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Abstract

The development of autonomous agents, such as mobile robots and software agents,
has generated considerable research in recent years. Robotic systems, which are usu-
ally built from a mixture of continuous (analog) and discrete (digital) components, are
often referred to as hybrid dynamical systems. Traditional approaches to real-time hy-
brid systems usually define behaviors purely in terms of determinism or sometimes
non-determinism. However, this is insufficient as real-time dynamical systems very
often exhibit uncertain behaviour. To address this issue, we develop a semantic model,
Probabilistic Constraint Nets (PCN), for probabilistic hybrid systems. PCN captures
the most general structure of dynamic systems, allowing systems with discrete and
continuous time/variables, synchronous as well as asynchronous event structures and
uncertain dynamics to be modeled in a unitary framework. Based on a formal mathe-
matical paradigm uniting abstract algebra, topology and measure theory, PCN provides
a rigorous formal programming semantics for the design of hybrid real-time embedded
systems exhibiting uncertainty.



1 Introduction

Dynamical systems are defined on time structures and domain structures. Both of
which can be either discrete or continuous. A hybrid dynamical system is a dynamical
system composed of a combination of discrete and continuous time and domain struc-
tures. A robotic system consisting of a computer-controlled robot coupled to a contin-
uous environment is an example of a hybrid dynamical system. Zhang and Mackworth
proposed a formal framework for deterministic hybrid systems called Constraint Nets
(CN) [19]. Although their paradigm allows for the modeling of non-deterministic sys-
tems through hidden inputs, it does not permit the specification of uncertainty in the
system. However, real-time dynamical systems very often behave unpredictably and
thus exhibit (structured) uncertainty. It is therefore important to be able to model and
analyze real-time probabilistic systems.

In this paper we introduce a sound mathematical framework for the modeling
of probabilistic hybrid dynamical systems that we call Probabilistic Constraint Nets
(PCN). PCN provides a model that is formal and general, modular and composite, pow-
erful and practical. Moreover, PCN has a graphical representation which simplifies the
modeling task. Based on algebraic, topological and measure-theoretic structures of
dynamics, the PCN framework extends the CN paradigm to allow the user to model
uncertainty in the dynamics of the system and in the environment. We will introduce
the syntax of the modeling language along with its semantics which leads to a fixpoint
in distribution.

However, before introducing the syntax of our framework, we present an exam-
ple of a basic dynamical system that we will use throughout this paper. Consider
the discrete time dynamical system corresponding to the following recursive function:
f(t + 1) = 0.5f(t)+ Y (ω), f(0) = 0, where Y (ω) : Ω → {1, 2} is a random variable
with a discrete uniform distribution over the set {1, 2}. The PCN graphical representa-
tion of this system is depicted in Figure 1. This system will serve as a running example
throughout this paper. Figure 1 will be explained when we introduce the PCN syn-
tax in Section 3. We will also use this example to illustrate the semantics of the PCN
framework in Section 4.

2 Mathematical Foundations

In this section, we present the essential mathematical concepts needed to understand
the theoretical results for the semantics of the PCN framework. We assume the reader
is familiar with topology and measure theory concepts that can be found in [3, 5] and
in the first author’s dissertation [15].

As we are interested in modeling dynamical systems, a model of time and its evo-
lution is necessary. In fact, a clear notion of the concept of time is central to under-
standing dynamics. We formalize time using an abstract structure that captures its most
important properties. In general, a time structure can be considered as a totally ordered
set with an initial start time, an associated metric for “the distance between any two
time points” and a measure for “the duration of an interval of time.” Formally, we
define the concept of time structure as follows.
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Figure 1: Simple Transduction with uncertainty

Definition 2.1 (Time structure) A time structure is a triple 〈T , d, μ〉1 where

• T is a linearly ordered set 〈T ,≤〉 with 0 as the least element;

• 〈T , d〉 forms a metric space with d as a metric satisfying: for all t0 ≤ t1 ≤ t2,

d(t0, t2) = d(t0, t1) + d(t1, t2),

{t|m(t) ≤ τ} has a greatest element and {t|m(t) ≥ τ} has a least element for
all 0 ≤ τ < sup{m(t)|t ∈ T } where m(t) = d(0, t);

• 〈T , σ, μ〉 forms a measure space with σ as the Borel set of topological space
〈T , d〉 and μ as a Borel measure satisfying μ([t1, t2)) ≤ d(t1, t2) for all t1 ≤ t2
where [t1, t2) = {t|t1 ≤ t < t2} and μ([t1, t2)) = μ([0, t2)) − μ([0, t1)).

As with time, we formalize domains as abstract structures so that discrete and con-
tinuous domains are defined uniformly. A domain can be either simple or composite.
Simple domains denote simple data types, such as reals, integers, Booleans and charac-
ters; composite domains denote structured data types, such as arrays, vectors, strings,
objects, structures and records.

Definition 2.2 (Simple domain) A simple domain is a pair 〈A ∪ {⊥A}, dA〉 where A
is a set, ⊥A 
∈ A means undefined in A, and dA is a metric on A.

Let A = A ∪ {⊥A}. For simplicity, we will use A to refer to simple domain 〈A, dA〉
when no ambiguity arises. For example, let R be the set of real numbers, R is a simple
domain with a connected metric space; let B = {0, 1}, B is a simple domain with a
discrete topology on B.

1To abbreviate the notation, we will simply use T to refer to the time structure 〈T , d, μ〉 when no ambi-
guity arises.
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Any simple domain A is associated with a partial order relation ≤A . 〈A,≤A〉 is
a flat partial order with ⊥A as the least element. In addition, A is associated with a
derived metric topology τ = τA ∪ {A} where τA is the metric topology on A derived
from the metric dA.

