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Abstract We address the problem of repeated coverage of
a target area, of any polygonal shape, by a team of robots
having a limited visual range. Three distributed Cluster-
based algorithms, and a method called Cyclic Coverage are
introduced for the problem. The goal is to evaluate the per-
formance of the repeated coverage algorithms under the
effects of the variables: Environment Representation, and the
Robots’ Visual Range. A comprehensive set of performance
metrics are considered, including the distance the robots
travel, the frequency of visiting points in the target area, and
the degree of balance in workload distribution among the
robots. The Cyclic Coverage approach, used as a benchmark
to compare the algorithms, produces optimal or near-optimal
solutions for the single robot case under some criteria. The
results can be used as a framework for choosing an appro-
priate combination of repeated coverage algorithm, environ-
ment representation, and the robots’ visual range based on
the particular scenario and the metric to be optimized.
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1 Introduction

Given the dynamic and uncertain environments in which
future robots will have to work compared to those of the
familiar, relatively simple industrial robots, the integration
of the advanced physical and cognitive systems required by
the next generation of robots is a challenging task. It is not
feasible to design a single ‘universal’ robot capable of work-
ing within a wide range of applications. PR2 and Nao are
examples of the challenges of cost, long product life cycle
and limited functionality which will apply to future robots
as well. Given these challenges, multi-robot systems may
be suitable alternatives to single-robot systems in many real
world applications.

It is generally believed that multi-robot systems hold sev-
eral advantages over single-robot systems. The most common
motivations for developing multi-robot system solutions in
real world applications are that a single robot cannot deal
with task complexity adequately; the task is spatiotemporally
distributed; building several niche, resource-bound robots is
easier than building a single powerful robot; multiple robots
can support parallelism; and finally, redundancy increases
robustness.

Distributed Area Coverage as a task for multi-robot sys-
tems is a challenging problem in different scenarios such as
search and rescue operations (Jennings et al. 1997), planetary
exploration (Mataric and Sukhatme 2001), intruder detection
(Gerkey et al. 2006; LaValle and Hinrichsen 2001), environ-
ment monitoring (Lavalle et al. 1997), floor cleaning (Hofner
and Schmidt 1994) and so on. In this task, a team of robots
cooperatively visits (observes or sweeps) an entire area, pos-
sibly obstructed by obstacles. The goal is to build efficient
paths for all the robots which jointly ensure that every point
in the environment is visited by at least one of the robots.
If there is a need to detect some events in the environment,
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area coverage guarantees finding all of them in the target
area.

There is confusion in the literature regarding the terms
Exploration and Coverage. To clarify the problem defini-
tion, we note that in exploration, we have an unknown envi-
ronment in which a team of robots is trying to build a map
of the area together (Yamauchi 1998; Burgard et al. 2000;
Simmons et al. 2000; Howard 2006; Batalin and Sukhatme
2003). On the other hand, in a coverage problem, the map
of the environment may be known or unknown and the team
aims to cooperatively visit the whole area with their sensors
or physical actuators. In other words, building a map of the
environment is not the ultimate aim of the coverage mission.

A similar class of problems is Boundary Coverage in
which the aim is inspection of the boundaries of a target
area and the obstacles inside by a team of robots rather than
complete coverage of the area (Williams and Burdick 2006;
Amstutz et al. 2008).

There are two classes of coverage problems:

• Single Coverage: The aim is to cover the target area until
all the accessible points of interest in the environment
have been visited at least once, while minimizing the
time, distance traversed by the robots, and the number
of visits to the points (Fazli et al. 2010a,b; Hazon and
Kaminka 2008; Rekleitis et al. 2008).
• Repeated Coverage: The goal is to cover all the acces-

sible points of interest in the environment repeatedly
over time, while maximizing the frequency of visit-
ing points in the target area, minimizing the weighted
average event/intruder detection time, minimizing the
sum/maximum length of the paths/tours generated for the
robots, or balancing the workload distribution among the
robots. Visiting the points in the area can be performed
with uniform or non-uniform frequency, depending on
the priorities of different parts of the area1.

Several research communities including robotics/agents
(Machado et al. 2002), sensor networks (Gasparri et al. 2008),
operations research (Toth and Vigo 2002b) and computa-
tional geometry (Carlsson et al. 1993) work on variants of
the repeated coverage problem.

In operations research, the Vehicle Routing Problem has
some similarities to the repeated coverage scenarios (Liu and
Shen 1999). In this problem, a number of vehicles deliver
goods located at a central depot to a set of geographically
dispersed customers. The objective is to minimize the total
distance travelled. In the Vehicle Routing Problem with Time
Windows, the target locations have time windows within
which the deliveries (or visits) must be made (Desrochers

1 In this paper, we use the terms ’coverage’ and ’repeated coverage’
interchangeably.

et al. 1992), and in the Capacitated Vehicle Routing Prob-
lem, the vehicles have limited carrying capacity for the goods
that must be delivered (Toth and Vigo 2002a).

