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Abstract. Arc consistency and generalized arc consistency are two of
the most important local consistency techniques for binary and non-
binary classic constraint satisfaction problems (CSPs). Based on the
Semiring CSP and Valued CSP frameworks, arc consistency has also been
extended to handle soft constraint satisfaction problems such as fuzzy
CSP, probabilistic CSP, max CSP, and weighted CSP. This extension is
based on an idempotent or strictly monotonic constraint combination op-
erator. In this paper, we present a weaker condition for applying the gen-
eralized arc consistency approach to constraint-based inference problems
other than classic and soft CSPs. These problems, including probability
inference and maximal likelihood decoding, can be processed using gen-
eralized arc consistency enforcing approaches. We also show that, given
an additional monotonic condition on the corresponding semiring struc-
ture, some of constraint-based inference problems can be approximately
preprocessed using generalized arc consistency algorithms.

1 Introduction

The notion of local consistency plays a central role in constraint satisfaction.
Given a constraint satisfaction problem (CSP), local consistency can be char-
acterized as deriving new constraints based on local information. The derived
constraints simplify the representation of the original CSP without the loss of
solutions. Among the family of local consistency enforcing algorithms or filtering
algorithms, arc consistency [1] is one of the most important techniques for binary
classic CSP. It is straightforward to extend it as generalized arc consistency [2,
3] to handle non-binary classic CSPs.

To represent over-constrained and preference-based problems in the real
world, researchers in the constraint processing community are increasingly inter-
ested in so-called soft constraint satisfaction problems. Fuzzy CSP, probabilistic
CSP, max CSP, and weighted CSP have been proposed to address these require-
ments. Semiring CSP [4] and Valued CSP [5] are two of the most widely studied
generalized frameworks. Based on the two frameworks, arc consistency is also



extended as soft arc consistency to handle soft constraints [6, 7]. The soundness
and completeness of soft arc consistency, within the Semiring CSP framework,
relies on the idempotency of the constraint combination operator. Moreover, the
c-semiring used in the Semiring CSP framework has the special requirement of
idempotency of the additive operator. The Valued CSP framework extends soft
arc consistency in the Semiring CSP framework. Soft arc consistency in Valued
CSP depends on the strictly monotonic constraint combination operator or the
fair valuation structure.

For most soft constraint proposals, the success of soft arc consistency in the
Semiring CSP framework and the Valued CSP framework has been proven [6,
7]. However, because of the requirements of idempotent constraint combination
operators or the fair valuation structure, soft arc consistency does not work on
some problems with representations analogical to hard or soft CSPs. For exam-
ple, the probability assessment problem in Bayesian networks can be represented
by a commutative semiring Sprob = 〈R+ ∪ {0},+,×〉 [8]. Both the additive op-
erator + and the multiplicative operator × are not idempotent, so the problem
can not be embedded into the Semiring CSP framework. The neutral (or iden-
tity) element 1 is not the minimum element of R

+ and there exists no maximum
difference of any non-zero element β ∈ R

+ and 0 w.r.t. the constraint combina-
tion operator ×, so the problem can not be solved by soft arc consistency in the
Valued CSP framework.

Given the representation analogues of constraint-based inference (CBI) prob-
lems, including probabilistic inferences, decision-making under uncertainty, con-
straint satisfaction problems, propositional satisfiability, decoding problems, and
possibility inferences, we present in this paper a weaker condition for applying lo-
cal consistency approaches to general constraint-based inference problems based
on the commutative semiring structure. The weaker condition proposed here de-
pends only on the existence and property of the combination absorbing element
and does not depend on other semiring properties. We show that arc consistency
and its variants, the most widely studied local consistency approaches, can be
extended to handle problems from other research fields without modification, if
the condition is satisfied. We also show that, by satisfying an additional mono-
tonic condition on the semiring structure characterizing the problem, generalized
arc consistency can also be used as an approximate local consistency enforcing
technique for constraint-based inference problems.