A domain is defined recursively based on simple domains.

Definition 2.3 (Domain) 〈A,≤A, τ〉, with ≤A as the partial order relation and τ as
the derived metric topology, is a domain2 iff:

• it is a simple domain; or

• it is a composite domain, i.e., it is the product of a family of domains {〈A i,≤Ai

, τi〉}i∈I such that 〈A,≤A〉 is the product partial order of the family of partial
orders {〈Ai,≤Ai〉}i∈I and 〈A, τ〉 is the product space of the family of topologi-
cal spaces {〈Ai, τi〉}i∈I .

We take a signature as a syntactical structure of a class of multi-sorted domains
with associated functions defined on these domains. Let Σ = 〈S, F 〉 be a signature
where S is a set of sorts and F is a set of function symbols. F is equipped with a
mapping type: F → S∗ × S where S∗ denotes the set of all finite tuples of S. For
any f ∈ F , type(f) is the type of f . We use f : s∗ → s to denote f ∈ F with
type(f) = 〈s∗, s〉. For example, the signature of an algebra on the Naturals can be
denoted by ΣN = 〈N, {0, +,−,×}〉. This signature has only one sort, N, with 4
different function symbols.

A domain structure of a signature is defined as follows. Let Σ = 〈S, F 〉 be a
signature. A Σ-domain structure A is a pair 〈{As}s∈S , {fA}f∈F 〉 where for each
s ∈ S, As is a domain of sort s, and for each f : s∗ → s ∈ F with s∗ : I → S
and s ∈ S, fA : ×IAs∗

i
→ As is a function denoted by f , which is continuous in the

partial order topology. For example, 〈N, {0, +,−,×}〉 is a ΣN structure where +,−
and × are addition, subtraction and multiplication, respectively.

With any time structure and domain structure, we can define two basic elements
in probabilistic dynamical systems: stochastic traces, which are functions of time
and sample space Ω, and transductions, which are mappings from stochastic traces
to stochastic traces.

Stochastic traces are a central notion in representing the dynamical behaviour of
the systems modeled within the PCN framework. A stochastic trace intuitively denotes
the (random) changes of values over time. Formally, a stochastic trace is a mapping
v : Ω × T → A from sample space Ω and time domain T to value domain A. For a
given ω ∈ Ω, the function vω : T → A is simply called a trace. In the literature, a
trace is often referred to as a sample function, a realization, a trajectory or a path of
the underlying stochastic process. We will use v to denote both the stochastic trace v
or one of its realization traces vω when it is clear from the context and no ambiguity
arises.

A stochastic trace v is well-defined iff v(ω, t) is well-defined for all (ω, t) ∈ Ω×T .
A stochastic trace v is undefined iff v(ω, t) is undefined for any (ω, t) ∈ Ω × T . For
example, denote a Brownian motion process by B t(ω) and T = R

+ and A = R. Then

2For simplicity, we will use A to refer to domain 〈A,≤A, τ〉 when no ambiguity arises.
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v = λω, t.Bt(ω) is a well-defined stochastic trace. For a fixed ω in Ω, vω = λt.Bt(ω)
represents a path of the Brownian motion process. On the other hand, v 1 = λt. cos(t)
and v2 = λt.e−t are well-defined deterministic traces, i.e., stochastic traces for which
|Ω| = 1.

Due to the fact that physical systems encompass uncertainty, one is often more
interested in the distribution of the set of all execution traces of system rather than in
one specific execution trace.

One important feature of a trace is that it provides complete information about
the current execution of the system of interest at every time point. In the presence of
uncertainty, the limiting value of a specific execution trace vω is of little interest since
the measure of that trace is typically zero. The distribution of a stochastic trace, on
the other hand, provides complete information about the probability of the state of the
system at every finite time point.

A transduction is a mapping from input stochastic traces to output stochastic traces
that satisfies the causal relationship between its inputs and outputs, i.e., the output
value at any time depends only on inputs up to and including that time. The causal
relationship stipulates that the evolution of the system cannot be dictated by the future
state of the system, but only by past and present values. Formally, causality can be
defined as follows

Definition 2.4 (Causality via Ft-adaptedness) Assume {Ft}t≥0 to be an increasing
family of σ-algebra of subsets of AΩ×T . A mapping F (v)(ω, t) : AΩ×T → A′Ω×T ′

is causal if F (v)(ω, t) is Ft-adapted. A causal mapping on stochastic trace spaces is
called a transduction.

Primitive transductions are defined on a generic time structure T and are functional
compositions of three types of basic transduction: generators, transliterations and de-
lays.

Definition 2.5 (Generator) Let A be a domain, Ω be a sample space and T a time
structure. Moreover, let FX|A denote the (potentially conditional) cumulative distribu-
tion function for the random variable X . A generator G A

T (v0) : Ω × T × A → A is a
basic transduction defined as

G A
T (v0, FX)(v) = λω, t.

{
v0 if t = 0
rand(FX|v(ω,t)(t), ω) else

where rand(FX|A, ·) is a random number generator associated with FX|A.

We allow the distribution function FX|A to be conditioned on t and values of the
systems to produce a general model of uncertainty. This enables the user to model
systems where the uncertainty component is non-stationary and conditioned on the
state of the system. Also note that in this paper, we are not interested in the simulation
of random variables per se, but rather in the analysis of the resulting models. Hence,
we will assume that we are given, for each generator included in the model, appropriate
random number generators [1, 4, 7, 8].
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Definition 2.6 (Transliteration) A transliteration is a pointwise extension of a func-
tion. Formally, let f : Ω × A → A′ be a function and T be a time structure. The
pointwise extension of f onto T is a mapping fT : AΩ×T → A′Ω×T satisfying
fT (v) = λω, t.f(v(ω, t)).

