
Probabilistic Constraint Nets:
Constraint-Based Approach to Modeling and

Verification of Hybrid Systems with Uncertainty.

Robert St-Aubin Alan K. Mackworth

TR-2004-05

Department of Computer Science
University of British Columbia

Vancouver, BC, V6T 1Z4, CANADA
{staubin,mack}@cs.ubc.ca

April 21, 2004

Abstract

Due to the recent technological advances, real-time hybrid dynamical systems are be-
coming ubiquitous. Most of these systems behave unpredictably, and thus, exhibit un-
certainty. Hence, a formal framework to model systems with unpredictable behaviours
is needed. We develop Probabilistic Constraint Nets (PCN), a new framework that
can handle a wide range of uncertainty, whether it be probabilistic, stochastic or non-
deterministic. In PCN, we view probabilistic dynamical systems as online constraint-
solvers for dynamic probabilistic constraints and requirements specification as global
behavioural constraints on the systems. We demonstrate the power of PCN by applying
it to a fully hybrid model of an elevator system which encompasses several different
types of uncertainty. We present verification rules, which have been fully implemented,
to perform automatic behavioural constraint verification.

1 Introduction and Motivation
The notions of constraint programming and of Constraint Satisfaction Problem (CSP)
are important paradigms that have been studied extensively. Typically, they provide
problem solvers, which are, more often then not, off-line solvers. Despite the advances
in the field of CSP, one area that has yet to be explored thoroughly is the problem of
designing dynamical systems in a constraint-based fashion. Dynamical systems can-
not be handled in an off-line approach but rather should be seen as online constraint
satisfying systems. One proposed solution, Constraint Nets (CN), was developed for
building deterministic hybrid intelligent systems as situated agents [1]. In Cn, a deter-
ministic dynamical system is modeled, in a unitary way, by the coupling of an agent
with its environment.

Real-time dynamical systems, however, commonly behave somewhat unpredictably
and thus often exhibit structured uncertainty. We have elaborated the CN framework
so that we can reason about stochastic constraint-based hybrid dynamical systems. We
call this new framework the Probabilistic Constraint Nets (PCN) model. The cor-
responding coupled relationship between an agent and its (uncertain) environment is
shown in details in Figure 1. From this figure, one can see how the coupled agents
act on, and react to, each other in a closed-loop system evolving over time. It is im-
portant to notice how the system is affected at different levels by the various types of
uncertainty.

Figure 1: The structure of a constraint-based agent system

We model an agent as composed of two distinct constraint-based modules: a body
which usually encompassing the various sensors and actuators, and a controller, which
is the software portion that controls the behaviour of the agent. With its sensors, the
agent’s body senses the uncertain environment, and reports to the controller on the per-
ceived state of the environment. In turn, the controller, now equipped with an updated

1

status of the state of the environment, sends appropriate control signals to the actuators
of the body to perform the required actions. These actions affect the state of the world,
hence changing the agent’s environment.

In order to handle embedded systems in an efficient way, we must move beyond
the typical offline constraint satisfaction model and adopt a model where the solution
to a constraint problem is a temporal trace of values, obtained via a non-anticipative
transformational process, a transduction, of the input trace over time. Furthermore, the
hybrid nature of most embedded systems necessitates that computations be performed
on various time structures such as discrete, continuous or event-based. In this paper,
we show how the PCN framework is suited for modeling and reasoning about such
systems. Moreover, we introduce a formal behavioural constraint language, average-
timed ∀-automata, and a set of verification rules which enable us to perform behaviour
constraint satisfaction.

1.1 Modeling Uncertainty
So far, we have not directly addressed the importance of modeling a systems’s uncer-
tainty with a constraint-based approach. In fact, one could go as far as asking whether
one should even worry about uncertainty within systems. Since no matter how well
uncertainty is modeled, one will never capture its exact nature, and thus, one should
simply avoid modeling it all together. However, many factors, such as industrial pro-
duction variations, incomplete information or even numerical precision errors lead,
to the conclusion that uncertainty is inherently present in any real physical system.
Therefore, avoiding to model the effects of the various sources of uncertainty can have
a drastic influence on the system’s behaviour. Although the uncertainty model might
not reflect the exact nature of the system under study, completely ignoring it from the
modeling task can be even more disastrous. For instance, when designing an airplane
controller, it is crucial to take the uncertainty of the wind speed into account as a given
controller might be optimal for a certain wind condition but might behave dangerously
for other wind conditions.

As another example, consider a simulation of the behaviour of an autonomous
robotic system traveling to a series of goal locations, as shown in Figure 2. In the
situation where the uncertainty in the odometry of the robot is ignored, one can see
that whether or not a “reset” function of the belief state is used to relocate the robot
when it has reached an intermediate goal, the robot’s belief of its location will diverge
from its true position as time goes by, as it is increasingly affected by the odometric
uncertainty. It is clear from this example that for the robot to ”know” where it is and
eventually localize itself, a model of uncertainty is needed.

As shown in Figure 1, we consider three common ways in which the uncertainty
can enter a system:

1. Uncertainty in the Dynamics: Uncertainty can enter a system through the ac-
tual model of the physical system. High-order and nonlinear dynamics can be
unknown or deliberately ignored in order to keep the model simple and tractable.
This lack of knowledge of the true underlying dynamics introduces some uncer-
tainty in the model, thus rendering the behaviour somewhat unpredictable.

2

−40 −20 0 20 40 60 80 100 120
−30

−20

−10

0

10

20

30

40

50

60
Traveling Robot: uncertainty in the odometry.

Robot’s real position.
Robot’s belief: reset.
Robot’s belief: no reset.
Obstacles
Goals

1

2,7
6

3,5

4

Figure 2: Autonomous robot chasing series of targets. Effect of uncertainty in the
odometry.

Let us revisit the previous mobile robot example of Figure 2. Consider for in-
stance that some nonlinear effects in the actuators of the robot need to be mod-
eled in order to precisely capture their dynamics. However, to simplify the
model, one might want to omit these effects. Yet, omitting to account for the
uncertainty introduced in the dynamics by the simpler model might lead to im-
perfect movement of the robot. As a result, the robot might have a false belief of
where it is, even though it reaches the intermediate goals.

2. External Disturbances: Disturbances (not attributed to the inaccuracy of the
model of the agent itself), can also enter in the dynamics of the plant. Such
uncertainty is caused by external disturbances that are outside of the control of
the system. E.g., barometric pressure or wind speed are elements outside of the
plant’s dynamics which can influence the behaviour of an airplane system.

3. Sensor Noise: Referred to as “noise” since it is usually modeled via Gaus-
sian white noise (Brownian motion), this type of uncertainty enters the system
through imprecise sensor measurements. For example, sensor noise could come
from the sonar readings of a mobile robot.

3

2 Introduction of the PCN Framework

2.1 Overview of Constraint Nets
Before going into the description of the syntax and semantics of the Probabilistic Con-
straint Net model, we wish to provide an introduction to the framework on which PCN
is based: Constraint Nets (CN). Developed by Zhang and Mackworth [1], the CN mod-
eling framework is built on a topological view of time and domain structures along
with notions of traces, events and transductions. These definitions, which we present
below for sake of clarity, represent the foundation for the notion of time and domain
in the Constraint Net framework. We retain these concepts and extend the CN frame-
work to build the Probabilistic Constraint Net model. We refer the reader to Chapter
3: Topological Structure of Dynamics, from [2], for a thorough introduction of those
concepts and more concerning the CN modeling framework.

Within (P)CN, we view time and domains as fully abstract concepts, defined as
follows:

• Time is presented as a linearly ordered set 〈T ,≤〉 with a least element t0, and a
metric d on the set T . With this abstract representation of time, one can model
discrete, continuous or event-based systems.

• Simple and composite domains denote, respectively, simple data types (e.g. re-
als, integers, Boolean and characters) and structured data types (e.g. arrays,
vectors or objects). A simple domain is represented as a pair 〈A ∪ {⊥A}, dA〉
where A is a set, ⊥A /∈ A means undefined in A, and dA is a metric on A. Com-
posite domains are obtained by the product of simple domains. Obviously, with
this abstract notion, domains can be numerical or symbolic, discrete or continu-
ous.

We also view the history of a dynamical system as a set of traces, where the trace
of each variable1 is defined as follow:

• Traces can intuitively be perceived as changes of values over time. Formally, a
mapping v : T → A from time T to domain A is called a trace. An event trace
is a trace with a Boolean domain. An event in an event trace is a transition from
0 to 1 or from 1 to 0.

It is important to note that for a deterministic system, the initial value of a trace
completely defines the whole trace. Indeed, given the (deterministic) dynamics of a
system, with the initial value of each variable, one can completely predict the value of
each variable over the time history of the system. In the presence of uncertainty, how-
ever, this fails to be true. Given the model of the uncertain dynamics of a system and
its initial values, one can only predict the possible trajectories, i.e., the set of all traces
that the system can take. Therefore, one has to be extremely careful when designing
systems exhibiting uncertainty as although some trajectories might be acceptable for
a system, chances are that some undesired trajectory can be achieved with the current

1From now on, we will refer to variables and locations interchangeably.

4

conditions. Thus, controller design and behaviour verification becomes not only very
important but also much more complicated. We will return to these issues in the later
sections of this paper.

In the CN framework, functions are referred to as transductions. Formally, these
are defined as:

• Transductions are causal mappings from inputs to outputs over time, either oper-
ating according to a certain reference time or activated by external events. Note
that in PCN, the notion of causal mapping will be replaced by adapted mapping,
its measure theoretic equivalent. However, both concepts have a similar intuitive
meaning. The class of simple transductions contains transliterations and delays.
A transliteration is a pointwise extension of a function. It can be seen as a trans-
formational process without internal state (memory). A (unit) delay is a process
where the output value at time t is the input value at time t−1. Intuitively, (unit)
delays can be seen as a unit memory.

2.2 Probabilistic Constraint Nets
We developed a model for building probabilistic hybrid systems as situated agents.
As our framework extend the CN framework, we refer the reader to [1] for a thorough
introduction to the basic definitions and concepts which we will avoid here for economy
of space.

Definition 2.1 (Probabilistic Constraint Nets) A probabilistic constraint net P is a
tuple 〈Lc, Tp, Td, Cn〉, where Lc is a finite set of locations, each associated with a
sort; Td is a finite set of labels of transductions, each with an output port and a set of
input ports, and each port is associated with a sort; Tp is a finite set of labels of prob-
abilistic transductions, each with an output port and a set of input ports (parameters
for standard probability distributions), and each port is associated with a sort. Ev-
ery probabilistic transduction is associated with a given probability distribution, either
discrete or continuous, thus the sort of the output of a probabilistic transduction is the
sort of its probability distribution. Cn is a set of connections between locations and
ports of the same sort, with the restrictions that (1) no location is isolated, (2) there
is at most one output port connected to each location, (3) each port of a transduction
connects to a unique location.

To explain the notion of transductions, we need to introduce the concept of a trace,
which intuitively, denotes changes of values over time. Formally, a trace is a mapping
v : T × Ω → A from time T and event space Ω to a domain A. In practice, one
does not need to take into account the event space when observing a trace. Therefore,
when no ambiguity arises, we will shorten our definition of a trace to v : T → X . A
transduction is a mapping from input traces to an output trace that satisfies the non-
anticipative causal relationship between its inputs and output.

Probabilistic transductions act in some ways like random number generators, obey-
ing a given probability distribution. Thus, in practice, probabilistic transductions can
be represented as discrete (e.g. Poisson or uniform) or continuous (Gaussian or expo-
nential) probability distributions.

5

Figure 3: Gaussian probability distribution as a Probabilistic Transduction.

It can easily be seen that a probabilistic transduction induces a random variable
as its output location. Therefore, one might wonder if there is a difference between a
location which is the output of a deterministic transduction and one that is the output of
a probabilistic transduction. The difference is subtle as it can be seen that, once feed-
back is introduced, every location is in fact a random variable and thus should be seen
as a probabilistic location. We will, however, not make the distinction between prob-
abilistic and deterministic locations but rather keep the distinction at the transduction
level.