2 Background

There are two essential operators in real world CBI problems: (1) combination,
which corresponds to an aggregation of constraints, and (2) marginalization,
which corresponds to focusing of a specified constraint to a narrow domain. These
two operators allow us to use algebraic structures to generalize CBI problem rep-
resentations. More specifically, both the abstract CBI representation framework
and the generalized arc consistency approach in this paper are based on the



semiring structure, an important notion in abstract algebra. This section intro-
duces the definition of the semiring and related properties.

Definition 1 (Semiring). Let A be a set. Let ⊕ and ⊗ be two closed binary
operators defined on A. Here we define operator ⊗ as taking precedence over
operator ⊕. S = 〈A,⊕,⊗〉 is a semiring if the operators satisfy the following
axioms:

– Additive associativity: ∀a, b, c ∈ A, (a ⊕ b) ⊕ c = a ⊕ (b ⊕ c);
– Additive commutativity: ∀a, b ∈ A, a ⊕ b = b ⊕ a;
– Multiplicative associativity: ∀a, b, c ∈ A, (a ⊗ b) ⊗ c = a ⊗ (b ⊗ c);
– Left and right distributivity: ∀a, b, c ∈ A, a ⊗ (b ⊕ c) = a ⊗ b ⊕ a ⊗ c and

(b ⊕ c) ⊗ a = b ⊗ a ⊕ c ⊗ a.

To capture computational properties of various inference approaches, we use
commutative semiring, an extended algebraic notion of semiring, to formally
represent CBI problems in this paper.

Definition 2 (Commutative Semiring). A commutative semiring S = 〈A,⊕,⊗〉
is a semiring that satisfies the following additional conditions:

– Multiplicative commutativity: ∀a, b ∈ A, a ⊗ b = b ⊗ a;
– Multiplicative identity: there exists a multiplicative identity element 1 ∈ A,

such that a ⊗ 1 = 1 ⊗ a = a for any a ∈ A;
– Additive identity: there exists an additive identity element 0 ∈ A, such that

a ⊕ 0 = 0 ⊕ a = a for any a ∈ A;

We will show in the following sections that the application of local consis-
tency techniques depend on the existence of a multiplicative (or combination)
absorbing element. It is easy to show the uniqueness of the multiplicative absorb-
ing element given the multiplicative commutativity of a commutative semiring,
according the definition below.

Definition 3 (Multiplicative Absorbing Element). An element α⊗ ∈ A is
the multiplicative absorbing element of a commutative semiring S = 〈A,⊕,⊗〉 if
e ⊗ α⊗ = α⊗ ⊗ e = α⊗ for any element e ∈ A.

Similarly the additive absorbing element α⊕ is defined as:

Definition 4 (Additive Absorbing Element). An element α⊕ ∈ A is the
additive absorbing element of a semiring S = 〈A,⊕,⊗〉 if e⊕α⊕ = α⊕⊕e = α⊕
for any element e ∈ A.

Furthermore, we say that ⊕ is idempotent if a⊕ a = a, and ⊗ is idempotent
if a⊗ a = a. For some semirings, we can define a partial order over the elements
of S if ⊕ is idempotent.

Definition 5 (Partial Order ≤S [7]). Given a semiring S = 〈A,⊕,⊗〉, there
exist a partial order ≤S over S such that a≤Sb, ∀a, b ∈ A if:



No. S ⊕,0 ⊗,1 α⊗ α⊕ Eliminative Monotonic

1 {true, false} ∨, false ∧, true false true Yes No

2 [0, 1] max, 0 min, 1 0 1 Yes Yes

3 R
+ ∪ {0} max, 0 min, ∞ 0 ∞ Yes Yes

4 [0, 1] max, 0 ×, 1 0 1 Yes Yes

5 R
− ∪ {0} max, −∞ +, 0 −∞ 0 Yes Yes

6 N
+ ∪ {0} max, 0 +, 0 ∞ ∞ No Yes

7 R
+ ∪ {0} +, 0 ×, 1 0 ∞ Yes Yes

8 R
+ ∪ {0} max, 0 ×, 1 0 ∞ Yes Yes

9 N
+ ∪ {0} min, ∞ +, 0 ∞ 0 Yes Yes

10 N
+ ∪ {0} min, ∞ ×, 1 ∞ 0 Yes Yes
Table 1. Properties of Various Commutative Semirings

– ⊕ is idempotent;
– a ⊕ b = b.