By this definition, (f ◦ g)T = fT ◦ gT . We will also use f to denote transliteration
fT if no ambiguity arises.

Intuitively, a transliteration is a transformational process without memory or in-
ternal state, such as a combinational circuit. Note that in the absence of any random
variable within the transliteration, the transformational process is simply a determinis-
tic function of the current input.

Now let us present the last type of basic transduction: delays. There are two types
of delay: unit delays and transport delays.

For a given trace, a unit delay δA
T (ω, v0) acts as a unit memory for data in domain

A, given a discrete time structure. We will use δ(v0) to denote unit delay δA
T (ω, v0) if

no ambiguity arises.

Definition 2.7 (Unit delay) Let A be a domain, v0 a well-defined value in A, and T
a discrete time structure. A unit delay δA

T (ω, v0) : AΩ×T → AΩ×T is a transduction
defined as

δA
T (ω, v0)(v) = λt.

{
v0 if t = 0
v(ω, pre(t)) otherwise

where v0 is called the initial output value of the unit delay.

However, in the presence of non-discrete time structures, unit delays may not be
meaningful. Hence we need a transduction that is suitable for more general time struc-
tures.

Definition 2.8 (Transport delay) Let A be a domain, v0 a well-defined value in A, T
a time structure and τ > 0. A transport delay ΔA

T (τ)(ω, v0) : AΩ×T → AΩ×T is a
transduction defined as

ΔA
T (τ)(ω, v0)(v) = λt.

{
v0 if m(t) < τ
v(ω, t − τ) otherwise

where v0 is called the initial output value of the transport delay and τ is called the time
delay.

We will use Δ(τ)(v0) to denote transport delay ΔA
T (τ)(ω, v0) if no ambiguity arises.

Transport delays are essential for modeling sequential behaviors in dynamical systems.
With preliminaries established, we define an abstract structure of dynamics.

Definition 2.9 (Σ-dynamics structure) Let Σ = 〈S, F 〉 be a signature. Given a Σ-
domain structure A and a time structure T , a Σ-dynamics structure D(T , A) is a pair
〈V ,F〉 such that

• V = {AΩ×T
s }s∈S ∪EΩ×T where AΩ×T

s is a stochastic trace space of sort s and
EΩ×T is the stochastic event space;
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• F = FT ∪ F◦
T where FT is the set of basic transductions, including the set

of transliterations {fA
T }f∈F , the set of unit delays {δAs

T (vs)}s∈S,vs∈As , the
set of transport delays {ΔAs

T (τ)(vs)}s∈S,τ>0,vs∈As , and the set of generators
{G As

T }s∈S; F◦
T is the set of event-driven transductions derived from the set of

basic transductions, i.e., {F ◦|F ∈ FT }.

3 Syntax of PCN

A probabilistic constraint net consists of a finite set of locations, a finite set of trans-
ductions and a finite set of connections. However, in order to be able to handle the
uncertainty in the systems that we model, we add an essential component: the gener-
ator. A generator acts as a random number generator, following a given probability
distribution and inducing a random location as its output. Thus, in practice, generators
can be represented as discrete (e.g. Poisson, uniform) or continuous (Gaussian, expo-
nential) probability distributions although we will use a general (and formal) measure
theoretic definition.

Definition 3.1 (Probabilistic Constraint Nets) A probabilistic constraint net is a tu-
ple PCN = 〈Lc, Td, Cn〉, where Lc is a finite set of locations, each associated with
a sort; Td is a finite set of labels of transductions (either deterministic or probabilis-
tic), each with an output port and a set of input ports, and each port is associated
with a sort; Cn is a set of connections between locations and ports of the same sort,
with the restrictions that (1) no location is isolated, (2) there is at most one output
port connected to each location, (3) each port of a transduction connects to a unique
location.

Intuitively, each location is of fixed sort; a location’s value typically changes over
time. A location can be regarded as a wire, a channel, a variable, or a memory cell. An
output location of a generator will be viewed as a random variable.

Each transduction is a causal mapping from inputs to output over time, operating
according to a certain reference time or activated by external events. Note that proba-
bilistic transductions are built of at least one basic generator transduction. Every gen-
erator is associated with a given probability distribution, either discrete or continuous,
thus the sort of the output of a probabilistic transduction is the sort of its probability
distribution.

Connections link locations with ports of transductions. A clock is a special kind
of location connected to the input event port of event-driven transductions. We will
introduce the notion of event-driven transduction in Section 5.

A location l is called an output location of a PCN iff l connects to the output port of
a transduction in Td; otherwise, since isolated locations are not allowed it is an input
location. We will use the notation I(PCN) and O(PCN) to denote the set of input
and output locations of a probabilistic constraint net PCN . A probabilistic constraint
net is open if there exists at least one input location, otherwise it is said to be closed.

Another feature of our framework is its graphical representation. A PCN can be
represented by a bipartite graph where locations are depicted by circles, transductions
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Figure 2: Gaussian probability distribution as a Generator and random location.

by boxes, generators by double boxes and connections by arcs. To differentiate them
from deterministic locations, we depict random locations with double circles.