The Probabilistic Constraint Net framework is developed to model probabilistic
systems which cannot adequately be described by deterministic frameworks. More-
over, most existing probabilistic modeling paradigms can only efficiently model a small
subset of the types of uncertain systems that arise in practice. The PCN framework al-
lows for a complete hybrid modeling approach, where one can model time and domains
as either discrete, continuous or both, and uncertainty as taking shape in many different
ways: probabilistic like in a Markov Chain, or stochastic as with Brownian Motion and
stochastic differential equations. The flexibility of our framework is a great asset as
it allows a designer to model a complex system under the umbrella of a single mod-
eling language. Another advantage of our framework is its graphical representation.
A PCN can be represented by a bipartite graph where locations are depicted by cir-
cles,transductions by boxes and connections by arcs. In addition, we depict probabilis-
tic transductions with double boxes to differentiate them from deterministic transduc-
tions. Consider for example the task of modeling a Gaussian probability distribution in
PCN. To do so, one would need to specify the value of µ (the mean) and σ2 (the vari-
ance), the two inputs of the Probabilistic Transduction as shown in Figure 3. Moreover,
Figure 4 displays a closed probabilistic constraint net representing the correct mathe-
matical interpretation of a generic stochastic differential equation (also known as an Itô
process):

Xt = Xt0 +

∫ t

t0

f(s,Xs)ds+

∮ t

t0

g(s,Xs)dWs (1)

Note that the second integral
∮

in this equation is the Itô Stochastic integral which
differs from the usual Riemann integral. Semantically, a probabilistic constraint net P
denotes a set of equations o = F(i,o) where each function F corresponds to a trans-
duction in P . The semantics of P is a “solution” of the set of equations. Formally, we

6

f

gX

+

Figure 4: PCN model of an Itô process.

can show that the solutions are stochastic processes, usually Markov processes, and in
many cases, diffusion processes. We view the constraint satisfaction problem as a dy-
namic process that approaches the solution set of the given constraints asymptotically
(in the stochastic sense). The semantics of PCN differ significantly from CN, which is
based on the fixed point solution of a set of equations. See [3] for the relation between
stable attractors and solutions of constraints.

To illustrate this, in Figure 5 we compare, two dynamical systems with nominal
component

Ẋt = −Xt ∗ (Xt − 1) ∗ (Xt − 2).

The first one is deterministic and has two distinct stable attractors (equilibria), at 2 and
at 0, as shown in Figure 5(a). The second is affected by a Brownian Motion process.
For the this system, as shown in Figure 5(b), a starting value at X0 = −2, would cause
the system to be attracted toward the closest equilibrium which is at X = 0. The
system fluctuates around this attractor, reacting under the influence of the Brownian
motion component and, around time t = 12, a large enough noise disturbance pushes
the system over the value of 1, causing the system to be attracted toward the other
equilibrium, at X = 2. Another influx of noise flips the system back to the lower
equilibrium at t = 35 and so on. This example shows the effect of uncertainty on the
system and on the solution of a set of constraints.

3 The Dynamics of An Elevator System with Uncer-
tainty

To demonstrate the scope of our approach, we will analyze an elevator system exhibit-
ing uncertainty. Elevator systems constitute a useful testbed for hybrid systems, as
confirmed by the fact that they have been used as a benchmark for various approaches
to real-time systems [4, 5, 6, 7]. Nevertheless, most previous approaches focus on
discrete deterministic dynamics. Combining continuous Newtonian dynamics and dis-
crete control from users’ requests, we extend the benchmark example in [4] to account
for the different types of uncertainty that can arise in a real physical elevator system.
We model the different levels of the system (continuous motion, discrete controller)

7

0 20 40 60 80
−2

−1

0

1

2

3
ODE

time

X
(t

)

0 20 40 60 80
−2

−1

0

1

2

3
SDE

time

X
(t

)

(a) (b)

Figure 5:
(a) ODE: Ẋt = −Xt(Xt − 1) (Xt − 2); X0 = −1 and X0 = 1.5

(b) SDE: Ẋt = −Xt(Xt − 1) (Xt − 2) + Nt; X0 = −2

and provide a methodology for verifying the behaviour of the system with respect to a
behavioural constraint of real-time response. We refer the reader to [4] for a complete
description and analysis of the deterministic hybrid version of this example.

In Figure 6, we show the PCN model of the elevator body as represented by a
second order stochastic differential equation, based on Newton’s second law:

ḧ = k(t)ḣ+ F + w(t) (2)

where F is the motor force (control input), k(t) is the coefficient of friction and h is
the height of the elevator. Moreover, the model is augmented two types of uncertainty:
(1) uncertainty in the dynamics through variation of the friction coefficient k(t), and
(2) a time-varying external disturbance force w(t) acting on the elevator. We assume
that k(t) has a nominal value of k0 = 1.05 and that it can vary with k(t) ∈ [0.70, 1.40],
modeled as a Gaussian White Noise process with zero mean and standard deviationσ =
0.15. With these parameters, we have Pr(|k(t) − k0| ≤ 0.35) ≥ 0.9804; that is, the
value of the friction coefficient may exceed the presumed bounds on the uncertainty, but
with a small non-zero probability. This phenomenon indicates a “soft” norm constraint
on the uncertainty.

We will later augment the system with probabilistic passenger arrivals, and will
then show that the system satisfies the constraint of serving passengers within fixed
bounded time on average.

4 Behavioural Constraints
The online satisfaction of the constraints of the dynamics of a the system ensure that its
behaviour will be according to the stochastic process that corresponds to its solution.
However, such constraint satisfaction does not guarantee that the behaviour of the sys-
tem will satisfy global behavioural constraints. For example, consider the dynamics of
our elevator system. Equation 2 represents the constraints on the dynamics, essentially

8

F

w
+

+

σ

h’ h

+

+

+

ht’’ ht’

hw’

−k0

Figure 6: The BODY module of the elevator system

stating that the elevator must move obeying laws of Newtonian motion. Although this
equation can represent very accurately the local behaviour of the system, it does not
preclude the elevator from stopping halfway down a floor nor does it guarantee that a
service request will always be successful in timely manner. Such restrictions are global
constraints on the behaviour of the system and cannot easily be represented within the
PCN framework. We will thus introduce a specification language, average-timed ∀-
automata, that will allow us to represent behavioural constraints of a given system.
Together, these two languages will specify the whole set of constraints on a stochastic
dynamical system.

For the scope of this paper, we will focus on a class of dynamical systems that we
call stochastic dynamical systems (SDS).

4.1 Stochastic Dynamical Systems
Definition 4.1 (Stochastic Dynamical System (SDS)) A stochastic dynamical system
over the metric space (X, d) and defined on a complete probability space (Ω,F ,Ft,P),
is a mapping

φ : T × Ω ×X → X,

with the following properties:

1. Ft -adapted:2 if φ(t, ω) is Ft-measurable ∀t ∈ T .

2. Measurability: φ is B(T) ⊗F ⊗ B, B-measurable.

3. Cocycle property (Chapman-Kolmogorov equations):

φ(0, ω, x) = x, ∀x ∈ X

φ(t+ s, ω, x) = φ(t, ω, φ(s, ω, x)), ∀s, t ∈ T , ω ∈ Ω.

With every stochastic dynamical system φ, we can associate a probability distribu-
tion which we will call an evolution kernel.

2We will also refer to this property as non-anticipative

9

Definition 4.2 (Discrete-time Evolution Kernel) An evolution kernel on a discrete
time structure T is a function K : T ×Xk × B(X) such that:

• ∀x ∈ Xk,K(·, x, ·) is a probability measure

• ∀B ∈ B(X),K(·, ·, B) is a measurable function.

In the remainder of this paper we will focus our attention toward time-invariant and
Markovian systems. We briefly introduce the definition of these concepts.

Proposition 4.1 (Time-Invariance) The behaviour of a SDS is time invariant if its
associated evolution kernel K is stationary, that is, if the condition

K(t+ u, x,B) = K(t, x, B), k ≤ t

is satisfied.

Proof (Time-Invariance): We can assume k = 1 without loss of generality. This
equality implies that Pr(Xt+u+1 ∈ B|Xt+u = x) = Pr(Xt+1 ∈ B|Xt = x) for
t0 ≤ t < t + 1 < ∞ and t0 ≤ t + u < t + 1 + u < ∞. In this case, the evolution
kernel is a function only of x, and B (and 1). Hence we can write it in the form

K(x,B) = Pr(Xt+1 ∈ B|Xt = x), 0 ≤ t <∞

which is equivalent to the probability of evolution from state x to B regardless of the
position of the system in time. 2

Proposition 4.2 (Markovian Property) The Markovian property of order 1 is also
equivalent to the evolution kernel being a conditional distribution of only the previous
state, i.e., K : T ×Xk × B(X), with k = 1.

Proof (Markovian Property): Trivial. 2

Before formally discussing the notion of behavioural constraint verification, it is
necessary to discuss the relationship between stochastic dynamical systems and their
behaviours. Intuitively, the behaviour of a stochastic dynamical system is the set of
observable input/output traces of a given system. Let P(I, O) be a PCN module,
where (I, O) is the tuple of input and output locations of the module. Formally, an
input/output pair (i, o) is an observable trace of P(I, O) iff ∃F ∈ [[P(I, O)]] such
that o = F (i). The reader should note that, within the PCN framework, the function
F can be deterministic, non-deterministic or probabilistic, depending on what type of
transductions (deterministic or probabilistic) and locations (hidden or not) are used
to model the system. We define the behaviour of P(I, O) as the set of all observable
traces and we denote it as [[P(I, O)]]. We will abbreviate [[P(I, O)]] to [[P]] if I = I(P),
O = O(P) and no ambiguity arises.

The notion of equivalency of PCN modules stems directly from their behaviour.
Two PCN modules, P1 and P2, are equivalent, denoted P1 ' P2, iff they exhibit the
same behaviour: [[P1]] = [[P2]].

Now that we have defined formally what we mean by the behaviour of a system,
we introduce the definitions of time-invariant and Markovian behaviours.

10

Definition 4.3 (Time-Invariant) Let B = {v|v : T → A} be a behaviour. B is a
time-invariant behaviour3 if for any a1, a2 ∈ A, ∀v ∈ B such that v(t1) = a1 and
v(t1 + s) = a1 then Pr(v(t2) = a2) = Pr(v(t2 + s) = a2) for t1 < t2 ∈ T .

Definition 4.4 (Markov Property) Let B be a behaviour. Given any time point t ∈ T ,
v ∈ B and a ∈ A, such that v(t) = a, the behaviour is called Markovian (of order 1) if
the probability distribution of the next state, v(t+1), is independent of the past history
of the system except for the state v(t) = a. A behaviour is Markovian of order n if the
probability of the next state depends only on the n most recent states.

The class of discrete time stochastic dynamical systems exhibiting a time-invariant
Markovian behaviour is very vast. In fact, any discrete-time, time invariant Markovian
stochastic dynamical system corresponds to what we call a stochastic transition system.

A stochastic state transition system is a tuple 〈S,P,Θ〉 where S is a set of states, P :
S×S is an evolution kernel representing the transition probability distribution between
two states, i.e., P(s1, s2) is the probability of a transition occurring between s1, s2 ∈ S
and Θ represents the distribution of the initial state of the system. Notice that due to
the time invariance and Markovian properties, P is independent of the time parameter
and transitions only depend on the current state. For any discrete time T , v : T → S
is a trace of 〈S,P,Θ〉 iff ∀t > 0,P(v(pre(t)), v(t)) > 0, where pre(t) represents the
time value preceding t. We will denote an allowed transition from v(pre(t)) to v(t) by
v(pre(t)) ; v(t). A behaviour B corresponds to a stochastic state transition system
〈S,P,Θ〉 iff B is equal to the set of all traces of 〈S,P,Θ〉. Stochastic state transition
systems constitute a compact representation of time invariant Markovian behaviours.

