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Abstract—We address the problem of repeated coverage by
a team of robots of the boundaries of a target area and the
structures inside it. Events may occur on any parts of the bound-
aries and may have different importance weights. In addition, the
boundaries of the area and the structures are heterogeneous, so
that events may appear with varying probabilities on different
parts of the boundary, and this probability may change over
time. The goal is to maximize the reward by detecting the
maximum number of events, weighted by their importance, in
minimum time. The reward a robot receives for detecting an
event depends on how early the event is detected. To this end,
each robot autonomously and continuously learns the pattern
of event occurrence on the boundaries over time, capturing the
uncertainties in the target area. Based on the policy being learned
to maximize the reward, each robot then plans in a decentralized
manner to select the best path at that time in the target area to
visit the most promising parts of the boundary. The performance
of the learning algorithm is compared with a heuristic algorithm
for the Travelling Salesman Problem, on the basis of the total
reward collected by the team during a finite repeated boundary
coverage mission.

I. INTRODUCTION

Multi-Robot Boundary Coverage is a challenging problem
with various applications including surveillance and monitor-
ing, cleaning, intrusion detection and facility inspection. In this
task, a team of robots cooperatively visits (observes or sweeps)
the boundaries of the target area and the structures inside it.
The goal is to build efficient paths for all the robots which
jointly ensure that each point on the boundaries is visited by
at least one of the robots. The Boundary Coverage is a variant
of the Area Coverage [3], [8] problem, in that the aim is to
cover just the boundaries, not the entire area.

There are two classes of Boundary Coverage problems:

• Single Coverage: The aim is to cover the boundary until
all its accessible points of interest have been visited at
least once, while minimizing the time, sum/maximum
length of the paths/tours generated for the robots, or
balancing the workload distribution among the robots [4],
[14].

• Repeated Coverage: The goal is to cover all the acces-
sible points of interest on the boundary repeatedly over
time, while maximizing the frequency of visiting points,
minimizing the weighted average event detection time,
or detecting the maximum number of events/intruders.
Visiting the points on the boundary can be accomplished
with uniform or non-uniform frequency, depending on
the priorities of different parts of the boundary [1], [2].

II. PROBLEM DEFINITION AND PRELIMINARIES

In this paper, we address the Multi-Robot Repeated Bound-
ary Coverage problem with the following specifications:

• The environment is a simple polygon consisting of rec-
tilinear or non-rectilinear polygonal structures.
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• The 2D map of the environment is given a priori.
• An arbitrary number of robots is involved in the coverage

mission.
• The robots are equipped with a panoramic visual sensor

with limited range.
• The robots have limited communication range.
• The events may occur on any part of the boundary.
• The events may have different types. Each event type has

its own importance weight.
• The boundary is heterogeneous, in that events of one type

may occur with varying probabilities on different parts of
the boundary, and this probability may change over time.

• A robot can detect an event if the event is within the
visual range of the robot.

• Once a robot detects an event, the event is discarded from
the boundary.

• A robot is aware of the types of the events and their
importance weights once it detects the events.

• The robots are not a priori aware of the probability
distribution of the events occurrence on the boundaries.

• The reward a robot receives for detecting an event
depends on how soon the event is detected. At each time
step after the event occurrence, the detection reward of
the event is decreased by a multiplicative discount factor.

Definition 1. Event Type: m types of events may occur on the
boundary. The set of all events types is E = {E1,E2, ...,Em}.
Similarly, an event of type Ei is denoted as ei.

Definition 2. Event Importance: The importance degree of
an event of type E is given by weight(E). It is assumed
that weight(E) ∈ (0,1] such that 1 is the highest degree of
importance. The importance can also be referred to as the
priority, in that an event of higher importance should have
higher priority of being detected.

To address the problem, two classes of algorithms are pro-
posed: (1) Uninformed Boundary Coverage and (2) Informed
Boundary Coverage.

Uninformed Boundary Coverage uses a heuristic algorithm
for the Travelling Salesman Problem to patrol the boundaries.
On the other hand, Informed Boundary Coverage is primarily
based on an algorithm in which each robot autonomously
and continuously learns the pattern of event occurrence on
the boundaries over time, capturing the uncertainties in the
target area. Based on the policy being learned to maximize
the reward, each robot then plans in a distributed manner to
select the best possible path at the time in the target area
to visit the most promising parts of the boundary. Informed
Boundary Coverage is an online learning algorithm.