Most commonly used families of probability distributions are parameterized, i.e.,
one can fully specify a probability distribution by giving values to the parameters of
the family. The ability of generators to be dependent on certain locations of the model
also greatly simplifies the design task when modeling a complex system for which the
various uncertain inputs are not fully known. Indeed, specifying the parameters of a
probability distribution is often hard and counter-intuitive. Therefore, a designer could
set the parameters of the distribution to some default location value, and then, as the
system evolves, learn the values of the parameters of the distribution, thus updating
their values as a better estimate is being learned. For example, to model sensor noise
with a PCN generator following a Gaussian probability distribution on the discrete
time structure T = N, one would simply need to connect the inputs of the generator
to the locations holding the static values of the mean μ and the variance σ 2 to generate
samples from the Gaussian distribution at every time point in T (see Figure 2).

To exemplify the graphical syntax of PCN further, let us return to the PCN of
Figure 1. In this PCN model, there are three locations (x ′, x and y), one transduction,
one generator and one unit delay. The transduction f(x, y) is a transliteration with two
inputs, namely x and y. The unit delay δ(0) is introduced to eliminate an algebraic
loop and the generator Fy follows a discrete uniform distribution over the set {1, 2}.
Hence, the output of the transduction would be a random sequence of values where the
value at time t+1 would be half of the value at time t added to either 1 or 2, with equal
probability. A possible execution trace resulting from this transduction on T = N is
{0, 1, 2.5, 3.25, 2.625, . . .}. This trace has a measure of 0.0625.

4 Semantics of PCN

We have briefly introduced the syntax of the probabilistic constraint nets model, which
has the useful properties of being graphical and modular. However, the syntax does
not provide a meaning for the model. Indeed, there are multiple models with similar
syntax to probabilistic constraint nets (Petri Nets [13] and their generalization Coloured
Petri Nets [6] for example) that have completely different interpretations. Therefore,
it is necessary to have a formal semantics of probabilistic constraint nets in order to
correctly interpret models of complex physical systems.
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Figure 3: Simple PCN for a probabilistic sum.

The fixpoint theory of partial order has been used as a semantical model for pro-
gramming languages and models [5]: in this case, a program (or a model) defines a
function f and its semantics are defined to be the least solution of x = f(x), or the
least fixpoint of f . A similar approach was developed to provide a fixpoint semantics
for the Constraint Net model [19]. However, even though our framework is similar
to that of Constraint Nets, the semantics of PCN differ significantly from that of CN,
because we have introduced uncertainty into the set of equations induced by the PCN
model. Hence, a probabilistic constraint net is a set of equations with locations serving
as variables. Some of the variables (locations) in the equations, those that are outputs of
generators, are in fact random variables, obeying some probability distribution, which
in turn affect the value of the transductions for which they are inputs. Transductions
play the role of functions and the connections between locations and transductions gen-
erate a set of equations. Obviously, the semantics of a PCN should be a solution to this
set of equations containing random variables. Figure 3 demonstrates the effect of ran-
dom locations on the transductions. Transduction Add is a very simple transliteration
representing the sum of two (probabilistic) inputs X and Y . It is easy to notice that the
output value for this transliteration also follows a probability distribution. In this case,
there are 4 possible values which each have different likelihood of occurrence. One
should note that although the distribution of a random variable is helpful in reasoning
about its behaviour, one can reason about statistics such as the expected value, that is,
one can redefine the notion of behavior in terms of average behavior for the system. In
our simple example, we can see that the average output value of the system is 9.25.

Since the equations in a PCN model do not converge to a fixpoint but rather to a
stationary distribution, the fixpoint theory of partial order cannot be utilized directly to
provide a denotational semantics for PCN. In fact, in the presence of uncertainty in the
system, the least solution of an equation with random variables is a Markov stochastic
process [10].

To further illustrate the difference between the semantics of a deterministic system
(CN) and one encompassing uncertainty (PCN), let us compare two dynamical systems
with nominal component

Ẋt = −Xt(Xt − 1)(Xt − 2).
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Figure 4:
(a) ODE: Ẋt = −Xt(Xt − 1)(Xt − 2); X0 = −1 and X0 = 1.5

(b) SDE: Ẋt = −Xt(Xt − 1)(Xt − 2) + Nt; X0 = −2

The first one is deterministic and has two distinct stable attractors (equilibria), 3 at 2
and at 0, as shown in Figure 4(a). The behaviour of this system is fully determined by
its initial value and it reaches one of the two stable fixpoints based on this initial value.

The second system, which cannot be modeled with a constraint net, is stochasti-
cally affected by a simple Brownian motion process. A sample path for this system,
for an initial value of X0 = −2, is shown in Figure 4(b). For this specific realization,
the system is initially attracted toward the closest equilibrium which is at X = 0. The
system then fluctuates around this attractor, reacting under the influence of the Brow-
nian motion component and, around time t = 12, a large enough noise disturbance
pushes the system over the value of 1, causing the system to be attracted toward the
other equilibrium, at X = 2. Another spike of noise flips the system back to the lower
equilibrium at t = 35 and so on. This example shows the effect of uncertainty on the
system and its behaviour.