Let us now introduce the notion of probability measure on a behaviour. To do so,
we introduce the notion of a Borel space on traces of a system, which follows [8, 9].
Let B be the behaviour of a stochastic state transition system STS = 〈S,P,Θ〉. A
distribution Θ on the initial state of STS induces a probability measure µΘ on its
traces in the following way. First let s0, s1, . . . , sn ∈ S with si ; si+1, (0 ≤ i < n).
Then denote C(s0, s1, . . . , sn) by the cylinder set of all traces v ∈ B such that v(0) =
s0, . . . , v(n) = sn. Define F(B) to be the smallest σ-algebra on the behaviourB which
contains all cylinder sets C(s0, . . . , sn). The probability measure µΘ on F(B) is the
unique measure defined by induction on n with base case n = 0 : µΘ(C(s0)) = Θ(s0)
and induction hypothesis for n ≥ 0:

µΘ(C(s0, . . . , sn, sn+1)) = µΘ(C(s0, . . . , sn)) · P(sn, sn+1)

We define a behavioural constraint (or requirements specification) BC for a stochas-
tic system STS = 〈S,P,Θ〉 as a set of allowable input/output traces of the sys-
tem, i.e., BC ⊂ ×I∪OA

T
l . Let B = [[STS]] be the behaviour of STS. We say that

STS satisfies the behavioural constraints BC at a level α, denoted by B |=α BC iff
µ(B ∩ BC) = µ({v ∈ B|v |= BC}) ≥ α, where v |= BC is the predicate for v satis-
fying the behavioural constraint BC . Perfect satisfaction of behavioural constraints is
indicated by α = 1, which means that all traces of B are allowable traces. Satisfaction
at a level of α < 1 results in a subset of the traces of B being undesirable.

3This is sometimes also referred to as time homogeneous behaviour.

11

Obviously, a satisfaction at level α = 0 is equivalent to a total absence of satis-
faction, i.e., none of the possible traces of the system will ever satisfy the constraint
BC (µ = 0 ⇒ (B ∩ BC) = ∅). Requirements satisfaction of deterministic system
is equivalent to requirement satisfaction at level α = 1. However, in the presence
of probabilistic behaviour, requiring satisfaction at level α = 1 might be too strict
as one might be willing to accept a small risk of not satisfying the requirement (e.g.,
α = 0.95), rather then flat out rejecting the system. Note that for the scope of this pa-
per, we will elaborate a method which performs behavioural constraint satisfaction at
level α = 1 for untimed constraints while temporal behavioural constraints will be sat-
isfied on average. We are currently working on methods for behavioural specification
at any level α < 1.

Now that we formally defined the notion of requirements specification at level
α, we can now introduce the notion of robustness and complexity of systems. The
robustness of a system is a notion defined on parameterized probabilistic constraint
nets. We say that a parameterized system PP

1 is less robust than a second system
PP

2 with respect to a behavioural constraint BC , denoted by PP
1 �BC

PP
2 , iff ∀p ∈

×PDP , [[PP
1]](p) |=α BC ⇒ [[PP

2]](p) |=β BC , for α ≤ β. The two systems above
are equivalent w.r.t. BC , written by PP

1 'BC
PP

2 , iff PP
1 �BC

PP
2 and PP

2 �BC
PP

1 .
In this case, both systems would satisfy the behavioural constraint at level α = β.
Note that this definition of equivalence is somewhat more subtle than for deterministic
systems. Equivalence of deterministic systems requires that the behaviours of the two
systems be the same. This implies that the traces of the two systems are exactly the
same. For probabilistic systems, we relax this assumptions by only requiring that the
measure over allowable traces be the same for both systems. However, it is easy to
construct two equivalent systems for which their respective set of allowable traces are
different, even though both sets have equal measure.

Let us now define the complexity of a behaviour. Behavioural complexity is defined
with respect to a given measurement on the size of a stochastic dynamical system.
This measurement could be the number of transductions, the number of delays or the
maximum number of delay element in any path (which is equivalent to the order of the
Markovian property of the system). Therefore, given a measurement κ, denote |P|κ
as the size of the system P with respect to κ. We then define the complexity of the
behaviours satisfying the requirements specification BC , w.r.t. κ and level α, written
|BC |ακ , to be the smallest stochastic dynamical system which respects BC . That is,
|BC |ακ = min{|P|κ}[[P]]|=αBC

.

4.2 ∀-Automata
A popular method for representing behavioural constraints of systems is automata.
Such method is also very well suited for the PCN framework as we can view traces
as a generalization of infinite sequences. A desired property of the systems (hence the
traces) can be specified by an automaton. That is, a trace of a system would satisfy the
behavioural constraints iff the associated automaton accepts the trace.

Manna and Pnueli [10] first proposed ∀-automata and applied it to the specifica-
tion and verification of concurrent programs. An extension to ∀-automata, timed ∀-
automata, was proposed in [2] and applied in the context of behaviour verification of

12

dynamical hybrid systems. We augment the notion of ∀-automata behaviour verifica-
tion to average-timed ∀-automata for stochastic dynamical systems.

Definition 4.5 (Syntax of ∀-automata) A ∀-automatonA is a quintuple 〈Q,R, S, e, c〉
whereQ is a finite set of automaton states,R ⊆ Q is a set of recurrent states and S ⊆ Q
is a set of stable states. With each q ∈ Q, we associate a state proposition e(q), which
characterizes the entry condition under which the automaton may start its activity in q.
With each pair q, q′ ∈ Q, we associate a state proposition c(q, q′), which characterizes
the transition condition under which the automaton may move from q to q ′.

R and S are the generalization of accepting states to the case of infinite inputs. We
denote by B = Q− (R ∪ S) the set of non-accepting (bad) states.

Let T be a discrete time structure, A be a domain and v : T → A be a trace. A
run of A over v is a mapping r : T → Q such that (1) v(0) |= e(r(0)); and (2) for all
t > 0, v(t) |= c(r(pre(t)), r(t)). Obviously, any complete automaton guarantees that
any discrete time trace has a run over it.

If r is a run then let Inf(r) denote the set of automaton states which appears
infinitely often in r. That is, Inf(r) = {q|∀t, ∃t0 ≥ t, r(tq0) = q}. If T has a greatest
element t0 then we define Inf(r) = {r(t0)}. Therefore, Inf(r) can be seen as a
generalization of the “final value” of a system.

Let A be a ∀-automaton. A run r over A is defined to be accepting iff it satisfies
one of the two conditions:

1. Inf(r) ∩ R 6= ∅, i.e., some of the states appearing infinitely many times in r
belong to R, or

2. Inf(r) ⊆ S, i.e., all the states appearing infinitely many times in r belong to S.

Essentially, the notion of acceptance of traces states that in the long run, the system
either always returns to the set of recurrent states R or it will remain forever within the
stable set S. Systems which cannot guarantee this are deemed unsatisfactory for the
requirements specification. Based on this requirement, the semantics of ∀-automata
follow:

Definition 4.6 (Semantics of ∀-automata) A ∀-automaton A accepts a trace v, writ-
ten v |= A, iff all possible runs of A over v are accepting.

One should note that these semantics differ in the way it handles non-determinism
from the semantics of conventional automata, with which the reader might be more
accustomed to. A conventional automata C, which could in this context also be called a
∃-automata, accepts a language if there exists at least one run over C which is accepting.
However, in the context of behaviour verification, having at least one trace satisfying
the requirements is obviously not a strong enough statement as the accepted system
could have one and only one trace which satisfies the requirements. In the case of a
safety requirement, this is generally not what we define as a safe system.

As previously mentioned, we will, in this work, focus solely on requirements at
level α = 1 for untimed behaviour while we will introduce the notion of “average”
satisfaction for behavioural constraints containing a temporal component. Intuitively,

13

G G

(a)

S S

R R

R

R

(c)(b)

B

Figure 7: ∀-Automaton Specifications (a) goal achievement (b) safety (c) bounded
response

satisfaction at level α = 1 of a behavioural constraint amounts to the system not pos-
sessing any absorbing bad states. In practice, for a system to be without any absorbing
bad states requires that for any state of the stochastic dynamical system associated with
a bad automaton state, there must exist a path with positive probability which leads to
an accepting state (associated to eitherR or S). We will return to this observation when
introducing the verification rules later in this section.

For economy of space, we leave the remaining details of ∀-automata for the reader
to look up. We refer the reader to Chapter 10 of [2] for a comprehensive introduction
to behaviour verification with ∀-automata and .

Let us now present some common requirements specification of dynamical sys-
tems. Figure 7(a) represents a constraint which is satisfied if the traces of a systems
which eventually will always satisfy the goal conditionG are all accepted. Figure 7(b)
is a safety constraint which states that an acceptable system should never satisfy the
BAD condition B. Finally, Figure 7(c) is a bounded response constraint. It states that
whenever event R occurs, the response S will occur in bounded time.

4.3 Average-timed automata
Meaningful behavioural constraints often encompass temporal constraints. Consider
Figure 7(c), where one might be interested in a system satisfying a bounded response
specification where the time bound is a known finite constant. In order to represent
timeliness of behavioural constraints, timed ∀-automata was proposed [11]. Timed ∀-
automata augments basic ∀-automata with timed automaton states and time bounds.
This approach, however, is ill-suited for stochastic dynamical systems. Indeed, since
we are interested in solving behavioural constraints on stochastic systems, we can-
not talk about satisfying a given time constraint in an absolute way but rather we
need to reason about satisfying that time constraint on average. We mentioned ear-
lier that in order for a system to be accepting by a ∀-automata specification, it needs
not have any absorbing bad states. This is characterized by the limiting behaviour:
limt→∞Pr(Xt ∈ S ∪ R|X0 ∈ B) = 1. Although this requirement is sufficient to
guarantee that for any run r, Inf(r)∩R 6= ∅ or that Inf(r) ⊆ S, it does not guarantee
that it will happen in a finite time for every run. However, for systems without any
absorbing bad state, we are assured that the average time will be bounded, as stated in

14

the proposition below. We prove the result for finite state space, but the result can be
extended to countable state space at the price of a more complicated proof.

Proposition 4.3 Assume a finite state space S, and assume that, for all the bad states
B, there is a positive probability of moving toward an accepting state R or S, i.e., the
set of bad states is irreducible. Define ζs′

s as the time needed to reach state s′ from
state s. Then, E(ζs

b |b ∈ B, s ∈ R ∪ S) <∞.

Proof : Let p > 0 be the smallest probability with which a bad state b ∈ B moves
toward an accepting state. Due to the irreducibility of B, we are guaranteed that p > 0
exists. We can show that the measure of paths starting in a bad state and never reaching
the set of accepting states is limt→∞(1 − p)t = 0. Hence, any path which never
reaches the set of accepting states has measure 0. Let us now prove that E(ζs′

s |s ∈
B, s′ ∈ R ∪ S) < ∞. Assume that state s is located at n transitions away from s′, the
closest R ∪ S-state. Hence,

E(ζs′

s) =
∑∞

i=n ip
n(1 − p)i−n

= pn

(1−p)n−1

∑∞
i=n i(1 − p)i−1

= pn

(1−p)n−1
∂
∂p

(
∑∞

i=n(1 − p)i)

≤ pn

(1−p)n−1
∂
∂p

(
∑∞

i=0(1 − p)i)

= pn

(1−p)n−1
∂
∂p

(1
1−(1−p))

= pn

(1−p)n−1
1

(1−(1−p))2

<∞

2

A logical extension of time constraints is average time constraints. The idea be-
hind average time constraints is that although we cannot prove that a stochastic dy-
namical system can always satisfy some given time constraint, we can show that the
average behaviour of the system does satisfy the constraints. This is similar to the
well-known concept of sample paths and expected sample paths of stochastic analysis.
For completeness of this discussion, we present the notion of timed-∀-automata prior
to introducing the definitions for what we call average-timed ∀-automata.