Given a partial order ≤S of semiring S = 〈A,⊕,⊗〉, we know that the additive
identity element 0 is the minimum element of the ordering. In other words,
0≤Sa,∀a ∈ A. If the additive absorbing α⊕ exists, it will be the maximum
element of the ordering according to the partial order definition. Also note that
the two conditions are only sufficient conditions for the existence of a partial
order. For example, the commutative semiring Sprob = 〈R+ ∪ {0},+,×〉 has a
partial order while does not satisfy the two conditions.

Finally, we define two more important properties for some commutative
semirings. The two properties are the foundation of applying local consistency
techniques to general CBI problems.

Definition 6 (A Commutative Semiring is Eliminative). A commutative
semiring S = 〈A,⊕,⊗〉 is eliminative if:

– There exists the multiplicative absorbing element α⊗ ∈ A;
– α⊗ = 0, in other words, the multiplicative absorbing element is equal to the

additive identity element.

Definition 7 (A Commutative Semiring is Monotonic). A commutative
semiring S = 〈A,⊕,⊗〉 is monotonic if:

– There exists a total order ≤S on A;
– The additive identity element 0 is the minimum element w.r.t. ≤S. In other

words, 0≤Sa, ∀a ∈ A;
– Additive Monotonic: a≤Sb implies a ⊕ c≤Sb ⊕ c, ∀a, b, c ∈ A;
– Multiplicative Monotonic: a≤Sb implies a ⊗ c≤Sb ⊗ c, ∀a, b, c ∈ A.

Table 1 displays some commutative semirings with their identity and absorb-
ing elements and properties.

In the following sections, we use bold letters to denote sets of elements and
regular letters to denote individual elements. Given a set of elements X and



an element Z ∈ X, X−Z denotes the set of elements X \ {Z}. Given a value
assignment x of variable subset X and Y ⊆ X, x↓Y denotes the value assignment
projection of x to the variable subset Y.

3 A Semiring-Based Unifying Framework for CBI
Problems

Constraint-Based Inference (CBI) is an umbrella term for various superficially
different problems. It concerns the automatic discovery of new constraints from
a set of given constraints over individual entities. New constraints reveal undis-
covered properties about a set of entities or about the world of all entities. A con-
straint here is seen as a function that maps possible value assignments to a spe-
cific value domain. Many practical problems from different fields can be seen as
constraint-based inference problems. These problems cover a wide range of top-
ics in computer science research, which include probabilistic inferences, decision-
making under uncertainty, constraint satisfaction problems (CSP), propositional
satisfiability problems (SAT), decoding problems, and possibility inferences.

A CBI problem is defined in terms of a set of variables with values in finite do-
mains and a set of constraints on these variables. We use commutative semirings
to unify the representation of constraint-based inference problems from various
disciplines into a single formal framework [9], based on the synthesis of the ex-
isting generalized representation frameworks [4, 10] and algorithmic frameworks
[11, 12, 8] from different fields. Formally:

Definition 8 (Constraint-Based Inference (CBI) Problem). A constraint-
based inference (CBI) problem P is a tuple (X,D,S,F) where:

– X = {X1, · · · ,Xn} is a set of variables;
– D = {D1, · · · ,Dn} is a collection of finite domains, one for each variable;
– S = 〈A,⊕,⊗〉 is a commutative semiring;
– F = {f1, · · · , fr} is a set of constraints. Each constraint is a function that

maps value assignments of a subset of variables to values in A

More specifically, we use Scope(f) to denote the subset of variables that is
in the scope of the constraint f . We use DX to denote the value domain of a
variable X. Given a variable X ∈ Scope(f), Scope(f)−X denotes the variable
subset Scope(f) \ {X}. Then we define the two basic constraint operators as
follows.