In this case, there is no fixpoint for this realization nor for the full system. For a set
of sample paths with non-zero measure, the system will keep moving back and forth
between the two stable equilibria as it is affected by the noise introduced by the Brow-
nian motion component of the equation. However, the system will reach a stationary
distribution. That is, in the long run, the probability distribution of the system will
remain unchanged, independent of time. The corresponding density function for this
distribution is shown in Figure 5. One can clearly observe that the system is symmetri-
cally distributed with higher weight around the two stable equilibria located at X = 0
and X = 2. One should note that if the effect of the Brownian noise is diminished, the
peaks at X = 0 and X = 2 rise or fall (depending on the starting value) as the noise
is less likely to cause a jump large enough to cause the other equilibrium to become
the main attractor. Letting the effect of the noise converge to zero would lead to the
deterministic case as presented in Figure 4(a), that is, the stationary distribution would

3There are in fact three different equilibria, at 0, 1 and 2 respectively. However, the equilibrium at 1 is
unstable. Any shift in value will cause the system to move away from this unstable equilibrium and move
towards one of the other two stable equilibria.
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Figure 5: Density of dX = −X(X − 1)(X − 2)dt + dBt.

be degenerate everywhere except at the equilibrium corresponding to the initial value
of the system. Hence a deterministic system is in fact a special case of the more general
stochastic system.

We define the semantics for the Probabilistic Constraint Net model to be the least
fixpoint of the distribution of the solution to the set of equations of the PCN model.
These semantics are, as it was mentioned in the previous paragraph, applicable to any
system, whether it be stochastic or deterministic.

4.1 Fixpoint in distribution of partial orders

The fixpoint theorems used here are for complete partial orders (cpo’s). Continuous
functions are functions which are continuous in partial order topologies. A fixpoint in
the distribution of a function f can be considered as a solution of the equation x =
f(x), where f(·) is an stochastic function. The least fixpoint is the least element in the
fixpoint set.

Definition 4.1 (Fixpoint in distribution and Least fixpoint) Let f : Ω × A → A be
a function on a sample space Ω and a partial order A. A function g : Ω × A → A
is a fixpoint in distribution of f iff the distribution of g is a stationary distribution for
f . It is the least fixpoint in distribution of f iff, in addition, Fg ≤ Fg′ for every other
function g′ which is a fixpoint in distribution of f .

Least fixpoints in distribution, if they exist, are unique. The least fixpoint in distribution
of f will be denoted by μ.Ff .

Based on the above definition, we can state our first fixpoint in distribution theorem
as follows. The proofs of the following two theorems are shown in the Appendix A.

Theorem 4.1 (Fixpoint Theorem I). Let A be a cpo and assume that either A is also
a total order or that the set of distributions over A is a cpo and the function over
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distributions is continuous. Then, every continuous function f : Ω × A → A or
pathwise continuous function fω : A → A (for a fixed ω ∈ Ω) has a least fixpoint in
distribution.

We now present our second fixpoint in distribution theorem which is applicable to
a function of two arguments.

Theorem 4.2 (Fixpoint Theorem II) Let A and A′ be two cpos and assume that either
A, A′ are also total orders or that the set of distributions over A ′ is a cpo and the
function over distributions is continuous. If f : Ω × A × A ′ → A′ is a continuous
function, then there exists a unique continuous function μ.f : Ω × A → A ′, such
that for all a ∈ A, the distribution of (μ.f)(a) is the least fixpoint in distribution of
λω, x.fω(a, x).

Formally, a set of equations can also be written as �o = �f(�ω,�i, �o) where�i is a tuple
of input variables and �o is a tuple of output variables. Based on our previous results, if
�f is continuous, then its least fixpoint in distribution is a continuous function, denoted
μ.�f .

4.2 Semantics of Probabilistic Constraint Nets

In this section, we define the fixpoint in distribution semantics of probabilistic con-
straint nets. Let Σ = 〈S, F 〉 be a signature and c ∈ S be a special sort for clocks. A
probabilistic constraint net with signature Σ is a tuple PCNΣ = 〈Lc, Td, Cn〉 where

• each location l ∈ Lc is associated with a sort s ∈ S, the sort of location l is
written as sl;

• each transduction F ∈ Td is a basic transduction or an event-driven transduction,
the sorts of the input and output ports of F are as follows:

1. if F is a transliteration of a function f : s∗ → s ∈ F , the sort of the output
port is s and the sort of the input port i is s∗(i);

2. if F is a unit delay δs or a transport delay Δs, the sort of both input and
output ports is s;

3. if F is an event-driven transduction, the sort of the event input port is c, the
sorts of the other ports are the same as its primitive transduction;

Let D(T , A) = 〈V ,F〉 be a Σ-dynamics structure. PCNΣ on 〈V ,F〉 denotes a set
of equations {o = Fo(�x)}o∈O(PCN), such that for any output location o ∈ O(PCN),

• Fo is a continuous or pathwise continuous transduction in F whose output port
connects to o,

• �x is the tuple of input locations of Fo, i.e., the input port i of Fo connects to
location �x(i).

The semantics of a probabilistic constraint net is defined as follows.

11



Figure 6: Sample path of the system f(x) = 0.5x + y.

Definition 4.2 (Semantics) The semantics of a probabilistic constraint net PCN on
a dynamics structure 〈V ,F〉, denoted [[PCN ]], is the least stationary distribution of
the set of equations {o = Fo(�x)}o∈O(PCN), given that Fo is a continuous or path-
wise continuous transduction in F for all o ∈ O(PCN); it is a continuous or path-
wise continuous transduction from the input trace space to the output trace space, i.e.,
[[PCN ]] : ×I(PCN)A

Ω×T
si

→ ×O(PCN)A
Ω×T
so

.

Given any set of output locations O, the restriction of [[PCN ]] onto O, denoted
[[PCN ]]|O : ×I(PCN)A

T
si

→ ×OAT
so

, is called the semantics of PCN for O. For
example, consider the probabilistic constraint net denoted by equations x ′ = f(x, ω) =
0.5x+y(ω) and x = δ(0)(x) with FY = Uniform({1, 2}) and Ω = {ω1, ω2}. Given
a discrete time structure N, a domain I = {1, 2} for inputs and a domain O = R

for output, the semantics for x is F : IΩ×N → R
Ω×N

such that F (v)(0) = 0 and
F (v)(n) = f(F (v)(n−1), v(n−1)) where the limiting distribution for F is stationary.