Definition 4.7 (Syntax of timed ∀-automata) A timed ∀-automaton T A is a triple
〈A, T, τ〉 where A = 〈Q,R, S, e, c〉 is a ∀-automaton, T ⊆ Q is a set of timed au-
tomaton states and τ : T ∪ {bad} → R

+ ∪ {∞} is a time function.

It is easy to show that any ∀-automaton is equivalent to a special timed ∀-automaton
with T = ∅ and τ(bad) = ∞. Graphically, a T -state is denoted by a nonnegative real
number indicating its time bound. The conventions for complete ∀-automata (which
were omitted in the last section for lack of space) are adopted for timed ∀-automata.

Let v : T → A be a trace. We define a run r of T A over v has being a run of A
over v; r is accepting for T A iff

1. r is accepting for A and

15

2. r satisfies the time constraints. If I ⊆ T is an interval of T and q∗ : I → Q
is a segment of run r, i.e., q∗ = r|I , let µ(q∗) denote the measure of q∗, i.e.,
µ(q∗) = µ(I) = Σt∈Iµ(t) since I is discrete. Furthermore, let µB(q∗) denote
the measure of bad automaton states in q∗, i.e., µB(q∗) = Σt∈I,q∗(t)∈Bµ(t). Let
Sg(q) be the set of segments of consecutive q’s in r, i.e., q∗ ∈ Sg(q) implies
∀t ∈ I, q∗(t) = q. Let BS be the set of segments of consecutive B and S-states
in r, i.e., q∗ ∈ BS implies ∀t ∈ I, q∗(t) ∈ B ∪ S. The run r satisfies the time
condition iff

(a) (local time constraint) ∀q ∈ T, q∗ ∈ Sg(q), µ(q∗) ≤ τ(q) and

(b) (global time constraint) ∀q∗ ∈ BS, µB(q∗) ≤ τ(bad).

The first condition stipulates that for a local time constraint, the system will not
stay continuously in a given state q ∈ T for longer than its local time bound τ(q) . The
second condition requires the system to leave the set of bad states within τ(bad) time
units.

Definition 4.8 (Semantics of timed ∀-automata) A timed ∀-automaton T A accepts a
trace v, written v |= T A, iff all possible runs of T A over v are accepting.

We now present the syntax and semantics of average-timed ∀-automata, which ex-
tend the definitions for timed ∀-automata presented above. Average-timed ∀-automate
allow for the verification of behavioural constraints for systems exhibiting uncertainty.

Definition 4.9 (Syntax of average-timed ∀-automata) An average-timed ∀-automa-
ton ATA is a triple 〈A, T, τ〉 where A = 〈Q,R, S, e, c〉 is a ∀-automaton, T ⊆ Q
is a set of average-timed automaton states and τ : T ∪ {bad} → R

+ ∪ {∞} is an
average-timing function.

We can easily show that any ∀-automaton is equivalent to a special average-timed
∀-automaton with T = ∅ and τ(bad) = ∞. A T -state is denoted by a nonnegative real
number indicating its average-time bound. However, unlike with typical ∀-automata,
or even timed-∀-automata, we cannot define the acceptance of a single trace by an
average-timed ∀-automata. In fact, due to the stochastic nature of the systems of in-
terest, we are no longer interested in the behaviour exhibited by individual traces but
rather in the behaviour of a set of traces. Expected time constraints should be satisfied
by the average behaviours of systems, hence we need to look at the ensemble of traces
induced by those systems.

Let v : T → A be a trace from the behaviour B of a system. We define a run r of
ATA over v has being a run of A over v. A run r is accepting for ATA iff

1. r is accepting for A and

2. r satisfies the expected time constraints. If I ⊆ T is an interval of T and q∗ :
I → Q is a segment of run r, i.e., q∗ = r|I , let µ(q∗) denote the measure of q∗,
i.e., µ(q∗) = µ(I) = Σt∈Iµ(t) since I is discrete. Furthermore, let µB(q∗) de-
note the measure of bad automaton states in q∗, i.e., µB(q∗) = Σt∈I,q∗(t)∈Bµ(t).

16

Let Sg(q) be the set of segments of consecutive q’s in r, i.e., q∗ ∈ Sg(q) implies
∀t ∈ I, q∗(t) = q. Let BS be the set of segments of consecutive B and S-states
in r, i.e., q∗ ∈ BS implies ∀t ∈ I, q∗(t) ∈ B ∪ S. The run r satisfies the time
condition iff

(a) (local time constraint) ∀q ∈ T, q∗ ∈ Sg(q), E(µ(q∗)) ≤ τ(q) and

(b) (global time constraint) ∀q∗ ∈ BS, E(µB(q∗)) ≤ τ(bad).

Definition 4.10 (Semantics of average-timed ∀-automata) An average-timed
∀-automaton ATA accepts a trace v, written v |= ATA, iff all possible expected runs
of ATA over v are accepting.

As an example, Figure 8 depicts the real-time response constraint which states that
R will be reached within 40 time units of B, where the time in S is not accounted for.

(B)=40

S

B R

τ

Figure 8: Timed ∀-Automaton Specifications: real-time bounded response

5 Model-Checking Approach to Constraint-Based Be-
haviour Verification

We have defined above the concepts of the behaviour of a system and of behavioural
constraints. Given the behaviour B of a stochastic dynamical system and a behavioural
constraint BC , the behaviour satisfies the requirements at level α, written as B |=α

RS , iff µ({v ∈ B|v |= RS}) = α. As mentioned before, we will restrict ourselves
to the satisfaction of the behavioural constraints of a system at “average” level only.
Therefore, given the probabilistic constraint net model of a system and an average-
timed ∀-automaton specification, we say that the behaviour of the system satisfies the
requirement specification if and only if the all traces of the system are accepting for the
average-timed ∀-automaton.

The formal behaviour verification method consists of a set of model-checking rules.
The rules are a generalization of the rules for dynamical systems developed by [2],
which themselves extended the rules developed for concurrent programs [10].

17

5.1 Behavioural Constraint Verification Rules for Discrete-time
For sake of simplicity and since it applies directly to the elevator example presented
earlier, we will introduce the verification rules for the simplest possible situation: dis-
crete time and discrete domain. A generalization of the rules for arbitrary time and
domain will follow shortly.

As we mentioned earlier, any time-invariant Markovian behaviour B in discrete
time corresponds to a stochastic state transition system 〈SB,P,Θ〉 for which we de-
noted an allowed transition from state s to state s′ by s ; s′. We also write {ϕ}B{ψ}
iff the consecutive condition: ϕ(s) ∧ (s ; s′) → ψ(s′) is valid. This relation is dif-
ferent from the one defined for deterministic systems in that it is valid not if there is
a transition from s to s′ but more generally if there is an allowed transition (non-zero
probability of transition) from s to s′.

Our verification method is composed of three types of rules: Invariance rules (I),
Stability (Lyapunov-based) rules (S) and Average Timeliness rules (AT). Assume ATA
is a ∀-automaton 〈A, T, τ〉 representing the behavioural constraints for the stochastic
dynamical system: 〈S,P,Θ〉.

5.1.1 (I) Invariance Rules

We define a set of propositions {αq}q∈Q as a set of invariants for the behaviour B and
specification A iff

1. Initiality: ∀q ∈ Q, Θ ∧ e(q) → αq , and

2. Consecution: ∀q, q′ ∈ Q, {αq}B{c(q, q′) → αq′}.

Proposition 5.1 Let {αq}q∈Q be invariants for B and A. If r is a run of A over a trace
v ∈ B, then ∀t ∈ T , v(t) |= αr(t).

Proof : For any trace v, v(0) is an initial state, therefore, v(0) |= Θ. Furthermore, r is
a run, v(0) |= e(r(0)). Therefore, v(0) |= e(r(0)) ∧ Θ. Since e(r(0)) ∧ Θ → αr(0),
we have v(0) |= αr(0).

Assume that v(pre(t)) |= αr(pre(t)). Therefore, v(t) |= c(r(pre(t)), r(t)) →
αr(t) since v(pre(t)) ; v(t). In addition, v(t) |= c(r(pre(t)), r(t)). Therefore,
v(t) |= αr(t).

A set equipped with a well-founded relation is said to be a well-founded set. A
well-founded set is a partially ordered set which contains no infinite descending chains,
or equivalently, a partially ordered set in which every non-empty subset has a minimal
element. If the order is a total order then the set is called a well-ordered set. Since
by definition, time is a linearly ordered set with 0 as a least element, T is then a well-
founded set. Using the technique of mathematical induction for well-founded sets, we
can conclude that v(t) |= αr(t) for all t. 2

Note that this proposition stipulates that no matter which (uncertain) transition oc-
curs, the destination state must always satisfy the invariant condition. This is consistent
with the notion of invariants, regardless of whether the dynamics of the underlying sys-
tems are deterministic or not.

18

5.1.2 (S) Stability Rules

Let {αq}q∈Q be a set of invariants for B and A as defined above. A set of partial
functions {ρq}q∈Q is called a set of Lyapunov functions for B and A iff ρq : SB → R

+

satisfies the following conditions:

1. Definedness: ∀q ∈ Q,αq → ∃w ∈ R
+, ρq = w.

2. Non-increase: ∀q ∈ S, q′ ∈ Q, {αq ∧ ρq = w}B{c(q, q′) → E(ρq′) ≤ w}.

3. Decrease: ∃ε > 0, ∀q ∈ B, ∃q′ ∈ Q, {αq ∧ ρq = w}B{c(q, q′) → ρq′ − w ≤
−ε.}

Those three conditions are derived from [11]. However, the last two have been adapted
for stochastic dynamical systems. Condition (S2) requires that for each stable state
q ∈ S, the transitions from q lead on average to a state for which the value of the
Lyapunov function is less than or equal to the current value. Condition (S3) is similar in
that it requires that for each bad state q ∈ B, there exists at least one allowed transition
(i.e., with positive probability) leading to a state with strictly smaller Lyapunov value.
This is a formal requirement that can only be satisfied if there are no absorbing bad
states in the system under study, as discussed previously.

Proposition 5.2 Let {αq}q∈Q be a set of invariants for B and A. Let r be a run of A
over a trace v ∈ B. Also, let VB = {r|r is a run of A over v ∈ B} be the set of runs
induced by B. If {ρq}q∈Q is a set of Lyapunov functions for B and A, then

• ∀t ∈ T ,Er∗,v∗(ρr∗(t)(v
∗(t))) ≤ ρr(pre(t))(v(pre(t))), where r∗ and v∗ denote

all r′ ∈ VB and v′ ∈ B such that v(pre(t)) ; v′(t) and c(r(pre(t)), r′(t)),
when r(pre(t)) ∈ S;

• ∃ε > 0, ∀t ∈ T , ∃v′ ∈ B, ∃r′ ∈ VB, ([ρr′(t)(v
′(t)) − ρr(pre(t))(v(pre(t))) ≤

−ε] ∧ [(v(pre(t)) ; v′(t)) ∧ c(r(pre(t)), r′(t))]) when r(pre(t)) ∈ B.

Proof : Obtained from the conditions of the Lyapunov functions. 2

Theorem 1 Let {αq}q∈Q be a set of invariants for B and A. Let r be a run of A over
a trace v ∈ B. If {ρq}q∈Q is a set of Lyapunov functions for B and A, then

• ifBS is the set of segments of consecutiveB-states and S-states in r, then ∀q∗ ∈
BS, q∗ has a finite number of B-states;

Proof : From the conditions of the Lyapunov functions, we are assured that a transition
from any B-states will eventually lead to a state with smaller Lyapunov value. More-
over, from these conditions and due to the fact that the Lyapunov functions are defined
on a well-founded set, we are also assured that any segments containing only B-states
and S-states, the system will eventually finish in an absorbing S or will leave to an
R-state, both cases being satisfactory, hence completing the proof. 2

The first result of Proposition 5.2 is valid for every run of a system. However,
the last two results need to be applied to a set of traces, and thus to a set of runs. In

19

the context of stochastic dynamical systems, we cannot guarantee that for every trace a
transition from a bad (or stable) state to any other state will yield an immediate decrease
(or non-increase) in the value of the Lyapunov function; nevertheless, we can show that
there is a positive probability of this happening at any time point. Hence, we know that
at any time t there exists at least one trace whose transition from v(t) to v(t + 1) will
yield a decrease in the value of the Lyapunov function.