Definition 9 (The Combination of Two Constraints). The combination
of two constraints f1 and f2 is a new constraint g = f1 ⊗ f2, where Scope(g) =
Scope(f1) ∪ Scope(f2) and g(w) = f1(w↓Scope(f1)) ⊗ f2(w↓Scope(f2)) for every
value assignment w of variables in the scope of the constraint g.

Definition 10 (The Marginalization of a Constraint). The marginaliza-
tion of X from a constraint f , where X ∈ Scope(f), is a new constraint g =⊕

X f , where Scope(g) = Scope(f)−X and g(w) =
⊕

xi∈DX
f(xi,w) for every

value assignment w of variables in the scope of the constraint g.



According to the definitions of the CBI problem and the basic constraint
operators, we can define the abstract inference and allocation tasks for a CBI
problem.

Definition 11 (The Inference Task for a CBI Problem). Given a subset
of interested variables Z = {Z1, · · · , Zt} ⊆ X, let Y = X \ Z, the inference task
for a CBI problem P = (X,D,S,F) is defined as computing:

gCBI(Z) =
⊕

Y

⊗

f∈F

f (1)

Given a CBI problem P = (X,D,S,F), if ⊕ is idempotent, we can define
the allocation task for a CBI problem.

Definition 12 (The Allocation Task for a CBI Problem). Given a subset
of variables Z = {Z1, · · · , Zt} ⊆ X, let Y = X \Z, the allocation task for a CBI
problem P = (X,D,S,F) is to find a value assignment for the marginalized vari-
ables Y, which leads to the result of the corresponding inference task gCBI(Z).
Formally, we compute:

y = arg
⊕

Y

⊗

f∈F

f (2)

where arg is a prefix of operator ⊕. In other words, arg⊕ is an operator that
returns arguments of the ⊕ operator.

In general, ⊗ is a combination operator in CBI problems that combines
a set of constraints into a constraint with a larger scope; ⊕Y = ⊕X\Z is a
marginalization operator that projects a constraint over the scope X into its
subset Z, through enumerating all possible value assignments of Y = X \ Z.

Many CBI problems from different disciplines can be embedded into our
semiring-based unifying framework [9]. These problems include the decision task
and allocation task of CSP and SAT, Max SAT and Max CSP, Fuzzy CSP,
Weighted CSP, probability assessment, most probable explanation (MPE), dy-
namic Bayesian networks (DBN), possibility inference with various t-norms, and
maximum likelihood decoding. In [9], we also generalized various systematic in-
ference approaches, including exact and approximate variable elimination, exact
and approximate junction tree and variants, and loopy message propagation,
into this semiring-based unifying framework.

4 Applying Arc Consistency to CBI Problems

4.1 Arc Consistency and Eliminative Property

Here, we are particularly interested in CBI problems defined on a commuta-
tive semiring S = 〈A,⊕,⊗〉 with the eliminative property. More specifically, we
propose in this paper that local consistency techniques in constraint process-
ing can be extended to handle general CBI problems like probability inference



Input: A CBI problem P = (X,D,S,F)
Output: A generalized arc consistency CBI problem P′ = (X,D′,S,F′)
1: Let Q be a queue of all the variable-constraint pairs (X, f)
2: repeat
3: Pop the first variable-constraint pair (X, f) ∈ Q
4: if REVISE(X, f) then
5: for each g ∈ F with X ∈ Scope(g) do
6: Remove all tuples in g with the value that is removed from X
7: for each Z ∈ Scope(g) and X �= Z do
8: if Pair (Z, g) /∈ Q then
9: Q := Q ∪ {(Z, g)}

10: end if
11: end for
12: end for
13: end if
14: until Q is empty
15: Return P′ := P

Fig. 1. Generalization of Generalized Arc Consistency Algorithm GGAC(P)

and maximum likelihood decoding, if the corresponding commutative semiring
of the problem representation is eliminative. Formally, we define the generalized
arc consistency of a CBI problem as follows:

Definition 13 (A CBI Problem is GGAC). A CBI Problem P = (X,D,S,F)
with an eliminative commutative semiring S is generalized arc consistent (GGAC)
if: ∀f ∈ F, ∀X ∈ Scope(f), ∀x ∈ DX , ∃w, a value assignment of variables
Scope(f)−X , s.t. f(x,w) �= α⊗

Figure 1 shows a generalized version of generalized arc consistency (GGAC)
enforcing algorithm for a CBI problem P = (X,D,S,F) with an eliminative
commutative semiring S. The procedure REVISE of GGAC is shown in Figure
2.