Let us show the derivation of the semantics of this model. In Figure 6, we plot a
realization trace of the system, while in Figure 7 we can see the empirical distribution
of the system after 10000 time steps. The least fixpoint distribution follows a uniform
distribution over the range [2, 4]. The evolution of the distributions is presented in
Figure 8. One can see that the system’s distribution starts as uniform over the range
{1, 2} and the distribution gradually increases to reach a stationary distribution which
follows a uniform distribution over [2, 4].

5 Modeling in PCN

We are interested in modeling the larger class of hybrid probabilistic dynamical sys-
tems, that is, systems encompassing components of more than one basic type. Within
the PCN paradigm, a probabilistic hybrid dynamical system consists of modules with
different time structures, with its domain structure multi-sorted and with a set of prob-
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Figure 7: Empirical Distribution of f(x) = 0.5x + y after 10000 time steps.

Figure 8: Evolution of the distributions of f(x).

abilistic generators, as basic transductions, which allows for the modeling of the un-
certain components of these modules.

To model systems with modules that are associated with different clocks we intro-
duce the notion of event-driven transductions. In order to properly introduce the notion
of event-driven transductions, we need to define the concept of sample and extension
traces. Let Tr be a reference time of T with a reference time mapping h. The sample
stochastic trace of v : Ω × Tr → A onto T is a stochastic trace v : Ω × T → A

13



satisfying v = λω, t.v(ω, h(t)). The extension stochastic trace of v : Ω×T → A onto
Tr is a stochastic trace v : Ω × Tr → A satisfying

v = λω, tr.

{
v(ω, h−1(tr)) if cond
⊥A otherwise

where cond = ∃t ∈ T , μr([0r, tr)) ≤ μ([0, t)) or μr([0r, tr)) < μ(T ) and h−1(tr) =
{t|h(t) ≤r tr} ∈ T ∞.

Both sampling and extension can be seen as transformational processes on traces,
hence they are transductions. Sampling is a transduction whose output is a sample trace
of its input. Extending is a transduction whose output is an extension trace of its input.

An event-driven transduction is a primitive transduction augmented with an extra
input which is an event trace; it operates at each event point and the output value holds
between two events. This additional event trace input of an event-driven transduction
is called the clock of the transduction. Intuitively, an event-driven transduction works
as follows. First, the input trace with the reference time T is sampled onto the sample
time Te generated by the event trace e. Then, the primitive transduction is performed
on Te. Finally, the output trace is extended from Te back to T .

Definition 5.1 (Event-driven transduction) Let T be a time structure and let the
mapping FT : AΩ×T → A′Ω×T a primitive transduction. Let EΩ×T be the set of
all stochastic event traces on time structure T . The event-driven transduction of F is a
mapping F ◦

T : EΩ×T × AΩ×T → A′Ω×T satisfying:

F ◦
T (e, v) =

⎧⎨
⎩

λt. ⊥A′ if e = λt. ⊥B

FTe(v) otherwise.

We will use F ◦ to denote event-driven transduction F ◦
T if no ambiguity arises.

Hence, we can unify, within the same model, modules with different sample time
structures generated by event traces. There are two ways in which an event trace can
be generated: either with a fixed sampling rate, or by an event generator that reacts to
changes in its inputs. Moreover, we can also combine multiple event traces, yielding
new event traces. Typically, event traces are combined using event logic which allow
various asynchronous components within a given set of modules to be coordinated.
Common logical interactions are “event or”, “event and”, and “event select”. With
event logic modules, asynchronous components can be coordinated.

We have modeled and analyzed several real world applications within the PCN
framework. Such applications include an elevator system with uncertain passenger
arrivals, a museum surveillance robot and a package delivery robot. The models and
analysis can be found elsewhere [15, 16, 17].

6 Related Work and Conclusion

The motivation for developing the PCN framework was to be able to model hybrid
dynamical systems while considering the underlying uncertainty in the system. Uncer-
tainty is inherent in any physical system, hence modeling its effects and considering
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its impact on system behaviour is essential. While development of models for hybrids
systems has been very active in the last few years [9, 12], there also exist a multitude
of paradigms that allow the modeling of uncertain system. Such paradigms include
Markov Processes [10], Markov Decision Processes [14] and Dynamic Bayesian Net-
works [11]. However, in most cases, these models are either hybrid and deterministic,
or stochastic and restricted to a single time structure (either discrete or continuous).
We have shown, in the dissertation associated with this work [15], that PCN subsumes
most existing computational models handling uncertainty, and that hybrid, sequential
and analog computations can be modeled effectively.

In conclusion, we have developed a semantic model for uncertain hybrid dynami-
cal systems, that we call Probabilistic Constraint Nets (PCN). Based on abstract alge-
bra, topology and measure theory, we have represented both time and domains in ab-
stract forms, and uniformly formalized basic elements of dynamical systems in terms
of traces, transductions and probabilistic transductions. Furthermore, we have also
studied both primitive and event-driven transductions which are important elements of
dynamical systems, with or without uncertainty.