5.1.3 (AT) Average-Timeliness Rules

Let ATA = 〈A, T, τ〉 be an average-timed ∀-automata. Assume, without loss of gener-
ality, that time is encoded in the stochastic state transition system. We assume that it is
defined in a general sense as λ : SB → T ; i.e., as a function of time measure on states
returning the time until the next transition. Note that for the special case of discrete
time systems on N, λ ≡ 1 uniformly. We now define two different types of timing
functions, associated with the local and global average-time bounds respectively.

Once again, let {αq}q∈Q be a set of invariants for B and A. A set of partial func-
tions {γq}q∈T is called a set of local timing functions for B and ATA iff γq : SB → R

+

satisfies the following conditions:

(L1) Boundedness: ∀q ∈ T, αq → λ ≤ γq ≤ τ(q).

(L2) Decrease: ∀q ∈ T, {αq ∧ γq = w ∧ E(λ) = l}B{c(q, q) → E(γq) − w ≤ −l}.

A set of partial functions {ηq}q∈Q is called a set of global timing functions for B
and ATA iff ηq : SB → R

+ satisfies the following conditions:

(G1) Definedness: ∀q ∈ Q,αq → ∃w ∈ R
+, ηq = w.

(G2) Boundedness: ∀q ∈ B,αq → ηq ≤ τ(bad).

(G3) Non-increase: ∀q ∈ S, q′ ∈ Q, {αq ∧ ηq = w}B{c(q, q′) → E(ηq′) ≤ w}.

(G4) Decrease: ∀q ∈ B, q′ ∈ Q, {αq ∧ ηq = w ∧ E(λ) = l}B{c(q, q′) → E(ηq′) −
w ≤ −l}.

Proposition 5.3 Let {αq}q∈Q be a set of invariants for B and A, and r be a run of A
over a trace v ∈ A. If there exist local timing functions, {γq}q∈T , and global timing
functions, {ηq}q∈Q, for B and ATA, then

1. if Sg(q) is the set of segments of consecutive q’s in r, then ∀q ∈ T, q∗ ∈
Sg(q), E(µ(q∗)) ≤ τ(q), and

2. if BS is the set of segments of consecutive B and S-states in r, then ∀q∗ ∈
BS, E(µB(q∗)) ≤ τ(bad).

Proof :

1. Let {si}n
i=1 be a sequence of q-states.

From condition (ATL1), we know that ∀q ∈ T, αq → λ ≤ γq ≤ τ(q). Therefore
we can also deduce that:

20

(1) E(λ(sn)) ≤ E(γq(sn)) and

(2) E(γq(sn)) ≤ E(τ(q)) = τ(q).

From condition (ETL2), we get:

E(γq(s2) − γq(s1)) ≤ −E(λ(s1))

E(γq(s3) − γq(s2)) ≤ −E(λ(s2))

...

E(γq(sn) − γq(sn−1)) ≤ −E(λ(sn−1))

adding these inequalities, we have

E(γq(sn)) − E(γq(s1)) ≤ −Σn−1
i=1 E(λ(si)).

Using (1) and (2) above we get:

Σn
i=1E(λ(si)) ≤ τ(q),

E(Σn
i=1λ(si)) ≤ τ(q),

E(µ(q∗)) ≤ τ(q).

2. Let {si}n
i=1 be a sub-sequence of B-states in a BS segment. Similarly to the

proof above (using (ATG4) this time), we get:

E(ηq′

1
(s′1) − ηq1(s1)) ≤ −E(λ(s1))

E(ηq′

2
(s′2) − ηq2(s2)) ≤ −E(λ(s2))

...

E(ηq′

n
(s′n) − ηqn

(sn)) ≤ −E(λ(sn))

and
E(ηq′

i
(s′i)) ≥ E(ηqi+1(si+1))

we have
E(ηq′

n
(s′n)) − E(ηq1 (s1)) ≤ −Σn

i=1E(λ(si)).

Finally, from (ATG2) we get that E(ηq1(s1)) ≤ τ(bad) and E(ηq′

n
(s′n)) ≥ 0.

Therefore,
Σn

i=1E(λ(si)) ≤ τ(bad)

E(Σn
i=1λ(si)) ≤ τ(bad)

E(Σn
i=1µ(q∗)) ≤ τ(bad)

21

2

Following is the set of verification rules for a behaviour B and an average-timed
automaton ATA = 〈A, T, τ〉:

(I) Associate with each automaton state q ∈ Q a state formulaαq , such that {αq}q∈Q

is a set of invariants for B and A.

(S) Associate with each automaton state q ∈ Q a partial function ρq , such that
{ρq}q∈Q is a set of Lyapunov functions for B and A.

(ET) Associate with each average-timed automaton state q ∈ T a partial function γq,
such that {γq}q∈T is a set of local timing functions for B and ATA. Associate
with each automaton state q ∈ Q a partial function ηq , such that {ηq}q∈Q is a set
of global timing functions for B and ATA.

Let us now present the main result of this section. The following theorem stipulates
that if we are equipped with a set of invariants, Lyapunov functions and local and global
timing functions, then the behaviour verification is sound and complete.

Theorem 2 (Verification Rules) For any state-based and time-invariant behaviour B
with an infinite time structure and a complete average-timed ∀-automaton ATA, the
verification rules are sound and complete, i.e., B |= ATA iff there exist a set of invari-
ants, Lyapunov functions and timing functions.

Proof (Verification Rules):

Soundness (⇐=)
The construction of these rules guarantees the soundness of the verification method.

For any trace v, there is a run because ATA is complete. For any run r over v, if any
automaton state in R appears infinitely many times in r, r is accepting. Otherwise,
there is a time point t0 ∈ T , the sub-sequence r on I = {t ∈ T |t ≥ t0}, denoted q∗,
has only bad and stable automaton states. From the results of Proposition 5.2, if there
exist a set of invariants and a set of Lyapunov functions, q∗ has only a finite number
of B-states. Since time is infinite, all the automaton states appearing infinitely many
times in r belong to S; so r is accepting too. Therefore, every trace is accepting for
the automaton. If there exists a set of local and global timing functions, every trace
satisfies the timing constraints on average.

Completeness (=⇒)
On the other hand, if ATA is valid over B, then to prove completeness, we need to

show that there exist a set of invariants, a set of Lyapunov functions, and a set of local
and global timing functions that satisfy the requirements. We will use a constructive
proof which in turn will be used later when introducing the verification algorithm.

For any state s ∈ S and state proposition α, we write α(s) iff s |= α. It is possible
to construct the invariants by choosing them as the fix-point of the set of equations:

αq′(s′) = (∃q, s, αq(s) ∧ (s ; s′) ∧ c(q, q′)(s′))
∨

(θ(s′) ∧ e(q′)(s′)). (3)

22

We can verify that {αq}q∈Q is a set of propositions over SB and satisfies the require-
ments of initiality and consecution. The reader is referred to [12, 13] for a formal
argument showing that the invariants can be obtained via the fixpoints of the above
equations. Furthermore, s |= αq iff 〈q, s〉 is a reachable pair for ATA and B.

Given the constructed invariants {αq}q∈Q, a set of Lyapunov functions {ρq}q∈Q

and a set of global timing functions {ηq}q∈Q can be constructed as follows:

• ∀q ∈ R, s |= αq , let ρq(s) = 0 and ηq(s) = 0.

• ∀q 6∈ R, s |= αq , ρq(s) and ηq(s) are defined as follows. Construct a weighted
directed graph G = 〈V,E,W 〉, where W is the set of weights corresponding
to the transition probabilities, such that 〈q, s〉 ∈ V iff q 6∈ R, s |= αq , and
〈q, s〉 ; 〈q′, s′〉 in E iff s ; s′ ∧ c(q, q′)(s′). For any 〈q, s〉 ∈ V , let E(PB)
be the average number of B-states in the set of paths P starting from 〈q, s〉 and
E(µB(P)) be the average measure of B-states in P . Let ρq(s) = E(PB) and
ηq(s) = E(µB(P)).

We can verify that {ρq}q∈Q is a set of Lyapunov functions, and that {ηq}q∈Q is a set
of global timing functions.

Similarly, a set of local timing functions {γq}q∈T can be constructed as follows.
For all q ∈ T , construct a weighted directed graphG = 〈V,E,W 〉, such that s ∈ V iff
s |= αq, and s ; s′ inE iff s ; s′∧c(q, q)(s′). For paths P starting at s, let E(µ(P))
be the average measure of the path. Let γq(s) = E(µ(P)). We can verify that {γq}q∈T

is a set of local timing functions. 2

5.2 Automatic Behaviour Verification
The above rules do not guarantee the existence of an automatic verification method.
However, for finite domain probabilistic constraint nets, we can fully automate the
process in order to verify an average-timed ∀-automata constraint on the behaviour.
We will briefly describe the algorithm and then will utilize it to verify the elevator
system augmented with probabilistic passenger arrivals.

First, let us assume that PCN = 〈Lc, Td, Tp, Cn〉 is a probabilistic constraint
net made solely of transliterations and unit delays. We denote an acceptable state
by PCN(s) iff for every equation of the form l0 = f(l1, · · · , ln) → Pr(s(l0) =
f(s(l1), · · · , s(ln))) > 0, and denote an acceptable transition by PCN(s, s′) if and
only if PCN(s) and PCN(s′), and if for every delay equation l′0 = l, s′(l0) = s(l).
Let us also denote a reachable pair (q, s) by r(q, s) where q ∈ Q and s ∈ ×LcAsl

.
Furthermore, letK be the evolution kernel associated with the set of reachable pairs for
q ∈ B ∪ S and let T be the matrix summarizing the time for each transition within the
set of reachable pairs with q ∈ B∪S. In addition, letK1 represent the evolution kernel
for the set of reachable states with q ∈ B ∪ S which constitute the RS-boundary of
the set B ∪ S. This set is composed of all the bad and stable states which have a direct
transition to a state r ∈ R or to an absorbing S state. Proceed similarly to define T1.
Finally, let L and L1 be the matrix T and T1 respectively where the non-zero entries
have been replaced by the value 1.

23

The algorithm follows the verification rules and has four steps which we describe
below:

1. Invariant Generation: We can show that invariants can be constructed by find-
ing the fix-point of the sets of Equation 3. This fix-point can be obtained with
the following two steps:

(a) Initiality: Generate r(q, s) if Θ(s), e(q)(s), PCN(s).

(b) Consecution: Generate r(q′, s′) if r(q, s), PCN(s, s′), c(q, q′)(s′).

2. Non-Absorbness and Stability:

• Verify that the set of bad states is irreducible. That is, ensure that for every
bad state b ∈ B there is a path with non-zero measure leading to a R-state
or an S-state.

• For q ∈ R, let ρq = 0.

• Solve the set of linear equations for the average number of transitions
taken to enter the set of recurrent states or absorbing S-states. The so-
lution is the set of Lyapunov functions, {ρq}q∈B∪S. Practically, to solve
for {ρq}q∈B∪S , define A = −K + In and u = diag([T, T1] ∗ [K,K1]

′),
then solveAρ = u. Here diag denotes the diagonal operator, which returns
the diagonal elements of a matrix.

3. Global Average Timing:

• For q ∈ R, let ηq = 0.

• Similarly to the method for stability, solve the set of linear equations for
the average time measure to leave the set of bad and non-absorbing stable
states, not accounting for time spent in an S-state. The solution is the set
of Global timing functions {ηq}q∈B∪S . Verify that ηq < τ(bad), ∀q ∈ Q.