Theorem 1 (GGAC Enforces Generalized Arc Consistency). Applying
GGAC algorithm to a CBI problem P = (X,D,S,F) with an eliminative commu-
tative semiring S = 〈A,⊕,⊗〉 leads to a generalized arc consistent CBI problem
P′ = (X,D′,S,F′).

Proof : Assume there exists a constraint f ′ ∈ F′ and a variable X ∈ Scopef ′

that lead to generalized arc inconsistency in P′. We know the pair (X, f ′) must
be popped from the queue sometime since X and f ′ are in P′. However, the
REVISE procedure ensures that every pair popped from the queue is generalized
arc consistent, which contradicts the assumption. �

The equivalency of a CBI problem with an eliminative commutative semiring
and the generalized arc consistency CBI problem yielded by GGAC algorithm
in Figure 1 w.r.t. the results of their inference tasks is proved by Theorem 2.



Input: A variable X ∈ X and a constraint f ∈ F
Output: TRUE if a value is removed from the domain of X else FALSE
1: flag := TRUE
2: for each x ∈ DX do
3: for each value assignment w of Scope(f)−X do
4: if f(x,w) �= α⊗ then
5: flag := FALSE
6: Break loop
7: end if
8: end for
9: if flag then

10: Remove x from DX

11: Return TRUE
12: end if
13: end for
14: Return FALSE

Fig. 2. Procedure REVISE(X, f) for Eliminating a Domain Value from a Variable
According to the Local Constraint

Theorem 2 (Closure of GGAC). Let P = (X,D,S,F) be a CBI problem and
the commutative semiring S = 〈A,⊕,⊗〉 is eliminative. Let P′ = (X,D′,S,F′)
be the CBI problem yielded by GGAC algorithm. For any subset of interested
variables Z ⊆ X, the inference tasks for P and P′ are equivalent.

Proof : Let (X, f) be a pair that is revised by the procedure REVISE, where
x ∈ DX is removed because of generalized arc inconsistency. Consider the global
constraint g of the combination of all the constraints in P = (X,D,S,F). We
have g(X) = f(X↓Scope(f))⊗

⊗
h∈F,h�=f h(X↓Scope(h)). More specifically, for any

value assignment u of variables X−X , we have g(x,u) = f(x,u↓Scope(f)) ⊗⊗
h∈F,h�=f h(u↓Scope(h)) = α⊗, since f(x,u↓Scope(f)) = α⊗ is the absorbing ele-

ment of the operator ⊗. Given g(X = x,u) = α⊗ is also the identity element of
the operator ⊕, the inference task of P (Equation 1) is to compute:

gCBI(Z) =
⊕

Y

g(X,X−X)

=
⊕

Y

(g(X = x,X−X) ⊕ g(X �= x,X−X))

=
⊕

Y

g(X �= x,X−X) (3)

On the other hand, let us consider the global constraint g′ of P′ = (X,D′,S,F′).
We have: g′(X) =

⊗
f ′∈F′ f ′ = g(X �= x,X−X) according to the GGAC algo-

rithm in Figure 1. Then it is straightforward to get g′CBI(Z) =
⊕

Y g′(X) =
gCBI(Z). �

In other words, Theorem 2 shows that when we detect that there exists a
constraint of a given CBI problem of an eliminative semiring structure that maps



all its value assignments with a specific value to the multiplicative absorbing
element, the value can be safely removed from the variable’s domain. All value
assignments with this value can be safely removed from any constraint with this
variable in its scope, without modifying the computational result of the inference
task.

Theorems 1 and 2 together imply the correctness of the GGAC algorithm.