Since PCN is an abstraction and generalization of data-flow networks, with the ad-
dition that we explicitly handle the uncertain components of the system. Within this
framework, the behaviour of a system (the semantics of a PCN model) is formally ob-
tained using both the theory of continuous algebra and stochastic systems. Specifically,
a probabilistic constraint net models an uncertain dynamical system as a set of intercon-
nected transductions, while the behaviour of the system is the set of input/output traces
of the system satisfying all the relationships (constraints on the dynamics) imposed
by the transductions. PCN models a hybrid system using event-driven transductions,
while the events are generated and synchronized within the system.

Complementary work on PCN was performed and led to the development of lan-
guage specification for behavioural constraints on the dynamics of the systems. More-
over, verification techniques were also developed to allow for the probabilistic veri-
fication of the behavioural constraints [17]. A control synthesis approach was also
developed which enables the system designer to synthesize the controller component
of a PCN model, hence simplifying the modeling task greatly [15].
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A Proofs of Theorems

In order to prove the fixpoint theorems introduced in this paper, we need to present the
following two propositions:

Proposition A.1 Let I ⊆ J be an index set. If f : Ω × (×IAi) → A is a continuous
or pathwise continuous function, then the extension of f , f ′ : Ω × (×JAJ ) → A
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satisfying f ′(ω, a) = f(ω, a|I), is a continuous or pathwise continuous function.

Proof: According to the definitions of continuous functions and product topologies.
�

Proposition A.2 Any continuous (or pathwise continuous) function is monotonic, i.e.,
if f : Ω × A → A′ (fω : A → A′) is continuous (pathwise continuous), then
(ω1, a1) ≤Ω×A (ω2, a2) (a1 ≤A a2) implies f(ω1, a1) ≤A′ f(ω2, a2) (fω(a1) ≤A′

fω(a2)).

Proof: We prove this result for pathwise continuous functions. The result extends
easily to continuous functions. Suppose fω(a1) 
≤A′ fω(a2), then according to the def-
inition of partial order topology, there is an open set S ⊆ A ′ including fω(a1) but not
fω(a2). Therefore, f−1

ω (S) ⊆ A is an open set including a1 but not a2. So a1 
≤A a2.
�

We are now ready to prove both our fixpoint theorems.

Theorem 4.1 Let A be a cpo and assume that either A is also a total order or that the
set of distributions over A is a cpo and the function over distributions is continuous.
Then, every continuous function f : Ω × A → A or pathwise continuous function
fω : A → A (for a fixed ω ∈ Ω) has a least fixpoint in distribution.

Proof:
When A is a total order.

To prove this results, we will use the classic Tarski’s fixpoint theorem (Lattice-
theoretical fixpoint theorem) [18]. Let us first introduce the theorem and then show
how to use the result to prove our Fixpoint Theorem.

Theorem A.1 (Tarski’s Fixpoint Theorem) Let

1. U = 〈A,≤〉 be a complete lattice,

2. f be a monotonically increasing function on A to A,

3. P be the set of all fixpoints of f .

Then the set P is not empty and the system 〈P,≤〉 is a complete lattice.

Proof: (Theorem A.1) For the proof of this well-known result the reader is referred
to the original work from Tarski [18]. �

In order to be able to use Tarski’s results, we need to show that the set of distribu-
tions and its partial order define a complete lattice. Moreover, we also need to show
that the function f on the set of distribution is monotonically increasing.

First, denote the set of all distributions on A by D . We formally define a partial
order on the set of distributions D . The binary relation ≤D on D is defined as follow.
Let FX1 and FX2 be distributions of two random variables, namely X1 and X2. We
write FX1 ≤D FX2 , if ∀a ∈ A, Pr(X1 ≤ a) ≥ Pr(X2 ≤ a). It is easy to show that
≤D induces a partial order on D .
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Second, we need to show that for any two distributions F1, F2 ∈ D , there exists a
least upper bound and a greatest lower bound. To prove this, let us look at the cumula-
tive distribution function (cdf) of each distributions. Here we reproduce Theorem 1.5.1
of [2] and refer to this reference for the proof.

Theorem A.2 (Theorem 1.5.1 of Casela and Berger)
The function F (x) is a cdf if and only if the following three conditions hold:

1. limx→−∞F (x) = 0 and limx→∞F (x) = 1.

2. F (x) is a nondecreasing function of x.

3. F (x) is right-continuous. That is, for every number x0, limx↓x0F (x) = F (x0).

Proof: (Theorem A.2) See p. 30 of §1.5 from [2].
Since A is a total order, for each F ∈ D , we have a well defined cdf. Hence every

F ∈ D possess the three properties of a formal cdf. Based on these properties, it is
easy to show that the upper envelope of any set of cdf is a least upper bound (LUB)
while the lower envelope of the cdfs is the greatest lower bound (GLB). Moreover,
both the LUB and GLB can be showed to be cumulative distribution functions since
they are nondecreasing, right-continuous and converge to 0 and 1 as x ↓ −∞ and
x ↑ ∞ respectively. This demonstrate that we have a complete lattice.

Now let us show that f applied recursively generates a sequence of monotonically
increasing distributions. First assume, without loss of generality, that f is Markovian.
Moreover, let us assume that at each transition, the events {ω1, · · · , ωn} are indepen-
dent and chosen from the sample space Ω. Order the events {ω 1, · · · , ωn} such that
fω1(a) ≤A fω2(a) ≤A · · · ≤A fωn(a) for any a ∈ A. Let ⊥A denote the least element
of A and let FX denote the distribution of the random variable X .

Now we want to prove that Ffn(⊥A) ≤D Ffn+1(⊥A).
Proof by Induction on n:

• For n = 0: We have that Ff0(⊥A) =⊥A

• For n = 1: From Proposition A.2, since fω is continuous, we have that fω is
also monotonic, ∀ω ∈ Ω. Hence we have fω(⊥A) ≥A⊥A, ∀ω ∈ Ω. Therefore,
it is trivial to prove that Ff0(⊥A) = F⊥A ≤D Ff1(⊥A).