4. Local Average Timing:

• For each q ∈ T , solve the set of linear equations for the average time mea-
sure to leave q. This is similar to solving for the Lyapunov functions where
we only consider states q ∈ T . This leads to the local timing functions
{γq}q∈T . Verify that γq < τ(q), ∀q ∈ T .

It is possible, given this method, to obtain a bound on the probability that a certain
time bound will be exceeded. The bound is obtained from the well known equation
Pr(X > τ) ≤ E(X2)/τ2. We can calculate E(X2), where X is the average time
to reach reach a R-state or an absorbing S-state, as obtained in the global and local
average timeliness rules. With the equation

u = 2[T, T1]. ∗ [K,K1] ∗ η + diag([T, T1]. ∗ [T, T1] ∗ [P, P1]′,)

where .∗ denote the element-wise matric multiplication, solve AY = u for Y to calcu-
late the value of the probability bound.

24

6 Generalizing the Approach
In this section, we generalize the concept of average-timed ∀-automata on discrete
time structures to arbitrary time structures. This allows us to apply our method to
behavioural constraint verification of stochastic hybrid dynamical systems, which gen-
erate traces on general time structures. Note that the common time structures of con-
tinuous and discrete time both act as special cases.

Essentially, the set of verification rules for general time structures follows closely
that of discrete time systems, however, the definitions of invariants, Lyapunov functions
and timing functions are generalized.

For any trace v : T → A, let {ϕ}v{ψ} denote the validity of the following two
consecutive conditions:

• {ϕ}v−{ψ}: for all t > 0, ∃t′ < t, ∀t′′, t′ ≤ t′′ < t, v(t′′) |= ϕ implies
v(t) |= ψ;

• {ϕ}v+{ψ}: for all t < ∞, v(t) |= ϕ implies ∃t′ > t, ∀t′′, t < t′′ < t′, v(t′′) |=
ψ.

If T is discrete, these two conditions are reduced to one, i.e., ∀t > 0, v(pre(t)) |= ϕ
implies v(t) |= ψ.

Given B as a behaviour, let Θ = {v(0)|v ∈ B} denote the set of initial values in B.
Let A = 〈Q,R, S, e, c〉 be a ∀-automaton. A set of propositions {αq}q∈Q is called a
set of invariants for B and A iff

• Initiality: ∀q ∈ Q,Θ ∧ e(q) → αq.

• Consecution: ∀v ∈ B, ∀q, q′ ∈ Q, {αq}v{c(q, q′) → αq′}.

Proposition 6.1 Let {αq}q∈Q be invariants for B and A. If r is a run of A over v ∈ B,
∀t ∈ T , v(t) |= αr(t).

Proof : In order to prove this proposition, we shall introduce a variation of the method
of continuous induction [14]. A property Γ is inductive on a time structure T iff for all
t0 ∈ T , Γ is satisfied at all t < t0 implies that Γ is satisfied at t0. Γ is continuous iff
Γ is satisfied at a non-greatest element t ∈ T implies that ∃t′ > t, ∀t < t′′ < t′, Γ is
satisfied at t′′. Note that when T is discrete, any property is continuous. The theorem
of continuous induction [14] says:

Theorem 3 (Continuous Induction) If the property Γ is inductive and continuous on
a time structure T and Γ is satisfied at 0, Γ is satisfied at all t ∈ T .

We prove that the property v(t) |= αr(t) is satisfied at 0 and is both inductive and
continuous on any time structure T .

• Initiality: Since v(0) |= Θ and v(0) |= e(r(0)), we have v(0) |= Θ ∧ e(r(0)).
According to the Initiality condition of invariants, we have v(0) |= αr(0).

25

• Inductivity: Suppose v(t) |= αr(t) is satisfied at 0 ≤ t < t0. Since r is a run over
v, ∃q ∈ Q and t′1 < t0, ∀t, t′1 ≤ t < t0, r(t) = q and v(t0) |= c(q, r(t0)). Ac-
cording to the Consecution condition of the invariants, ∃t′2 < t0, ∀t, t′2 ≤ t < t0,
v(t) |= αq implies v(t0) |= c(q, r(t0)) → αr(t0). Therefore, ∀t,max(t′1, t

′
2) ≤

t < t0, r(t) = q, v(t) |= αq (assumption), v(t0) |= c(q, r(t0)) → αr(t0) and
v(t0) |= c(q, r(t0)). Thus, v(t0) |= αr(t0).

• Continuity: Suppose v(t0) |= αr(t0). Since r is a run over v, ∃q ∈ Q and
t′1 > t0, ∀t, t0 < t < t′1, r(t) = q and v(t) |= c(r(t0), q). According to the
Consecution condition of the invariants, ∃t′2 > t0, ∀t, t0 < t < t′2, v(t0) |=
αr(t0) implies v(t) |= c(r(t0), q) → αq . Therefore, ∀t, t0 < t < min(t′1, t

′
2),

r(t) = q, v(t0) |= αr(t0) (assumption), v(t) |= c(r(t0), q) → αq and v(t) |=
c(r(t0), q). Thus, ∀t, t0 < t < min(t′1, t

′
2), v(t) |= αr(t).

2

Proof (Theorem 3: Continuous Induction): We call a time point t ∈ T regular
iff Γ is satisfied at all t′, 0 ≤ t′ ≤ t. Let T denote the set of all regular time points.
T is not empty since Γ is satisfied at 0. We prove the theorem by contradiction, i.e.,
assume that Γ is not satisfied at all t ∈ T . Therefore, T ⊂ T is bounded above; let
t0 =

∨

T ∈ T be the least upper bound of T (t0 exists according to Proposition 3.2.1).
Since t0 is the least upper bound, it follows that Γ is satisfied at all t, 0 ≤ t < t0. Since
Γ is inductive, it is satisfied at time t0. Therefore, t0 ∈ T .

Since T ⊂ T , t0 is not the greatest element in T . Let T ′ = {t|t > t0}. There are
two cases: (1) if T ′ has a least element t′, since Γ is inductive, t′ ∈ T is a regular time
point. (2) otherwise, for any t′ ∈ T ′, {t|t0 < t < t′} 6= ∅. Since Γ is also continuous,
we can find a t′ ∈ T ′ such that Γ is satisfied at all T ′′ = {t|t0 < t < t′}. Therefore, t
is a regular time point ∀t ∈ T ′′. Both cases contradict the fact that t0 is the least upper
bound of the set T . 2

Without loss of generality, we assume that time is encoded in domain A by λ :
A → T . Given that {αq}q∈Q is a set of invariants for B and A, a set of partial
functions {ρq}q∈Q : A→ R+ is called a set of Lyapunov functions for B and A iff the
following conditions are satisfied:

• Definedness: ∀q ∈ Q, αq → ∃w ∈ R
+, ρq = w.

• Non-increase: ∀v ∈ B, ∀q ∈ S, q′ ∈ Q,

{αq ∧ ρq = w}v−{c(q, q′) → E(ρq′) ≤ w}

and ∀q ∈ Q, q′ ∈ S,

{αq ∧ ρq = w}v+{c(q, q′) → E(ρq′) ≤ w}.

• Decrease: ∀v ∈ B, ∃ε > 0, ∀q ∈ B, q′ ∈ Q,

{αq ∧ ρq = w ∧ E(λ) = t}v−{c(q, q′) →
E(ρq′) − w

µ([0,E(λ)))
≤ −ε}

26

and ∀q ∈ Q, q′ ∈ B,

{αq ∧ ρq = w ∧ E(λ) = t}v+{c(q, q′) →
E(ρq′) − w

µ([0,E(λ)))
≤ −ε}.

Proposition 6.2 Let {αq}q∈Q be invariants for B and A and r be a run of A over a
trace v ∈ B. If {ρq}q∈Q is a set of Lyapunov functions for B and A, then

• E(ρr(t2)(v(t2))) ≤ ρr(t1)(v(t1)) when ∀t1 ≤ t ≤ t2, r(t) ∈ B ∪ S,

•
E(ρr(t2)(v(t2)))−ρr(t1)(v(t1))

µ([t1,t2)) ≤ −ε when t1 < t2 and ∀t1 ≤ t ≤ t2, r(t) ∈ B, and

• if BS is the set of segments of consecutive B and S-states in r, then ∀q∗ ∈
BS, µB(q∗) is finite.

Proof : For any run r over v and for any segments q∗ of r containing only bad states
and stables states, E(ρ) on q∗ is non increasing, i.e., let I be the time interval of q∗,
for any t1 < t2 ∈ I , ρr(t1)(v(t1)) ≥ E(ρr(t2)(v(t2)), and the decreasing speed at the
bad states is no less than ε. Let m be the upper bound on {ρr(t)(v(t))|t ∈ I}. Since
ρq ≥ 0, µB(q∗) ≤ m/(ε) <∞. 2

Let T A = 〈A, T, τ〉. Corresponding to two types of time bound, we define two
timing functions. Let {αq}q∈Q be invariants for B and A. A set of partial functions
{γq}q∈T is called a set of local timing functions for B and T A iff γq : A → R+

satisfies the following conditions:

• Boundedness: ∀v ∈ B, ∀q ∈ Q, q′ ∈ T ,

{αq}v
−{c(q, q′) → γq′ ≤ τ(q′)}

and ∀q ∈ T, q′ ∈ Q,

{αq ∧ E(λ) = t ∧ γq = w}v−{c(q, q′) → w ≥ µ([0,E(λ)))}.

• Decrease: ∀v ∈ B, ∀q ∈ T, {αq∧γq = w∧E(λ) = t}v{c(q, q) → E(γq)−w

µ([0,E(λ))) ≤

−1}.

A set of partial functions {ηq}q∈Q is called a set of global timing functions for B and
T A iff ηq : A → R+ satisfies the following conditions:

• Definedness: ∀q ∈ Q,αq → ∃w ∈ R
+, ηq = w.

• Boundedness: ∀q ∈ B,αq → E(ηq) ≤ τ(bad).

• Non-increase: ∀v ∈ B, ∀q ∈ S, q′ ∈ Q,

{αq ∧ ηq = w}v−{c(q, q′) → E(ηq′) ≤ w}

and ∀q ∈ Q, q′ ∈ S,

{αq ∧ ηq = w}v+{c(q, q′) → E(ηq′) ≤ w}.

27

• Decrease: ∀v ∈ B, ∀q ∈ B, q′ ∈ Q,

{αq ∧ ηq = w ∧ E(λ) = t}v−{c(q, q′) →
E(ηq′) − w

µ([0,E(λ)))
≤ −1}

and ∀q ∈ Q, q′ ∈ B,

{αq ∧ ηq = w ∧ E(λ) = t}v+{c(q, q′) →
E(ηq′) − w

µ([0,E(λ)))
≤ −1}.

Proposition 6.3 Let {αq}q∈Q be invariants for B and A and r be a run of A over a
trace v ∈ B. If there exist local and global timing functions for B and T A, then

• if Sg(q) is the set of segments of consecutive q’s in r, then ∀q ∈ T, q∗ ∈
Sg(q), E(µ(q∗)) ≤ τ(q), and

• if BS is the set of segments of consecutive B and S-states in r, then ∀q∗ ∈
BS, E(µB(q∗)) ≤ τ(bad).

Proof : Similar to the proofs of Proposition 5.3 and Proposition 6.2. 2

The following theorem is a generalization of the soundness and completeness of
the set of verification rules.

Theorem 4 The verification rules (I), (S) and (AT) are sound if the following condi-
tions on B and T A are satisfied:

• T is an infinite time structure.

• All traces in B are specifiable by T A.

The verification rules are complete if the following conditions on B and T A are satis-
fied:

• {〈v, r〉|v ∈ B, r is a run over v} is time-invariant.

• All transitions from R to non-R-states are left-closed, i.e., if r is a run, and there
is a transition from a R-state to a B-state or a S-state at t, then r(t) ∈ B ∪ S.

