4}

{4,5}

{5,6}

{6,7} {7,8} {0,8}

{0,7,8}

Figure 4: Tree Contraction Phase

Figure 4 shows the �rst three iterations of applying algorithm ContractAC to a join network,

where shading depicts the removal of a node. It is clear that the number of iterations in

ContractAC is identical to the number needed for CONTRACT.

During the tree contraction phase, links between a contracting parent and its contracted

nodes are established. Let T 0 = hA0; E0i be the join network resulting from applying

ContractAC to T , such that A0 = A [A00 where A00 includes all the nodes created in the

tree contraction phase, and (a; a0) 2 E0 i� a0 = cp(a), i.e., a0 is the contracting parent of a.

The tree expansion phase starts from the root node of T 0 and propagates the solutions from

root to leaves. Initially, the root is marked. Whenever the parent of a node is marked, the

solutions can be computed for the node and then the node is marked.

The parallel AC algorithm ParAC simply applies ContractAC to T and then applies

ExpandAC to T 0.

12

Algorithm ExpandAC: Tree Expansion Phase

marked(root) := 1;

Iterate the following procedure the same number

of times as for ContractAC:

In Parallel for all a in A' \{root} /* at most n nodes at each iteration */

begin

if (marked(cp(a)) then

begin

r(R) := con(a); p(P) := con(cp(a));

r := r semijoin p;

marked(a) := 1

end

Algorithm ParAC: Parallel Arc Consistency

input T, output T":

begin

T' = ContractAC(T);

T" = ExpandAC(T')

end

Theorem 3.1 The result of applying ParAC to T is an arc consistent join network whose

constraint network is minimal and equivalent to the constraint network of T .

Proof: After the tree contraction phase, each edge (a; a0) 2 E0 is directional arc consistent

from a to a0. The tree expansion phase makes each edge in T 0 arc consistent. Since A � A0,

the constraint network with arcs A is arc consistent. On the other hand, the constraints

associated with A0 are derived fromA. So the resulting constraint network of T 00 is equivalent

to the constraint network of T .2

Theorem 3.2 The algorithm ParAC takes O(log n) time using O(n) processors in the EREW

PRAM model, given a join network T of an acyclic constraint network with bounded width.

13

Proof: If the join network T is not of bounded degree, it can be represented by a binary tree

with at most twice as many nodes. Such a transformation takes O(log n) time in parallel

[MR85]. So let T be a binary tree join network. Let w be the width of the acyclic constraint

network represented by T . It is clear that RAKE does not change any of the relation schemes.

After each COMPRESS operation, relation schemes are updated to Li�1 [Li [Li+1. But

jLij is always bounded by w, for all i, during the whole process. So the size of all relation

schemes in T 0 is bounded by 3w. We also notice that since T is a binary tree, RAKE can

be done in constant time at each iteration. Thus the operations take constant time at each

iteration of contraction. The total number of iterations is dlog5=4 ne. At each iteration, there

are at most n nodes which require at most n processors. For the tree expansion phase, the

tree sequence is the inverse of the sequence for tree contraction. There are no more than a

bounded number of processors reading from the same memory location at any time. 2

The procedures associated with RAKE and COMPRESS for arc consistency can be asso-

ciated with other parallel tree contraction algorithms. By associating semijoin with PRUNE

and associating join and projection with BYPASS in the algorithm given by [ADKP89], arc

consistency for an acyclic constraint network of bounded width can be done optimally in

O(log n) time using O(n= log n) processors in an EREW PRAM.

4 Distributed Algorithms and Complexity

In the real world, many parallel machines are recon�gurable interconnected processors with

distributed memory and asynchronous control. We de�ne MPD as a Message Passing Dis-

tributed model:

De�nition 4.1 MPD model Each processor has a set of input and output ports. A pro-

cessor can receive and send one message of bounded size, and perform one operation on

operands of bounded size in its local memory at each step. The network consists of a set of

14

processors connected by channels with any �xed topology. Communication is asynchronous

with unbounded bu�ers and there is no cost for message passing.

Let si be a state of processor i. The state of a distributed computing network of n processors

is de�ned as hs1; s2; : : : ; sni. A stable state S of a network has the following property: if there

is a time t at which S is the state then for all t0 > t S is the state. A distributed algorithm

on a network is stable if the network always achieves a stable state. The time complexity of

a distributed algorithm is de�ned as the longest time required to achieve a stable state from

any initial state.