• Induction Hypothesis: Assume that for an arbitrary chosen n ∈ N, F fn(⊥A)

exists and is well-defined. We now need to show that Ffn(⊥a) ≤D Ffn+1(⊥A).

Let M1 = max{fn(⊥A)} = fωn ◦ · · · ◦ fωn︸ ︷︷ ︸
n times

(⊥A) Based on this definition, we

have P (fn(⊥A) ≤ M1) = 1.

It is easy to show that fωn ◦ · · · ◦ fωn︸ ︷︷ ︸
n times

◦fωi ≥ M1 since fωn ◦ · · · ◦ fωn is mono-

tonic.

17



Hence, we get the following result:

P (fn+1(⊥A) ≤ M1) ≤ 1 −
∑n

i=1 P (event ωn · · ·ωnωi)
≤ 1 − P (event ωn · · ·ωnωi)︸ ︷︷ ︸

finite and >0

since
∑n

i=1 P (ωi) = 1

≤ 1 − Pn(ωn)
< 1.

(1)

Let M2 = max{{fn(⊥A)}−M1} be the second highest value after n iterations.

Say that M2 arose from fω∗(⊥A) where ω∗ ∈ ωi1ωi2 · · ·ωin with ωi ∈ Ω. Then,

P (fn(⊥A) ≤ M2) ≤ 1 − P (ωn · · ·ωn)
= 1 − Pn(ωn) (2)

Based on the same reasoning as above, we know that fω∗ ◦fωi(⊥A) ≥ fω∗(⊥A).
Therefore, we have

P (fn+1(⊥A) ≤ M2) ≤ 1 − Pn(ωn)︸ ︷︷ ︸
>0

−P (ω∗)︸ ︷︷ ︸
>0

< 1 − Pn(ωn)
(3)

By applying this reasoning until Mn = min{fn(⊥A)} = fω1 ◦ · · · ◦ fω1︸ ︷︷ ︸
n times

(⊥A),

we get P (fn(⊥A) ≤ Mn) = Pn(ω1).

We know that fω1 ◦ · · · ◦ fω1︸ ︷︷ ︸
n times

◦fωi(⊥A) ≥ fω1 ◦ · · · ◦ fω1︸ ︷︷ ︸
n times

(⊥A) = Mn, which

means that P (fn+1(⊥A) ≤ Mn) = 0. We have proven that Ffn(⊥A) ≤
Ffn+1(⊥A) for any value of n ∈ N. Hence, the transformational process on
the distributions is a monotonically increasing one.

By applying Tarski’s theorem, we have that the set of fixpoints of the distribu-
tions is non-empty and is a complete lattice. Therefore, there exist a least fixpoint
in distribution and it concludes the proof under the assumption that A is a total
order.�

When the set of distributions over A, D , is a cpo and the function over D is
continuous.

To prove this result, we can simply claim the following fixpoint theorem on cpos:

Theorem A.3 Let 〈A,≤,⊥A〉 be a cpo with least element ⊥A. Let f : 〈A,≤,⊥A〉 →
〈A,≤,⊥A〉 be a continuous function and let μ.f be the least upper bound of the chain
{fn(⊥A)|n ∈ N}. Then μ.f is the least fixpoint of f .

Proof: (Theorem A.3) The proof can be found in any elementary algebraic theory
textbooks such as [5].
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This concludes the proof of the Fixpoint Theorem under the assumption that the
set of distributions over A, D , is a cpo and the function over D is continuous since we
have satisfied all the necessary assumptions of the fixpoint theorem on a cpo. �
Theorem 4.2 Let A and A′ be two cpos and assume that either A, A′ are also total
orders or that the set of distributions over A′ is a cpo and the function over distributions
is continuous. If f : Ω × A × A′ → A′ is a continuous function, then there exists a
unique continuous function μ.f : Ω×A → A ′, such that for all a ∈ A, the distribution
of (μ.f)(a) is the least fixpoint in distribution of λω, x.fω(a, x).

Proof: Let F 0(a) = f(ω, a,⊥A′) and F k+1(a) = f(ω, a, F k(a)). Since f is
continuous, it is continuous w.r.t. the third argument. Moreover, a continuous function
in any partial order is also monotonic. Therefore, for every a,

F 0(a) ≤A′ F 1(a) ≤A′ F 2(a) . . . ≤A′ F k(a) ≤ . . . .

The proof of the existence of the least fixpoint μ.f is left to the reader as it is very
similar to the proof of Theorem 4.1.

Next, we prove that μ.f is continuous.
Clearly for every k, F k is continuous since f is continuous and continuity is closed

under functional composition. Therefore, for any directed subset D of A,

μ.f(
∨
A

D) =
∨
A′
{F k(

∨
A

D)|k ≥ 0}

=
∨
A′
{
∨
A′
{F k(D)}|k ≥ 0}

=
∨
A′
{
∨
A′
{F k(a)|k ≥ 0}|a ∈ D}

=
∨
A′

μ.f(D).

�
Proposition A.1 Let I ⊆ J be an index set. If f : Ω × (×IAi) → A is a continuous
or pathwise continuous function, then the extension of f , f ′ : Ω × (×JAJ ) → A
satisfying f ′(ω, a) = f(ω, a|I), is a continuous or pathwise continuous function.

Proof: According to the definitions of continuous functions and product topologies.
�
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