The performance of the proposed approaches will be eval-
uated on the basis of the total reward received by the team
during a finite repeated boundary coverage mission.
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(a) Original Map (b) Trapezoidation + Area Guards (c) Boundary Guards (d) Boundary Graph

Fig. 1: Sequential Stages of Building the Boundary Graph

III. BACKGROUND AND REVIEW

Elmaliach et al. [7] addressed the problem of frequency-
based patrolling (i.e. maximizing the minimum, maximum, or
uniform point-visit frequency) of open polylines (e.g. as in
open-ended fences), where the two endpoints of the polylines
are not connected. They also investigated the velocity uncer-
tainties and accumulating motion errors of the robots during
the mission. Jensen et al. [9] extended Elmaliach et al.’s work
on patrolling open polylines, with a focus on maintaining the
patrol over the long-term. They accomplished this task by
replacing the robots having power level below a threshold
with some reserve robots. Marino et al. [12] proposed a
decentralized multi-robot approach to patrol both open and
closed polylines.

The patrolling problem, as studied in the above papers, is
investigated in terms of optimizing point-visit frequency. Some
other work considered the existence of adversary agents in
the workspace. For instance, Agmon et al. [1], [2] studied
patrolling a cyclic border, in which the robots’ goal was
to maximize their rewards by detecting an adversary agent,
attempting to penetrate through a point on the boundary,
unknown to the robots. The intruder needed some time interval
of length t to accomplish the intrusion. Jurek Czyzowicz et al.
[6] addressed the same problem using a team of variable-speed
robots.

As far as the authors are aware, there is no work using
the framework studied in this paper. In our work, instead of
patrolling a single open or closed polyline, the robots patrol the
boundaries of a full environment and the structures inside it,
and instead of optimizing frequency criteria, it is assumed that
different parts of the boundary may have different priorities
depending on the probability distribution of events occurrence
on the boundaries. Finally, our robots aim to detect multiple
events/intruders simultaneously, as opposed to single intruder
scenarios studied in the previous work.

IV. ENVIRONMENT MODELING

Uninformed Boundary Coverage and Informed Boundary
Coverage both require that a roadmap is built within the target
area, capturing the connectivity of the free space close to the
boundaries. To this end, a graph-based representation called
the Boundary Graph is constructed on the target area. The
Boundary Graph enables the robots to move throughout the
environment to monitor the boundaries of the area and the
structures inside. Since the environment is known to the robots,

each robot can independently build the Boundary Graph in
the target area. In order to construct the Boundary Graph,
a sufficient number of control points, called the boundary
guards, are placed within the environment, considering the
limited visual range of the robots.

A. Locating Guards with Limited Visual Range
In our problem definition, we presume the robots are

equipped with panoramic cameras with a 360◦ field of view.
However, the cameras’ visual range is limited. The proposed
approach initially locates a set of area guards required to
visually cover an entire area. The term guard is taken from the
Art Gallery Problem [13]. These static area guards are control
points that can jointly cover the whole environment while
satisfying the limited visual range constraint of the robots.
In other words, if we had as many robots as the number of
guards, and each robot was stationed on a guard, the entire
area would be covered visually by the robots.

To locate the guards, the algorithm decomposes the initial
target area (Figure 1a), a 2D simple polygon with static struc-
tures, into a collection of convex polygons using a Trapezoidal
Decomposition method, and then applies a post-processing
approach to eliminate as many trapezoids as possible [15]
(Figure 1b). The post-processing step is more effective in
cluttered areas, and since the number of guards located by
the algorithm is directly related to the number of trapezoids,
fewer trapezoids will result in fewer guards.

At the next step, a divide-and-conquer method [10] is
used to successively subdivide each of the resulting convex
polygons (trapezoids) into smaller convex sub-polygons until
each of them can be covered visually by one guard (Figure
1b).