In computational geometry, this problem originates from
the Art Gallery Problem (O’Rourke 1987; Urrutia 2000) and
its variant for mobile guards, the (Multi) Watchman Route
Problem (Chin and Ntafos 1986; Packer 2008; Faigl 2010). In
the Art Gallery Problem, the goal is to find a minimum num-
ber of static guards (control points) which can jointly cover
a priori known simple polygonal workspace under differ-
ent restrictions. On the other hand, in the (Multi) Watchman
Route Problem the objective is to compute routes (closed
curves) watchmen should take, such that any point inside the
polygon is visible from at least one point along one route.
Pursuit-Evasion is another closely related problem studied
in both the computational geometry and the robotics commu-
nities. In this task, one or more searchers move throughout a
given target area in order to guarantee the detection of all the
evaders, which can move arbitrarily fast (Gerkey et al. 2006;
Vidal et al. 2002). In Pursuit-Evasion scenarios the searchers
do not necessarily cover the entire target area.

In the robotics community, most research in this area
is carried out under the rubric of Area/Boundary/Perimeter
Patrolling. In Sect. 2 we elaborate on the related literature
regarding the Multi-Agent/Robot Patrolling scenarios.

Overview and Contributions: In this study, we define four
optimization metrics for comparing the efficiency of the
repeated coverage algorithms. These metrics are:

• Total Path Length (TPL) the robots traverse in the target
area.
• Total Average Visiting Period (TAVP) of the points of

interest in the target area.
• Total Worst Visiting Period (TWVP) of the points of inter-

est in the target area.
• Balance in Workload Distribution (BWD) among the

robots.

These metrics will be discussed in detail in Sect. 3. Inter-
estingly, it is impossible even to develop polynomial approx-
imation algorithms, when optimizing each of the metrics of
the repeated coverage problem, unless P = N P (Packer
2008). Furthermore, optimizing all these metrics simultane-
ously is another challenge, because some are mutually con-
flicting in the coverage mission. These considerations require
us conduct an extensive experimental analysis to evaluate the
performance of the algorithms.

The contributions of this paper are as follows:

1. We present an approach to modeling the environment
using graph-based methods considering the limited visual
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range of the robots. To this end, two environment
modeling approaches are developed based on the Visibil-
ity Graph and the Constrained Delaunay Triangulation.

2. Three Cluster-based algorithms are introduced for the
distributed repeated coverage problem, differing as to
how they cluster the graph, namely: the Uninformed Clus-
tering Coverage, the Edge-based Clustering Coverage,
and the Node-based Clustering Coverage algorithms.

3. An algorithm called Cyclic Coverage is introduced and
used as a benchmark to compare the performance of the
repeated coverage algorithms. The algorithm finds the
shortest tour on the graph similar to solving a Travelling
Salesman Problem (TSP). We show that even though the
Cyclic Coverage approach can produce optimal or near-
optimal solutions for a single robot case under some par-
ticular metrics; however, it is not always the best solution
when extending the problem to multi-robot scenarios.

4. The effect of different environment representations on
the performance of the repeated coverage algorithms are
examined.

5. The effect of varying the robots’ visual range on the
performance of the repeated coverage algorithms is
investigated.

The results can be used as a framework for choos-
ing an appropriate combination of repeated coverage algo-
rithm, environment representation, and the robots’ visual
range based on the particular scenario and the metric to be
optimized.

2 Background and review

Choset (2001) divides the approaches for area coverage
based on the methods they employ for decomposing the area:
Exact Cellular Decomposition, and Approximate Cellular
Decomposition.

In the Exact Cellular Decomposition (e.g. graph-based
methods), the area is divided to a set of non-overlapping
regions whose union covers the whole environment. In the
Approximate Cellular Decomposition (e.g. grid-based meth-
ods), the environment is divided into cells which are all the
samesizeandshape.However,cells thatarepartiallyoccluded
by obstacles or close to the boundary are discarded, therefore
the union of the cells only approximates the target area.

The methods based on the Approximate Cellular Decom-
position have limitations since they do not consider the
structure of the environment and as a result are unable to
handle partially occluded cells or cover areas close to the
boundaries in continuous spaces. In contrast, methods based
on the Exact Cellular Decomposition do not suffer those
restrictions. However, while traversing the graph guarantees
covering the whole environment in continuous spaces, the
path may include many redundant movements.