Theorem 3 (Time Complexity of GGAC). The worst case time complexity
of the GGAC algorithm in Figure 1 is O(r · dk+1), where r is the number of
constraints, d is the maximum domain size, and k is the maximum scope size of
constraints.

Proof : Basically the GGAC algorithm is a straightforward revision of the
generalized arc consistency enforcing algorithm for classic non-binary CSPs [2].
For each constraint with at most k variables in its scope we need dk checks. Each
variable-constraint pair enters the queue at most d times, so the total number
of checks is O(r · dk+1). �

We extend the application of Theorem 2 by introducing another equivalency
statement of the inference task for a CBI problem.

Theorem 4. Solving the inference task of a CBI problem P = (X,D,S,F) is
equivalent to solving P′ = (X,D,S,F′), where F′ = Fp ∪ {f}, Fp ⊂ F and
f =

⊗
h∈F\Fp

h.

Proof : Easy to prove given the definition of the inference task of a CBI
problem in Equation 1. �

Combining Theorem 2 and Theorem 4 lead to the local consistency property
of general CBI problems. We do not have to focus on the original constraints
in F of the CBI problem P = (X,D,S,F). We can combine some original con-
straints to a local constraint, then apply the conclusion of Theorem 2 to refine
the representation of the original CBI problem.

If the allocation task can be defined on a CBI problem P = (X,D,S,F), in
other words, ⊕ is idempotent, we have the similar result, as shown in Theorem
5.

Theorem 5 (Closure of GGAC for Allocation Task). Let P = (X,D,S,F)
be a CBI problem and the commutative semiring S = 〈A,⊕,⊗〉 is eliminative.
⊕ is idempotent. Let P′ = (X,D′,S,F′) be the CBI problem yielded by GGAC
algorithm. For any subset of interested variables Z ⊆ X, we have the alloction
tasks for P and P′ are equivalent.

Proof : Similar to the proof of Theorem 2. It is easy to show that the value
x ∈ DX cannot appear in any value assignment that leads to the inference task’s
result gCBI(Z). �

Through shrinking the domain of a variable as well as deleting possible value
assignments of constraints, the size of the original CBI problem is reduced by
factor (|DX | − 1)/|DX |. Repeatedly applying the GGAC algorithm, we will get



Input: A CBI problem P = (X,D,S,F) and a variable subset Z of interest
Output: gCBI(Z) =

⊕
X\Z

⊗
f∈F f

1: P := GGAC(P)
2: Let Y = X \ Z
3: Choose an elimination ordering σ =< Y1, · · · , Yk > of Y
4: for i = k to 1 do
5: F′ := ∅
6: for each f ∈ F do
7: if Yi ∈ Scope(f) then
8: F′ := F′ ∪ {f}
9: F := F \ {f}

10: end if
11: end for
12: f ′ :=

⊕
Yi

⊗
f∈F′ f

13: F := F ∪ {f ′}
14: for each X ∈ Scope(f ′) do
15: if REVISE(X, f’) then
16: P := GGAC(P)
17: Break loop
18: end if
19: end for
20: end for
21: Return gCBI(Z) :=

⊗
f∈F f

Fig. 3. Generalization of Variable Elimination with Arc Consistency Algorithm GVE-
AC(P,Z)

a series of equivalent smaller CBI problems. The generalized arc consistency en-
forcement provides opportunities for performing inference more efficiently. We
may either preprocess the CBI problem then apply regular systematic or stochas-
tic inference approaches or simplify the problem during the running of inference
approaches. For example, it is straightforward to incorporate generalized arc con-
sistency enforcing into generalized variable elimination algorithm [9], as shown
in Figure 3, if a CBI problem P = (X,D,S,F) has an eliminative commutative
semiring S.

4.2 Approximate Local Consistency and Monotonic Property

Given a CBI problem P = (X,D,S,F), if the commutative semiring S =
〈A,⊕,⊗〉 is both eliminative and monotonic, we can propose a scheme to en-
force local consistency approximately for this CBI problem. In other words, for
an eliminative and monotonic commutative semiring, we use an element ε ∈ A
to approximate the multiplicative absorbing element α⊗ that is equal to the
additive identity element 0 for an eliminative commutative semiring.