Since, in the current problem, we are interested in moni-
toring only the boundaries, not all the computed area guards
are necessary. So, each guard such that the visual area of a
robot does not intersect the boundaries when it is located on
that guard, is removed from the set of area guards. Figure 1c
illustrates the boundary guards (BG) computed on the sample
environment.

BG = {g1,g2, ...,gk}. (1)

B. Boundary Graph
Once the boundary guards are located in the target area,

a graph called the Visibility Graph (VG) is constructed on
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Fig. 2: Boundary Segmentation

the guards (Figure 1d). In order to build the Visibility Graph,
any pair of boundary guards which are mutually visible are
connected by an edge. Two guards are mutually visible if the
edge connecting them does not intersect any structures in the
environment.

Visibility Graph is used to build the roadmap, because it
provides the robots with more paths and more freedom of
movement to traverse the environment, compared to other ap-
proaches like Constrained Delaunay Triangulation or Voronoi
Diagram.

C. Boundary Segmentation
The boundaries of the area and the structures are divided

into identical length segments, each of which is small enough,
such that if an event occurs in a segment, the event is visible
from any part of that segment. In other words, if a robot’s
visual range covers just part of the segment on the boundary,
the robot is still capable of detecting all the events occurred
in any part of the segment.

Segments = {seg1,seg2, ...,segn}. (2)

Definition 3. Visual Area of a Guard (VA): The visual area
of a guard, VA(g), is the set of all the segments visible to the
robot when it is located on the guard g.

VA(g) = {segi,seg j, ...,segs}. (3)

Definition 4. Shared Segment: A shared segment is common
to the visual area of two or more guards.

Definition 5. Segment Parent Guards (SPG): Parent guards
of a shared segment are guards whose visual area contain that
segment.

SPG(seg) = {gi,g j, ...,gp}. (4)

The notion of segment parent guards implies that an event
occurred in a segment can be detected from more than one
guard, but once it is detected from a guard, the event is no
longer visible from the other guards.

Assumption 1. Events are only detected when a robot is
located on a guard.

In Figure 2, the visual area of guard A covers segments 1
and 2, and the visual area of guard B covers segments 2 and 3.

Segment 2 is a shared segment between guards A and B, and
subsequently, guards A and B are the parent guards of segment
2. A robot located on guard A can detect the events occurred
in any part of segments 1 and 2, and a robot located on guard
B can detect the events occurred in any part of segments 2 and
3.

V. UNINFORMED BOUNDARY COVERAGE

In Uninformed Boundary Coverage, a tour is constructed
on the Boundary Graph using the Chained Lin-Kernighan
algorithm.

Chained Lin-Kernighan, a modification of the Lin-
Kernighan algorithm [11], is generally considered to be one
of the best heuristic methods for generating optimal or near-
optimal solutions for the Euclidean Traveling Salesman Prob-
lem [5]. Given the distance between each pair of a finite
number of nodes in a complete graph, the Travelling Salesman
Problem is to find the shortest tour passing through all the
nodes exactly once and returning to the starting node.

The input of the Chained Lin-Kernighan algorithm is the
distance matrix of the Boundary Graph. The matrix consists
of the shortest path distances between all pairs of guards
in the Boundary Graph, and is consequently indicative of a
complete graph, even though the Boundary Graph itself is not
complete. Having built the shortest tour passing through all the
guards of the Boundary graph, the robots are then distributed
equidistantly along the tour and move repeatedly around it in
the same direction.

VI. INFORMED BOUNDARY COVERAGE

For Informed Boundary Coverage, the robots try to maxi-
mize the reward by detecting the maximum number of events,
weighted by their importance, in minimum time. To this
end, each robot independently learns the pattern of event
occurrence on the boundaries over time and based on that,
estimates the expected reward of visiting a state in the target
area at each time step. Each robot then plans in a decentralized
manner to select the best possible path to visit the most
promising states at the time in the target area. The initial
locations of the robots are chosen randomly in the target area.

The Multi-Robot Repeated Boundary Coverage problem is
formulated for each robot as a tuple (BG,A,ST,ST R) where:

• BG is the set of states or boundary guards, representing
the position of the robot in the target area.