The distributed constraint satisfaction algorithm DistAC is essentially the distributed

version of ParAC. Let the nodes and edges of a join network JN of a constraint network CN

map to processors and bidirectional channels in a distributed computing network, respec-

tively. The algorithm is uniform: all processors have the same program. Let r(R) be the

local constraint and propagate be a subroutine for propagating the local constraint to its

neighbors.

propagate:

for {each channel c} send r(R) to c

Algorithm DistAC:

propagate;

loop

begin

s := r;

for {each channel c}

if {there is a message at channel c}

begin

receive r1(R1) from c;

s := s semijoin r1;

end

if s =\= r then

begin r := s; propagate end

end

15

The following propositions characterize DistAC.

Proposition 4.1 DistAC is a stable distributed algorithm.

Proof: This is obvious since semijoin is a monotone decreasing function on the size of the

relations and the relations are initially �nite.2

Proposition 4.2 If the width of constraint network CN is bounded by a constant, the com-

plexity of DistAC is O(n), where n = size(CN).

Proof: In this case, the number of mappings in each relation is bounded by a constant K.

So the total number of states is bounded by Kn. Therefore in O(n) time the network will

achieve a stable state. 2

Proposition 4.3 A join network JN is arc consistent i� the distributed network of JN is

stable.

Proof: Obvious. 2

It is clear that if a constraint network CN is acyclic, AC(CN) is minimal i� its corre-

sponding distributed network is stable. On the other hand, such a distributed network tends

to stabilize more quickly than arbitrary networks.

Proposition 4.4 If JN is a join network of an acyclic constraint network of bounded width

and JN is of bounded degree, the complexity of DistAC is �(D) where D is the diameter of

JN .

Proof: Let the degree of JN be bounded by K. Consider K time steps as one big time step.

After l big steps, any node may be a�ected by nodes at distance l. Since there is a unique

path between any pair of nodes in a tree, a node can only be a�ected by some other node

once. No node can be a�ected by any other node after D big steps. So KD is the upper

16

bound. And it is obvious that D is the lower bound, since two nodes at distance D may

a�ect each other. 2

If the join network of an acyclic constraint network is of unbounded degree, we can trans-

form the join network to a binary tree join network which can be mapped to a distributed

network. Furthermore, it is easy to see that if the join network happens to be a balanced

tree, then D = O(log n). However in many cases, a join network may be very unbalanced,

with D =
(n). The following theorem shows that for any FCSP, if it can be represented

by an acyclic constraint network ACN of size n and bounded width, then we can �nd a

balanced binary tree join network, such that its acyclic constraint network, with size poly(n)

and bounded width, is equivalent to ACN .

Theorem 4.1 Let n and w be the size and width of an acyclic constraint network ACN .

One can construct a balanced binary tree join network such that its acyclic constraint network

ACN 0
is equivalent to ACN with size(ACN 0) = poly(n) and width(ACN 0) � 3w.

Proof: Let JN be the join network of ACN and JN 00 be the binary tree representation of

JN and ACN 00 be the acyclic constraint network of JN 00. Let n00 and w00 be the size and

width of ACN 00. It is clear that n00 � 2n and w00 = w. Let L and R be relation schemes.

The following recursive algorithm BT (T;L;R) takes a binary tree join network T as input

and returns the balanced binary tree join network.

If T has only one node, return T . Otherwise do the following. First, �nd an edge in T

which is a \1/3 { 2/3" separator, i.e., it cuts the binary tree into two subtrees T1 and T2

with both sizes in the range of [1=3nT ; 2=3nT], where nT is the number of nodes in T . Let

BT (T1; L;M) and BT (T2;M;R) be results of applying this algorithm recursively to T1 and

T2 respectively, whereM is the label of the separator. Then create a node C with a universal

constraint on relation scheme L[M [R. Finally create a tree with C as root, BT (T1; L;M)

and BT (T2;M;R) as the left and right children of C, and return C.

17

Let JN 0 = BT (JN 00; ;; ;) be the result of applying the above algorithm to JN 00. Let

ACN 0 be the acyclic constraint network of JN 0. Since the height of JN 0 is log3=2(n
00), there

are at most 2log3=2(n
00) nodes, i.e., size(ACN 0) = poly(n). Since all jLj, jM j and jRj are

bounded by w, width(ACN 0) is bounded by 3w. 2

Thus, enforcing arc consistency in an acyclic constraint network of size n with bounded

width takes O(log n) time in a network of poly(n) processors.