Formally, we define the generalized ε arc consistency of a CBI problem as
follows:



Input: A variable X ∈ X, a constraint f ∈ F, an element ε ∈ A
Output: TRUE if a value is removed from the domain of X; FALSE if else
1: flag := TRUE
2: for each x ∈ DX do
3: for each value assignment w of Scope(f)−X do
4: if ε≤Sf(x,w) then
5: flag := FALSE
6: Break loop
7: end if
8: end for
9: if flag then

10: Remove x from DX

11: Return TRUE
12: end if
13: end for
14: Return FALSE

Fig. 4. Procedure ε-REVISE(X, f, ε) for Eliminating a Domain Value from a Variable
According to the Approximation of a Local Constraint.

Definition 14 (A CBI Problem is ε-GGAC). A CBI Problem P = (X,D,S,F)
with an eliminative commutative semiring S is ε generalized arc consistent (ε-
GAC) if: ∀f ∈ F, ∀X ∈ Scope(f), ∀x ∈ DX , ∃w, a value assignment of variables
Scope(f)−X , s.t. f(x,w)≥Sε

An ε-GGAC algorithm can be achieved by modifying the REVISE procedure
in Figure 2 to the procedure ε-REVISE(X, f, ε) in Figure 4. It is straightforward
to show that the GGAC algorithm in Figure 1 with the procedure ε-REVISE
leads to a ε-GGAC CBI problem of the given CBI Problem P = (X,D,S,F)
with an eliminative and monotonic commutative semiring S.

Theorem 6 show that ε-GGAC algorithm can be used to simplify the original
CBI problem with a controlled threshold. The simplified CBI problem gives a
lower bound of the estimation of the inference task.

Theorem 6 (Lower Bound Estimation of ε-GGAC ). Given a CBI prob-
lem P = (X,D,S,F) with an eliminative and monotonic commutative semiring
S = 〈A,⊕,⊗〉, the ε-GGAC algorithm yields a CBI problem P′ = (X,D′,S,F′)
that is an approximation of P w.r.t. the results of their inference tasks. For any
value assignment z of interested variables Z, the inference task of P′, g′CBI(z),
is a lower bound of gCBI(z), w.r.t. the partial order ≤S of the monotonic com-
mutative semiring S.

Proof : Let (X, f) be a pair that is revised by the procedure ε-REVISE, where
x ∈ DX is removed because of ε generalized arc inconsistency. Consider the
global constraint g of the combination of all the constraints in P = (X,D,S,F).
We have g(X) = f(X↓Scope(f))⊗

⊗
h∈F,h�=f h(X↓Scope(h)). More specifically, for

any value assignment u of variables X−X , we have g(x,u) = f(x,u↓Scope(f)) ⊗



⊗
h∈F,h�=f h(u↓Scope(h)). Since α⊗≤Sf(x,u↓Scope(f))≤Sε and ⊗ is monotonic, we

have α⊗≤Sg(x,u).
Given that α⊗ is also the identity element of the operator ⊕ (S is eliminative)

and ⊕ is monotonic, the inference task of P (Equation 1) is to compute:

gCBI(Z) =
⊕

Y

g(X,X−X)

=
⊕

Y

(g(X = x,X−X) ⊕ g(X �= x,X−X))

≥S

⊕

Y

g(X �= x,X−X) (4)

On the other hand, let us consider the global constraint g′ of P′ = (X,D′,S,F′).
We have: g′(X) =

⊗
f ′∈F′ f ′ = g(X �= x,X−X) according to the ε-GGAC al-

gorithm. Then it is straightforward to get g′CBI(Z) =
⊕

Y g′(X)≤SgCBI(Z) for
every value assignment of interested variable subset Z. �

Theorem 7 (Time Complexity of ε-GGAC). The worst case time complex-
ity of the ε-GGAC algorithm is O(r ·dk+1), where r is the number of constraints,
d is the maximum domain size, and k is the maximum scope size of constraints.