• A is the set of actions available for a robot in each state.
An action is defined as moving from one guard to any
other guard in the Boundary Graph. At the beginning,
each robot calculates the shortest path between each
pair of guards in the Boundary Graph, using the Floyd-
Warshall algorithm, hence the robots will not need to
repeatedly compute the shortest paths in the graph during
the planning stage of the coverage mission.

• ST is the state transition function which is deterministic,
such that it guarantees reaching the target state chosen
by the robot from the current state, when the action is
performed.

• ST R is the state reward, which is equal to the sum of the
discounted importance of the detected events at the state
(i.e. guard).
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ST R(g, t) = ∑
seg∈VA(g)

∑
Ei∈E

∑
ei∈Ei

weight(Ei)× γt−st(ei), (5)

where t−st(e) is the time interval between starting event
e and the time of the visit to g, i.e. the detection time of
the event e.
Once a robot arrives at a guard g, it can detect all the
events occurred within the VA(g), the visual area of the
guard g. It is assumed that the reward a robot receives for
an event depends on how early the event is detected. At
each time step after the event occurrence, the detection
reward of the event is multiplied by a discount factor of
γ = 0.95.

Definition 6. Time of Last Visit (TLV): Each robot separately
keeps track of the times of the last visit to the guards. If
BG = {g1,g2, ...,gk} is the set of boundary guards, then for
each guard g ∈ BG, T LV (g) represents the last time the guard
g was visited by the robot or any other robot managed to
communicate the visit to the guard with the robot. Therefore,
the times of the last visit to the guards are not globally shared
by the robot team, rather each robot, at each time step, may
have a different knowledge from the rest of the robot team of
the times of the last visit to the guards.

Based on this, we can calculate the time of the last visit to
each segment of the boundary:

T LV (seg) = max{T LV (g)|g ∈ SPG(seg)} . (6)

Intuitively, the time of the last visit to a segment is the most
recent visit of the robot to one of the segment’s parent guards.

Definition 7. Policy: A policy π : BG → A at each state
determines which action should be performed next by the
robot.

Note that the learning procedure described below is per-
formed by each robot independently of the rest of the team.

A. Learning
If the robot had knowledge of the probability of occurrence

of the different events in each state as well as the starting
time of the events, it would be able to calculate the STR to
find a policy, maximizing the total reward of the boundary
coverage mission, but since this information is not available
to the robot, it estimates the STR, as the sum of the Expected
Segment Reward (ESR) of the segments comprising a state:

ST R(g, t)� ∑
seg∈VA(g)

(ESR(seg, t)). (7)

Expected Segment Reward (ESR) is defined to represent the
expected reward of a segment, seg, at the time t. The ESR can
be calculated using the sum of the discounted importance of
the events occurred between the last visit, T LV (seg), and the
current visit time, t, to the segment:

ESR(seg, t) = ∑
Ei∈E

∑
ei∈Ei

(1+ γ1 + γ2 + ...+ γt−T LV (seg))×

PSE(Ei,seg)×weight(Ei),
(8)

where γ is the reward discount factor. We assume that for
every time step after an event occurs without being detected,
the event detection reward is discounted by γ. Furthermore, the
Probability of Segment Event (PSE) is defined for each event
type Ei ∈ E and each segment, seg, to indicate the probability
of events of type Ei occur within the segment at each time
step.

In formula (8), ∑Ei∈E ∑ei∈Ei PSE(Ei,seg)×weight(Ei) is the
Segment Reward Accumulation Rate of all the events at the
segment, seg, and is represented by SRAR(seg). If a robot
knows the SRAR of the events at each segment, it can calculate
the ESR for any arbitrary time t.

To this end, a learning procedure for estimating the SRAR
gradually updates its initial value. In the initialization step, the
robot assumes that all the events have the same probability
of occurrence at each segment. Therefore, all the SRARs are
initialized to 1. When the robot arrives at a guard g, it can
detect whether or not an event has occurred at the segments
belonging to VA(g). The SRAR of the guard’s segments is then
updated using the following formula:

∀seg ∈VA(g), SRAR(seg) =

(1−α)×SRAR(seg)+α× ∑Ei∈E ∑ei∈Ei(weight(Ei))

t −T LV (seg)
,

(9)

where α is the learning rate set to 0.9 and t is the time of
the visit to g. This formula gives more weight to the new
information than the old information. The robot performs the
updating process for all the event types and all the segments
of the guards.