Proof : Soundness is derived from Propositions 6.1, 6.2 and 6.3. For any trace v, there
is a run since v is specifiable by T A. For any run r over v, if any automaton-state in
R appears infinitely many times in r, r is accepting. Otherwise there is a time point
t0, the sub-sequence r on I = {t ∈ T |t ≥ t0}, denoted q∗, has only bad and stable
automaton states. If there exist a set of invariants and a set of Lyapunov functions,
µB(q∗) is finite. Since time is infinite, all the automaton states appearing infinitely
many times in r belong to S; r is accepting too. If there exists a set of local and global
timing functions, r satisfies the time constraints; r is accepting for T A.

On the other hand, if T A is valid over B, there exist a set of invariants, a set of
Lyapunov functions, and a set of local and global timing functions that satisfy the
requirements.

The set of invariants can be constructed as follows: ∀s∀q, s |= αq iff the pair 〈q, s〉
is reachable, i.e., ∃r, v, t, r(t) = q ∧ v(t) = s. We shall prove that {αq}q∈Q is a set of
invariants.

28

• Initiality: if Θ(s) ∧ e(q)(s), ∃r, v, r(0) = q and v(0) = s. Therefore, s |= αq .

• Inductivity: ∀v, t, if ∃t′ < t, ∀t′ ≤ t′′ < t, ∃r, r(t′′) = q (v(t′′) |= αq), then
∃r, ∃t′0 < t, ∀t′0 ≤ t′′ < t, r(t′′) = q. If v(t) |= c(q, q′), then r(t) = q′, i.e.,
v(t) |= αq′ . Therefore, v(t) |= c(q, q′) → αq′ .

• Continuity: ∀v, t, if ∃r, r(t) = q (v(t) |= αq), and ∃t′ > t∃q′, ∀t′ < t′′ <
t, v(t′′) |= c(q, q′), ∀t′ < t′′ < t, r(t′′) = q′. Therefore, ∃t′ > t, ∀t′ < t′′ <
t, c(q, q′) → ∃r, r(t′′) = q′.

Given the above constructed invariants, a set of Lyapunov functions can be con-
structed as follows:

• ∀q ∈ R and s |= αq , let ρq(s) = 0.

• ∀q 6∈ R and s |= αq , the Lyapunov function is defined as follows. For any
r, v, t with r(t) = q and v(t) = s, let q∗ be a segment of r with only bad and
stable states starting at q, and µB(q∗) be the measure of B-states in q∗. Let
ρq(s) be the average measure for all r, v, t with r(t) = q and v(t) = s, i.e.,
ρq(s) = E(µB(q∗)).

We shall prove that {ρq}q∈Q is a set of Lyapunov functions and global timing functions.
For q, q′ 6∈ R, let 〈q, s〉 ≺ 〈q′, s′〉 iff ∃r, v, t < t′, ∀t < t′′ < t′, r(t′′) 6∈ R, r(t) =
q, v(t) = s and r(t′) = q′ and v(t′) = s′. Since {〈v, r〉} is time-invariant, ≺ is
transitive. Therefore, 〈q, s〉 ≺ 〈q′, s′〉 implies ρq(s) ≥ E(ρq′(s′)).

• Definedness: ∀q ∈ Q, s |= αq , ρq is defined at s.

• Non-increase: ∀v ∈ B, ∀q ∈ S, q′ ∈ R,

{αq ∧ ρq = w}v−{c(q, q′) → E(ρq′) ≤ w}

is trivially satisfied. ∀q ∈ S, q′ ∈ B ∪ S,

{αq ∧ ρq = w}v−{c(q, q′) → E(ρq′) ≤ w}

is satisfied since 〈q, s〉 ≺ 〈q′, s′〉.

∀v ∈ B, ∀q ∈ B ∪ S, q′ ∈ S,

{αq ∧ ρq = w}v+{c(q, q′) → E(ρq′) ≤ w}

is satisfied since 〈q, s〉 ≺ 〈q′, s′〉. ∀q ∈ R, q′ ∈ S, c(q, q′) is false since all
transitions from R to non-R-states are left-closed.

• Decrease: ∀v ∈ B, ∀q ∈ B, q′ ∈ Q,

{αq ∧ ρq = w ∧ E(λ) = t}v−{c(q, q′) →
E(ρq′) − w

µ([0,E(λ)))
≤ −1}.

∀q ∈ R, q′ ∈ B,

{αq ∧ ρq = w ∧ E(λ) = t}v+{c(q, q′) →
E(ρq′) − w

µ([0,E(λ)))
≤ −1}

29

is trivially satisfied since c(q, q′) is false. ∀q ∈ B ∪ S, q′ ∈ B,

{αq ∧ ρq = w ∧ E(λ) = t}v+{c(q, q′) →
E(ρq′ − w)

µ([0,E(λ)))
≤ −1}.

The local timing functions can be defined similarly. 2

The conditions for the completeness of the rules are imposed so as to be able to
define Lyapunov functions for a behaviour and an automaton, as long as the behaviour
satisfies the automaton. The second condition for completeness is always satisfied for
traces with discrete time structures. More generally, the following proposition may
apply.

Proposition 6.4 All transitions from R to non-R-states are left-closed, if the following
conditions are satisfied:

• T A is open and complete.

• ∀q ∈ R, q1 6∈ R and q2 ∈ R, c(q, q1) ∧ c(q, q2) is not satisfiable.

• All traces in B are right-continuous.

Proof : Since T A is open, ∀q ∈ Q, q′ ∈ R, c(q, q′) is open. Therefore, ∀q ∈
Q,

∨

q′∈R c(q, q
′) is open. Since ∀q ∈ R, q1 6∈ R and q2 ∈ R, c(q, q1) ∧ c(q, q2)

is not satisfiable, (
∨

q′∈R c(q, q
′)) ∧ (

∨

q′∈B∪S c(q, q
′)) is not satisfiable. Since T A

is complete,
∨

q′∈R c(q, q
′) and

∨

q′∈B∪S c(q, q
′) are complementary. Therefore, we

obtain
∨

q′ 6∈R c(q, q
′) is closed. Since all traces in B are right-continuous, for all v, t,

if t is a limit point to the right time points T , v(t) is a point or a limit point of v(T).
If ∃t′ > t, ∀t < t′′ < t′, v(t′′) ∈

∨

q′ 6∈R c(q, q
′), v(t) ∈

∨

q′ 6∈R c(q, q
′). Therefore, all

transitions from R to non-R-states are left-closed. 2

These definitions are essential to provide understand of general behaviours of stochas-
tic hybrid dynamical systems. At the present time, however, we have yet to develop an
algorithm, either semi-automatic or automatic, based on these rules. Work in progress
include the development of such algorithms along with the augmentation of the be-
havioural constraint verification technique to perform quantitative probabilistic verifi-
cation.

7 Modeling and Verifying the Elevator
To demonstrate the power of our framework, we augment the elevator system intro-
duced in Section 3 with probabilistic passenger arrivals, which are modeled as a PCN
transduction of a Poisson process. Passengers can arrive at any floor to request the
use of the elevator. These requests will be granted when they conform to the elevator
serving state. Obviously, passenger arrivals have an effect on the current passengers by
increasing the time needed for the elevator to service their request.

As an example, we verify the non-trivial behavioural constraint that a passenger re-
quest will be serviced on average within τ = 40 time units, regardless of the incoming
requests that can occur during that passenger’s travel. Furthermore, we would like to

30

Com ehf

F h

BODY

FLOOR HOME

ELEVATOR

CONTROL_0

Figure 9: The Elevator module: continuous components of the elevator system.

obtain a probability bound on the time that a request could take to be satisfied. Before
we proceed to behavioural constraint verification, let us describe the elevator model in
more detail.

7.1 Continuous model
Let us assume that floors are separated by H units. Using the continuous model of the
dynamics presented earlier we calculate the current floor number with:

f = [h/H] + 1 (4)

where [x] denotes the integer value closest to x. Using this relationship, we can get the
distance to the nearest floor from: ds = h− (f − 1)H. We also say that the elevator is
at “home” position, for some ε > 0, if:

eh : |ds| ≤ ε. (5)

In Figure 9 we present the PCN module of the continuous component of the sys-
tem. In this diagram, Com is a high level command that can take values 1,−1 and 0,
respectively denoting up, down and stop. CONTROL 0 is an analog controller which
determines the force that drives the elevator body BODY (see Figure 6). Since the dy-
namics of the elevator are uncertain, CONTROL 0 needs to be optimal in some stochas-
tic sense. Finally, the components FLOOR and HOME are represented by Equations 4
and 5 respectively.

31

ELEVATOR

EVENT

bi BUTTON

Com

he

eCONTROL_1

s

f

sb

Figure 10: The hybrid model: combining continuous and discrete components of the
elevator system.

7.2 Discrete model
An important discrete component of the system is the set of push buttons used by the
users to issue requests. Each push button takes value 1 if pushed, and 0 otherwise. In
our model, we will consider three different types of buttons: Ub, Db and Fb, which
respectively denote up, down, and floor buttons. For an elevator consisting of n floors,
we have Ub, Db, Fb ∈ {0, 1}n with Ub(n) = Db(1) = 0. The state of a push
button bs is determined by the user’s input bi and the reset signal br issued when a
request has been served. A floor button will be on until the elevator stops at that floor
while a direction button will be on until the elevator stops at the floor and is heading
in the corresponding direction. The next state of a push button can be represented as:
b′s = bi ∨ (¬br ∧ bs).

7.3 Hybrid model
Equipped with a model for the continuous dynamics of the elevator and a model for the
user’s input, we now need to combine the two to form an hybrid model of the elevator
system. A discrete event-driven controller CONTROL 1 takes as input the current floor
f and button states bs, and outputs the command Com and a serving state as displayed
in Figure 10.

The events driving the controller are the results of the union of three event spaces:
(1) there is a user request when the elevator is idle at floor 1; (2) the elevator reached
a home position (|ds| ≤ ε); and (3) a request has been served for a given amount of
time. Therefore, when any of these events occur, CONTROL 1 proceeds to an update

32

using the current values of its inputs.

7.4 Control Design
In the previous sections, we referred to CONTROL 0, an analog controller generating
the force to drive the elevator’s body, and to CONTROL 1, a discrete controller gen-
erating the high level command sent to the elevator. However, we did not define the
controllers completely, instead using them as black boxes assumed to perform opti-
mally in some sense. In general, the task of designing optimal controllers is complex
and no automatic method exists. Furthermore, remember that we are dealing with un-
certainty in the dynamics, which renders the design task harder.

7.4.1 H∞ control design

Assume that we are interested in finding a simple linear proportional and derivative
controller of the form:

F =

F0 if Com= 1
−F0 if Com= −1

−Kpds −Kvḋs if Com= 0
(6)

where F0 > 0 is a constant force, Kp is a proportional gain and Kv is the derivative
gain.

For a controller to be acceptable for our system, it needs to possess continuous (and
exponential) stability. Moreover, we require hybrid consistency. That is, the analog
controller must interface with the discrete control in a consistent fashion: if a stop
command is issued by CONTROL 1, then the elevator should continuously maintain
|ds| ≤ ε, for all time values.

Let us now show that we can design a stabilizing controller. To design the controller
for the elevator’s body, we chose to apply a robust control design using anH∞ method
[15, 16]. We can rewrite Equation 2 in a mathematically sound fashion by replacing
the Gaussian white noise term with Brownian motion and by using the Itô stochastic
differential equation:

dx = (Ax +B1u+B2w)dt +HxdW (t)
z = Cx+Du

(7)

where x = [h ḣ]′ ∈ R
2, z is called the uncertainty output [16]and W (t) is a scalar

Brownian motion process with identity covariance . Furthermore from our elevator
model we get

A =

[

0 1
0 −1.15

]

; B1 =

[

0
1

]

; B2 =

[

0
1

]

;

C =

1 0
0 0
0 0

 ; D =

0
0
1

 ; F =

[

0
−1

]

; S =
[

0 1
]

.