Proof : The worst case time complexity of the ε-GGAC algorithm is the same
as the GGAC algorithm, which is O(r · dk+1). �

5 Arc Consistency in Probability Assessment: An
Example

Probability inference problems can be seen as constraint-based inference by
treating conditional probability distributions (CPDs) as soft constraints over
variables. A Bayesian network (BN) [13] is a graphical representation for prob-
ability inference under conditions of uncertainty. BN is defined as a directed
acyclic graph (DAG) where vertices X = {X1, · · · ,Xn} denote n random vari-
ables and directed edges denote causal influences between variables. D = {D1, · · · ,Dn}
is a collection of finite domains for the variables. A set of conditional probability
distributions F = {f1, · · · , fn}, where fi = P (Xi|Parents(Xi)) is attached to
each variable (vertex) Xi. Then the probability distribution over X is given by
P (X) =

∏n
i=1 fi.

As a fundamental problem of probability inference, the probability assess-
ment problem in Bayesian networks computes the posterior marginal probabil-
ity of a subset of variables, given values for some variables as known evidence.
We show in [9] that the probability assessment problem can be represented as
a CBI problem using the commutative semiring Sprob = 〈R+ ∪ {0},+,×〉. As
discussed in Section 1, soft arc consistency enforcing techniques in the Semiring
CSP and Valued CSP frameworks cannot handle this problem. We show in this
section that our GGAC and ε-GGAC enforcing algorithms can preprocess the
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Fig. 5. The number of binary operations required for probability assessment after using
the ε-GGAC algorithm (shown as a fraction of the number required without ε-GGAC)
and the resultant error of the marginal probability for the Insurance network as a
function of ε.

probability assessment problem efficiently. It is easy to show that α⊗ = 0 = 0
and Sprob is monotonic.

The Bayesian network used here is the Insurance network from the Bayesian
network Repository [14]. The network has 27 variables and 27 non-binary con-
straints (CPDs). In our experiments, we randomly choose two variables as ob-
served. The ε-GGAC algorithm is used to preprocess the problem. The junction
tree algorithm in Lauritzen-Spiegelhalter architecture [15] is used to infer the
marginal probability of every unobserved variable. We compare the number of
binary operations required for probability assessment after using the ε-GGAC
algorithm (shown as a fraction of the number required without ε-GGAC) and
the resultant error of the marginal probability for the Insurance network as a
function of ε in Figure 5. At each value of ε, we collect data of 5 runs. Results
of our experiments is shown in Figure 5. It is clear that ε controls the tradeoff
of the precision and the speed of the inference.

6 Conclusion

As the most important local consistency techniques in constraint programming,
arc consistency [1] and its non-binary version, generalized arc consistency [2,



3], are widely studied. The soft arc consistency algorithms [6, 7] in the Semir-
ing CSP [4] and Valued CSP [5] frameworks extend successfully the notion of
arc consistency to the soft constraint processing. However, the idempotent con-
straint combination operators or the fair valuation structure in these frameworks
restrict the application of arc consistency enforcing algorithms to other problems
with analogous representations to hard and soft CSPs. As the first result of this
paper, we propose a weaker condition of applying generalized arc consistency en-
forcing techniques to a broader coverage of constraint-based inference problems,
based on a semiring-based unified framework for CBI problems [9]. The weaker
condition proposed here depends only on the existence and property of the com-
bination absorbing element and does not depend on other semiring properties.
We also present a concept of ε-GGAC that simplifies the representation of a CBI
problem approximately. We show in this paper that the approximate inference
task is a lower bound of the exact one w.r.t the total ordering of values in the
commutative semiring structures. We also presented several generalized arc con-
sistency enforcing algorithms in this paper. The worst time complexity of our
generalization of generalized arc consistency enforcing algorithm is O(r · dk+1),
where r is the number of constraints, d is the maximum domain size, and k is
the maximum scope size of constraints. Our generalization of generalized arc
consistency provides opportunities to researchers in the constraint programming
community to extend their knowledge of local consistency enforcing approaches
to other constraint-based inference problems such as probability inference and
decoding problems.
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