In summary, the SRAR of a segment is updated once a robot
visits one of its parent guards. As already mentioned, the
SRAR represents the reward accumulation rate on the segment.
Now we can use the SRAR to calculate the ESR of the segments
using the following procedure:

At the beginning, the ESR of all the segments are initialized
to zero. Then, at each time step, if the robot has yet to arrive
at a guard, the ESR of all the segments of the boundary is
updated using the following equation:

∀seg ∈ Segments,
ESR(seg, t) = γ×ESR(seg, t −1)+SRAR(seg).

(10)

If the robot arrives at a guard g, it detects all the events that
have occurred in its segments and communicates the guard ID
to the robots located within its communication range. Since all
the events occurred in the segments of g have been detected,
the expected reward of the segments at the time t (i.e. the time
of the visit to the guard g) becomes zero. Consequently, for
the robot and all the communicated robots:

∀seg ∈VA(g), ESR(seg, t) = 0. (11)

Note that each robot has its own knowledge of the ESR
of the segments, so the other robots (except the ones who
received the communication) may still assume that there are
some undetected events in the segments of g at the time, and
subsequently their ESRs of the segments of g are not zero.

This updating process continues during the boundary cov-
erage operation.
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Fig. 3: Maps Used in the Experiments

B. Planning
Once a robot arrives at a guard and detects all the events

which may have occurred in the segments of the guard, the
robot selects the next action to perform. As already mentioned,
an action in the boundary coverage operation is defined as
moving from one guard to another guard in the Boundary
Graph. At each state, the robot considers all the precomputed
shortest paths to all the other guards it can move to. For each
path, path(gc,gd), where gc is the current guard and gd is the
destination guard, Path Reward (PR) is defined as the reward
the robot receives when moving from the guard gc to the guard
gd . The path from gc to gd includes zero or more intermediate
guards and can be represented as:

path(gc,gd) = [gc,gi,g j, ...,gr,gd ] . (12)

Given the speed of the robot, the arrival time at each of
the guards on the path can be estimated. Hence, the robot can
have an estimate of the ESR(seg, t(g)) for each segment of the
guard g ∈ path(gc,gd), in which t(g) is the arrival time to the
guard g. For such a path, the PR is calculated as below:

PR(path(gc,gd)) = ∑
g∈path(gc,gd)

∑
seg∈VA(g)

ESR(seg, t(g)). (13)

When calculating the PR, the robot should take into account
the segments shared by some parent guards as well, namely
the robot in its calculations initializes the shared segment’s
ESR to zero when it is going to visit one of its parent guards
along the path.

Next, for each path, the Average Path Reward (APR) is
calculated using the following formula:

APR(path(gc,gd)) =
PR(path(gc,gd))

t(gd)−T LV (gc)
, (14)

where gd is the destination guard on the path, and t(gd) is the
arrival time to the guard gd . The robot will select a path with
the maximum Average Path Reward to traverse next.

VII. EXPERIMENTS AND RESULTS

We wish to compare Informed Boundary Coverage (IBC)
with Uninformed Boundary Coverage (UBC) in terms of the
total reward being received by the team for detecting the events
in a finite simulation time. We have developed a simulator to
test the algorithms in different scenarios. The simulator can

support different numbers of robots in the target area, different
visual ranges for the robots, and varying degrees of clutter in
the environment.

The experiments are conducted using 1,2,5 and 10 robots,
with a visual range of 0.5m and a communication range of
1m, on the sample environments of Figure 3. The size of the
environments is 10m× 10m, and the boundaries are divided
into segments of length 0.5m.

We divide the environment maps into 4 disjoint sub-regions.
In maps 1 and 2, there are structures in all sub-regions of the
environment. In map 3, there are structures in 3 of the sub-
regions, and in map 4, there are structures in 2 of the sub-
regions. Four experiments were designed, in each, the pattern
of event occurrence varies in the sub-regions. Figures 4, 5, 6
and 7 show the total reward being received by the team (1,2,5
and 10 robots) in each experiment during 15000 cycles of the
simulation run on map 1. The other maps show a similar trend
to that for map 1.