33

We also define H = σFS, where σ = 0.15 as specified in Section 3.
We now apply Theorem 8.2.2 from [16] to obtain a stabilizing controller which

solves the H∞ problem associated with our stochastic dynamical system. The process
of designing a controller based on Theorem 8.2.2 involves solving a set of Riccati
equations which can be solved by homotopy method [17] or by a version of Newton’s
method introduced in [18, 19, 20, 21]. We used the latter for this particular example.
We obtained a stabilizing controller of the form (6) with F0 = 0.31, Kp = 1.1547 and
Kv = 1.0691.

To demonstrate that this controller guarantees hybrid consistency, we needed to
show that, given the values of F0, Kp andKv obtained above, we have maxt|ds(t)| ≤
ε for every possible value of k(t) ∈ [0.70, 1.40]. From the relationship between the
variables h and ds,we can see that ḣ = ḋs. Therefore, for Com= 0, and by combining
Equation 2 with Equation 6, we have

d̈s + (k(t) +Kv)ḋs +Kpds = 0 (8)

It is easy to deduce that the maximum distance to a floor D, once Com= 0, is
attained when ḋs = 0. At this point, it is important to notice that Equation 8 can
be critically damped, underdamped or overdamped given that k(t) takes values 1.08,
[0.70, 1.08) and (1.08, 1.40] respectively. Therefore, we need to analyze the solution
of Equation 8 for those three cases separately. Nevertheless, we showed that for each
of these three cases, we obtain hybrid consistency.

7.4.2 Discrete control design

At the discrete level, we adopt a control strategy that forces the elevator to move per-
sistently in one direction until there are no more requests in that direction. This en-
sures that we avoid the presence of dead locks or live locks in the system. We define
CONTROL 0 as a controller which accepts the current request from the push buttons bs

along with the current floor f and state values s and determines: (1) the next command
to issue to the elevator module; (2) the updated value of the serving state s. For our
system, we assume three different serving states: up, down and idle. The elevator is
only idle at the first floor. We consider also three distinct types of binary requests that
can be sent to the elevator: UpRequest, DownRequest and StopRequest, which we
define as follows:

Ur = UpRequest = Ub(f)
∨

n≥k>f

(Ub(k) ∨Db(k) ∨ Fb(k))

Dr = DownRequest = Db(f)
∨

1≤k<f

(Ub(k) ∨Db(k) ∨ Fb(k))

Sr = StopRequest =

{

(Db(f) ∨ Fb(f)) if s = down
(Ub(f) ∨ Fb(f)) otherwise

34

Ur Dr

DbUb Fb

Sr

(idle) Com

f

ServingState Commands

s’

CONTROL1

δ

UpRequest StopRequestDownRequest

Figure 11: The module of the discrete controller: Control 1

Given these components, we can define the logical expressions for the transition
functions for the serving state and the command to the elevator:

s′ = ServingState(f, s, Ur,Dr) =

up if Ur ∧ (s 6= down ∨ ¬Dr)
down if (¬Ur ∧ (f > 1)) ∨

(Dr ∧ s = down)
idle otherwise

Com = Command(Sr, s) =

0 if Sr ∨ (s = idle)
1 if ¬Sr ∧ (s = up)
−1 otherwise

We show in Figure 11 the PCN model of the discrete controller of the elevator,
obtained by combining the logical expressions above.

7.5 Example of Behavioural Constraint Verification
Given a simple 3-floor elevator modeled as in Figure 9(b), we can verify whether or not
a request to go up from floor 1 to floor 3 will be served within 40 units of the elevator’s
motion time. This constraint can be represented as in Figure 7(d).

Even though the dynamics of the elevator are continuous, the specification of the
behavioural constraints are such that combined with our system’s model, we can asso-
ciate it to the stochastic transition system of Figure 12. The corresponding state space

35

Floor 2

Floor 1

Floor 3

(2,up,1;0,0,3)

1

(1,up,1;0,1,1)
(1,up,1;0,0,1)

(2,up,1;0,0,1)

(2,up,1;0,0,2)

(2,up,0;0,0,2) (2,up,0;0,0,2)

1

(2,up,0;0,0,1)

p 1−p

1 1

1−p

1−p

p/2 p/2

1−p p

(1,up,0;0,1,1)(1,up,0;0,0,1)

(2,up,0;0,0,3)

1

16.8

p

1

(1,up,0;0,0,2)

(1,up,1;0,0,2)

29.5 29.6 35.5

32.5
25.2

26.5

19.8
14.4 18.8 18.9 17.4

15.8

(3,down,0;0,0,0)

1 1

1

1

0

Figure 12: Stochastic State Transition System of the elevator behaviour

S is of the form (f, s,Com, N1, N2, N3) where f, s and Com are the current floor,
serving state and command of the elevator. N1, N2 and N3 denote the number of pas-
sengers currently in the elevator wanting to go to floors 1, 2 and 3, respectively. The
initial state Θ is set to (1, up, 0; 0, 0, 1). Furthermore, to keep it simple, we assume:
(1) only one arrival can occur at any floor; (2) the average time required for someone
to get in or out of the elevator is 5 units; and (3) the time to close the elevator doors
is 3 units. By simple analysis of the passenger arrival probabilities, we obtain that the
probability for the occurrence of a new request for the elevator is p = 0.15. Indeed,
since we assume that the arrivals follow a Poisson process, and given the fact that the
events triggering the discrete controller only happens once the elevator has reached a
floor (there is no events possible while the elevator is traveling between floor), we can
assume that the arrivals are concentrated at the time when the elevator reaches a new
floor. Therefore, we can summarize the probability of arrivals with a single proba-
bility, p, obtained from solving p = Pr(X(tmax) = 1), where X(t) is the Poisson
process modeling the arrivals and tmax is the maximum traversal time of the elevator
from one floor to another. To calculate tmax, we perform a worst case analysis, for
all possible values of k(t), on ḣ = (F0/k(t))(1 − e−k(t)t) and h(0) = 0. we obtain
that h = (F0/k(t))(t + (1/k(t))e−k(t)t) − F0/K

2). Assume that the distance be-
tween two floors if H . Then the time to traverse one level from stationary state will be
t ≤ Hk(t)/F + 1/K. If we assume H = 2, we get tmax = 9.75 time units.

The evolution kernel P is represented by the values at the head of the arrows in
Figure 12.

36

To apply the verification rules, we need to:

I: Find a set of invariants for the average-timed ∀-automata in Figure 7(d) that
satisfies the invariance rules. Let us define IB : Fbs(3) = 1 ∧ Com 6= down,
IS : Com = down, and IR : Fbs(3) = 0. It is easy to see that IB , IS and IR are
invariants for states B, S and R, respectively. Note that R = S in our example.
In Figure 12, bad states B are denoted by empty nodes while recurrent/stable
states R and S are denoted by filled nodes.

S: Find a set of Lyapunov functions. We omit the details but, in conjunction with
the invariants above, choosing a function ρ, whose value is the average number
of transitions for reaching state R, satisfies the Stability rules.

AT: We can show that choosing a global timing function η which corresponds to the
average time to reach R satisfies the average-timeliness rules. For values of η at
each state, see the number in the state nodes in Figure 12. It is easy to see that
these values satisfy the rules for average-timeliness. Indeed, every value is less
then the global bound on bad states τbad and each transition from a state s to
another state s′ leads to a decrease in value for the global timing function.

We have showed that the average time for a passenger located at floor 1 to be taken
to floor 3 is 29.6 < 40 time units. Hence we have shown that the constraint on the
elevator behaviour is satisfied. Note that this is not an absolute bound on the value.
The completion time of an instance of the request may exceed 40 time units. With our
method, we can automatically obtain probability bounds on the possible time of ser-
vice. For the elevator example discussed here, we can show that Pr(time of service >
90 time units) ≤ 0.12.

8 Conclusions and Future Work
We provide a useful framework for constraint-based modeling of the dynamics and
behaviours of systems exhibiting uncertainty. The framework abstracts the notions
of time and domains for a general approach. We also model uncertainty of several
different forms (stochastic, probabilistic, random) while providing a formal semantics.
To allow the expression of constraints on both the dynamics and behaviours of systems,
we provide two modeling languages: PCN and average-timed ∀-automata. PCN is
based on a data-flow model and provides a graphical and modular representation which
simplifies the task of modeling complex uncertain dynamical systems.

Finally, we provide a set of rules, which in some cases can be fully automated, to
verify the satisfaction of global behavioural constraints. We demonstrate the use of the
method on an hybrid elevator system exhibiting uncertainty.

References
[1] Zhang, Y., Mackworth, A.K.: Constraint nets: a semantic model for hybrid sys-

tems. Journal of theoretical computer science 138 (1995) 211–239

37

[2] Zhang, Y.: A foundation for the design and analysis of robotic systems and
behaviours. PhD thesis, University of British Columbia (1994)

[3] Zhang, Y., Mackworth, A.: Specification and verification of constraint-based
dynamic systems. In Borning, A., ed.: Princ. and Pract. of Constr. Progr. Number
874 in LNCS. Springer-Verlag (1994) 229–242

[4] Zhang, Y., Mackworth, A.K.: Modeling and analysis of hybrid control systems:
An elevator case study. In Levesque, H., Pirri, F., eds.: Logical Foundations for
Cognitive Agents. Springer, Berlin (1999) 370–396

[5] Barringer, H.: Up and down the temporal way. Technical report, Computer
Science, University of Manchester, England (1985)

[6] Dyck, D., Caines, P.: The logical control of an elevator. IEEE Trans. Automatic
Control (1995) 480–486

[7] Sanden, B.: An entity-life modeling approach to the design of concurrent soft-
ware. Communication of the ACM 32 (1989) 230 – 243

[8] Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal
aspects of computing 6 (1994) 512–535

[9] Baier, C., Haverkort, B., Hermanns, H., Katoen, J.P.: Model-checking algorithms
for continuous-time markov chains. IEEE Transactions on Software Engineering
29 (2003)

[10] Manna, Z., Pnueli, A.: Specification and verification of concurrent programs by
∀-automata. In: 14th Ann. ACM Symp. on Princ. of Progr. Lang. (1987) 1–12

[11] Zhang, Y., Mackworth, A.: Specification and verification of hybrid dynamic
systems by timed forall-automata. In Alur, R., Henzinger, T., Sontag, E., eds.:
Hybrid Systems III. Verification and Control. Number 1066 in LNCS. Springer-
Verlag (1996)

[12] Apt, K., Plotkin, G.: Countable nondeterminism and random assignment. Journal
of the Association for Computing Machinery 33 (1986)

[13] Stomp, F., DeRoever, W., Gerth, R.: The µ-calculus as an assertion language for
fairness arguments. Technical Report 84-12, Utrecht (1984)

[14] Khilmi, G.: Qualitative Methods in the Many Body Problem. Science Publishers
Inc., New York (1961)

[15] Zames, G.: Feedback and optimal sensitivity: Model reference transformations,
multiplicative seminorms, and approximate inverses. IEEE Trans. Automat. Con-
trol 26 (1981) 301–320

[16] Petersen, I.R., Ugrinovskii, V.A., Savkin, A.V.: Robust Control Design Using
H∞ Methods. Springer (2000)

38

[17] Richter, S., Hodel, A., Pruett, P.: Homotopy methods for the solution of general
modified riccati equations. IEE. Proceedings.-D, Control Theory and Applica-
tions 160 (1993) 449–454

[18] Ugrinovskii, V.A.: Robust H∞ contorl in the presence of stochastic uncertainty.
Int. J. Control 71 (1998) 219–237

[19] Damm, T., Hinrichsen, D.: Newton’s method for a rational matrix equation oc-
curring in stochastic control. Linear Algebra Appl. 332/334 (2001) 81–109

[20] Wonham, W.: On a matrix riccati equation of stochastic control. SIAM J. Control
6 (1968) 681–697

[21] Guo, C.H.: Iterative solution of a matrix riccati equation arising in stochastic
control. Oper. Theory Adv. Appl. 130 (2001) 209–221

39