5 Conclusions

We have presented parallel and distributed algorithms for FCSPs. The analysis shown that

for an FCSP that can be represented by an acyclic constraint network of bounded width,

there are e�cient algorithms in both parallel and distributed environments. The bounded

width property of acyclic constraint networks characterizes a set of tractable FCSPs as well

as e�ciently parallelizable FCSPs. It is not generally true that a problem solvable in linear

sequential time also has an e�cient parallel algorithm, but it does happen to be the case for

FCSPs.

Acknowledgements

We wish to thank Feng Gao, Nick Pippenger and Runping Qi for valuable suggestions

and comments. The �rst author is supported by the University Graduate Fellowship from

University of British Columbia. This research was supported by the Natural Sciences and

Engineering Research Council and the Institute for Robotics and Intelligent Systems.

18

References

[ADKP89] K. Abrahamson, N. Dadoun, D.G. Kirkpatrick, and T. Przytycka. A simple

parallel tree contraction algorithm. Journal of Algorithms, 10:287{302, 1989.

[CD91] Z. Collin and R. Dechter. Distributed solution to the network consistency prob-

lem. In AAAI-91 Spring Symposium on Constraint-Based Reasoning, pages 174

{ 181, 1991.

[Coo89] P. R. Cooper. Parallel object recognition from structure. Technical Report 301,
Computer Science, University of Rochester, July 1989.

[Dec91] R. Dechter. Constraint networks: A survey. In S. Shapiro, editor, Encyclopedia

of Arti�cial Intelligence. Wiley, N.Y., 1991. (to appear).

[DP89] Rina Dechter and Judea Pearl. Tree clustering for constraint networks. Arti�cial

Intelligence, 38(3):257{388, April 1989.

[EIS76] S. Even, A. Itai, and A. Shamir. On the complexity of timetable and multicom-

modity ow problems. SIAM J. Computer, 5(4):691 { 703, 1976.

[Fre78] E. C. Freuder. Synthesizing constraint expressions. Communications of the ACM,
21(11), November 1978.

[Fre90] E. C. Freuder. Complexity of k-tree structured constraint satisfaction problems.
In Proceeding of AAAI-90, 1990.

[Gue91] H. W. Guesgen. Connectionist networks for constraint satisfaction. In Proc. 1991
Spring Symposium on Constraint-Based Reasoning, pages 182 { 191, 1991.

[Jud90] J. S. Judd. Neural Network Design and the Complexity of Learning. MIT Press,

1990.

[Kas90] S. Kasif. On the parallel complexity of discrete relaxation in constraint satisfac-

tion networks. Arti�cial Intelligence, 45:275{286, 1990.

[KD91] S. Kasif and A. L. Delcher. Analysis of local consistency in parallel constraint

satisfaction networks. In Proc. AAAI Symposium on Constraint Based Reasoning,

Stanford, pages 154 { 163, 1991.

[Mac77] A. K. Mackworth. Consistency in networks of relations. Arti�cial Intelligence,

8(1):99{118, 1977.

[Mac87] A. K. Mackworth. Constraint satisfaction. In S. Shapiro, editor, Encyclopedia of

Arti�cial Intelligence, pages 205 { 211. Wiley, N.Y., 1987.

19

[Mai83] D. Maier. The Theory of Relational Databases. Computer Science Press, 1983.

[MF85] A. K. Mackworth and E. C. Freuder. The complexity of some polynomial net-
work consistency algorithms for constraint satisfaction problems. Arti�cial In-

telligence, 25(1):65 { 74, 1985.

[Mon74] U. Montanari. Networks of constraints: Fundamental properties and applications

to picture processing. Information Science, 7:95{132, 1974.

[MR85] G. L. Miller and J. H. Reif. Parallel tree contraction and its application. In Proc.

26th Annual IEEE Symp. on Foundations of Comp. Sci., pages 478{489, 1985.

[RM89] F. Rossi and U. Montanari. Exact solution in linear time of networks of con-

straints using perfect relaxation. In Proceedings First int. Principles of Knowl-

edge Representation and Reasoning, Toronto, Ontario, Canada, pages 394{399,

May 1989.

[Sei81] R. Seidel. A new method for solving constraint satisfaction problems. In Pro-

ceeding of IJCAI-81, pages 338{342, 1981.

[SS80] G. Schmidt and T. Strohlein. Timetable construction { an annotated bibliogra-
phy. Computer Journal, 23(4):307 { 316, 1980.

[SS88] G. Shafer and P. P. Shenoy. Local computation in hypertrees. Technical report,
School of Business, University of Kansas, August 1988. Working paper 201.

20