Figure 3 shows the cyclic tours built on the maps using
Uninformed Boundary Coverage, assuming that the robots’
visual range is 0.5m.

Figure 8 also shows the percentage of time a team of
10 robots spends in each sub-region during the 15000 cycle
simulation of the 4 experiments.

A. Experiment 1: Uniform Event Occurrence
In this experiment, the events occur in all the segments of

the boundaries, and in all the sub-regions of the environment
uniformly with an equal probability of 0.5, meaning that at
each cycle there is a 0.5 chance that an event occurs in a
segment. Each event has a weight of 1.

As shown in Figure 4, Uninformed Boundary Coverage
collects more rewards than Informed Boundary Coverage
regardless of the size of the team, and as the number of robots
increases in the environment, the difference between the two
algorithms grows. When the events occur uniformly along the
boundaries, following the shortest tour on the Boundary Graph
is a reasonable approach for the robots.

Figure 8a also shows the robots using Informed Boundary
Coverage spend an almost equal amount of time in each sub-
region during the simulation.

B. Experiment 2: Non-uniform Event Occurrence
In this experiment, no events occur on the boundaries of

sub-region 1. Within sub-region 2 the events occur with a
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Fig. 4: Experiment 1: Uniform Event Occurrence
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(c) Number of Robots = 5
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(d) Number of Robots = 10

Fig. 5: Experiment 2: Non-uniform Event Occurrence
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Fig. 6: Experiment 3: All Events Occur in One Sub-region

probability of 0.1 in each segment of the boundaries. Within
sub-region 3, the events occur with a probability of 0.9, and
within sub-region 4, the events occur according to a Poisson
distribution with a mean of λ = 4. This implies that more
than one event can occur in each segment at every cycle. Each
event occurring in sub-regions 2 and 3 is weighted 1, and 0.5
in sub-region 4.

As shown in Figure 5, Informed Boundary Coverage out-
performs Uninformed Boundary Coverage regardless of the
size of the team, and as the number of robots increases in
the environment, the difference between the two algorithms
grows.

Figure 8b also shows that when Informed Boundary Cov-

erage is used, the percentage of time the robots spend in
sub-region 4 increases during the progress of the simulation
because of the higher number of events occurring in that area
compared to the other sub-regions. Sub-region 3 is the second
most promising area for the robots, and finally are sub-regions
2 and 1 subsequently.

C. Experiment 3: All Events Occur in One Sub-region
In this experiment, in sub-region 1, the events occur with a

probability of 0.9 in the segments of the boundary. No events
occur in sub-regions 2, 3 and 4. Each event is weighted 1.

As shown in Figure 6, Informed Boundary Coverage outper-
forms Uninformed Boundary Coverage regardless of the size
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(c) Number of Robots = 5
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(d) Number of Robots = 10

Fig. 7: Experiment 4: Dynamic Event Occurrence
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(b) Experiment 2
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(c) Experiment 3
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(d) Experiment 4

Fig. 8: Percentage of Time a Team of 10 Robots Using IBC Spends in Each Region on Different Experiments

of the robot team, and as the number of robots increases in
the environment, the difference between the two algorithms
grows.

Figure 8c also shows that when Informed Boundary Cover-
age is used, the percentage of time the robots spend in sub-
region 1 increases dramatically over time because of its higher
expected reward for the robot team compared to the other
areas. On the other hand, the robots’ presence in sub-regions
2, 3 and 4 declines.

D. Experiment 4: Dynamic Event Occurrence

In this experiment, the pattern of event occurrence changes
at some times unknown to the robots during the simulation
run. We presume that during the first 5000 cycles, the events
occur in the environment according to the pattern discussed
in Experiment 1 (Uniform Event Occurrence), between cycles
5000− 10000, the events occur according to the pattern dis-
cussed in Experiment 2 (Non-uniform Event Occurrence), and
between cycles 10000−15000, the events occur according to
the pattern mentioned in Experiment 3 (All Events Occur in
One Sub-region).

As shown in Figure 7, Informed Boundary Coverage out-
performs Uninformed Boundary Coverage regardless of the
size of the robot team, and as the number of robots increases
in the environment, the difference between the two algorithms
grows. In this experiment, the robots adapted themselves to the
changes in the pattern of event occurrence on the boundaries,
and updated their policies based on these changes. Although,

as we expected, Informed Boundary Coverage cannot outper-
form Uninformed Boundary Coverage during the first 5000
cycles, when the events occur uniformly along the boundaries;
however, it ends up collecting more rewards in the rest of the
simulation when the events occur according to the patterns
discussed in Experiments 2 and 3.

Figure 8d also shows that in the first 5000 cycles of the
simulation, the robots spends an almost equal amount of time
in each sub-region. In the second 5000 cycles, the robots
presence in sub-region 4 increases and in the third 5000 cycles
of the simulation, the robots’ presence increases in sub-region
1 and lessens in sub-region 4.

VIII. DISCUSSION

Table I shows the total reward received by the team using
the Informed Boundary Coverage (IBC) and the Uninformed
Boundary Coverage (UBC) algorithms on the four maps of
Figure 3 during a 15000 cycle simulation. The results on
maps 2, 3 and 4 are consistent with the results discussed in
detail for map 1. As shown in the table, Uninformed Boundary
Coverage collected more rewards on all the maps when the
events occur uniformly along the boundaries (Experiment 1).
However, Informed Boundary Coverage outperforms Unin-
formed Boundary Coverage on all the maps when the events
occur non-uniformly, on just parts of the boundaries, or when
the pattern of event occurrence changes over time.
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TABLE I: Total Reward Collected by the Team on Different Maps Based on Different Experiments and Various Number of
Robots

 

# of 

Robots 

Experiment 1 Experiment 2 Experiment 3 Experiment 4 

UBC IBC UBC IBC UBC IBC UBC IBC 

Map #1 

1 22626 18122 34316 63822 5350 19662 22951 35732 

2 45254 35422 68763 124580 10670 33879 43232 68895 

5 113020 81906 165000 278750 26629 67578 103960 143590 

10 220190 145280 314470 458370 53128 106940 198240 245720 

Map #2 

1 19452 16482 33085 71412 4172 13222 20618 37157 

2 38964 30403 65285 130670 8472 26003 39383 66564 

5 97228 68535 158410 279230 21170 50193 93523 143450 

10 185980 121390 304720 457830 42156 79808 179040 225240 

Map #3 

1 21428 17915 25314 53183 7141 19925 19292 28485 

2 42825 35308 50940 104680 14100 34909 37165 59804 

5 106770 74160 119390 208840 35277 70126 88069 121610 

10 203010 129780 222530 332110 70154 114680 165940 199410 

Map #4 

1 17396 16321 22851 70146 3106 11824 15144 17356 

2 34789 29572 45161 102930 6226 24011 29620 37247 

5 86652 62621 105110 194930 15585 49351 70116 96063 

10 163970 106210 196170 296840 30987 66821 130940 157440 

IX. CONCLUSIONS AND FUTURE WORK

We have addressed the problem of repeated coverage by
a team of robots of the boundaries of a target area and the
structures inside it. The robots have limited circular visual and
communication range. Events may occur on any parts of the
boundaries and may have different importance weights. The
robots are not a priori aware of the probability distribution
of occurrence of events on the boundaries. As a result, each
robot autonomously and continuously learns the pattern of
event occurrence on the boundaries over time, capturing the
uncertainties in the target area, and then plans in a decentral-
ized manner to select the best path at that time in the target
area to visit the most promising parts of the boundary. The
performance of the learning algorithm was compared with a
heuristic algorithm for the Travelling Salesman Problem, on
the basis of the total reward collected by the team during a
finite repeated boundary coverage mission.

For future work, we plan to address issues related to
noisy sensors of the robots, action uncertainty, and unknown
structures. In the case of noisy sensors, the accuracy of the
information achieved by a robot could vary with the distance of
the boundary from the robot. Some events might also require
multiple robots to form a coalition in order to be handled.
Another future direction is the case that the robot team would
have the ability to change its behavior over time in response
to a changing environment with dynamic structures, either to
improve performance or to prevent unnecessary degradation in
performance.
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