Although there is a wide body of literature for sin-
gle coverage scenarios (Choset 2001; Agmon et al. 2008a;
Rekleitis et al. 2008; Gabriely and Rimon 2011; Zheng et al.
2005; Kurabayashi et al. 1996; Batalin and Sukhatme 2002),
repeated coverage has not received the same attention. Two
classes of the repeated coverage problem in the literature are:
1) Area Patrolling, and 2) Boundary or Perimeter Patrolling
(Open or Closed Polylines), and each is divided into:

• Optimization-based repeated coverage, inwhichtheteam’s
goal is to optimize some criteria, for example minimizing
the average or worst frequency of visiting the points of
interests in the target area, minimizing the total path tra-
versed by the robots in the environment, or balancing the
workload distribution among the robots. Optimization-
based repeated coverage is the focus of this paper.
• Adversarial repeated coverage, in which the team’s goal

is to maximize the probability of detecting an adversary or
multiple adversaries trying to penetrate the environment
mainly through the patrol paths.

2.1 Optimization-based repeated coverage

Machadoetal. (2002)studiedseveralarchitecturesforrepeated
coverage in non-weighted graphs (i.e. the distance between
two adjacent nodes is uniform). The goal was to minimize the
time gap between two visits to the same node. The proposed
architectures differ on various parameters such as agent type
(reactive or goal-oriented), agent communication (central-
ized, peer-to-peer, flag-based, or no-communication), coor-
dination scheme (centralized vs. distributed), agent percep-
tion (local vs. global), and decision-making (random selec-
tion vs. goal-oriented selection). They showed that the Con-
scientious Reactive Agents architecture outperforms the other
multi-agentarchitectures.Anagent inConscientious Reactive
Agents chooses a node to visit from its neighbourhood with
the highest time of being unvisited relative to the agent’s own
visits rather than all the other agents’ visits. There is no com-
munication among the agents. The approach is generalized to
weighted graphs in Almeida et al. (2004)

Santana et al. (2004) studied adaptive agents that learn
to patrol weighted graphs to minimize the time intervals
between visits to the nodes, using Reinforcement Learn-
ing (RL) techniques. A Markov Decision Process (MDP)
formalism was used to model the patrolling problem, and
the challenge was to define a state and action space for
each agent individually, and to develop proper models of
instantaneous rewards which could lead to satisfactory long
term performance. The Q-Learning algorithm was used to
train the agents, which proved to be computationally expen-
sive.

Aproblemwithsomeof theexistingempiricalstudies in the
field of area patrolling is the lack of a comprehensive popula-
tion of environment maps in the experiments. In the works by
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Almeida et al. (2004) and Machado et al. (2002) only six maps
were used to evaluate the coverage algorithms, two of which
have almost 75 % similarity. In two other maps called ‘circu-
lar’ and ‘corridor’, onlyone representationof theenvironment
(i.e. a chain) is possible due to the structure of the environ-
ments. Santana et al. (2004) also used two very similar maps
to evaluate their proposed patrolling algorithm. Moreover, in
none of the above patrolling tasks, did the authors provide
details on how the graph is built to represent the environment.
They typically presume the existence of a graph which is not a
complete model of the environment, just a rough approxima-
tion of it. The proposed architectures also consider the agents
as points with no extent or limit on visual range, so the prob-
lem dealt with is reduced to a graph exploration/coverage task
rather than an area coverage scenario. This paper, on the other
hand,buildsacompletemodelof theenvironmentconsidering
the limitedvisual rangeof the robots.Moreover,wewill inves-
tigate the effect of different representations of the target area
and varying the robots’ visual range on the performance of the
repeated coverage algorithms with extensive experiments on
a set of carefully selected maps.

Elmaliach et al. (2009) proposed a centralized algo-
rithm which guarantees optimal uniform frequency, i.e., all
cells are visited with maximal and uniform frequency in a
non-uniform, grid environment. As mentioned above, grid-
based representations have limitations in handling partially
occluded cells or cover areas close to the boundaries in con-
tinuous spaces. Also, one of the limitations of the proposed
approach is the requirement for a corridor’s size in the envi-
ronment to be at least twice the size of the robot in order
to be covered. Our algorithms, on the other hand, guarantee
complete coverage of the area.

Elmaliach et al. (2008) also addressed the problem of
frequency-based patrolling of open polylines (e.g., as in open-
ended fences), where the two endpoints of the polylines are
not connected. Jensen et al. (2011) extended Elmaliach et al.’s
work on patrolling open polylines, with a focus on maintain-
ing the patrol over the long-term. They accomplish this task
by replacing the robots having power level below a thresh-
old with some reserve robots. Patrolling open perimeters is
challenging because robots must revisit the just visited areas
when they reach an endpoint and turn back. Boardman et al.
(2010) presented a distributed boundary tracking controller
for multi-robot systems. Within this system, the boundary is
partitioned into sub-segments, each allocated to a robot, such
that the workload is balanced among the robots. They also
aimed to minimize the phase difference between the robots,
to limit the size of the gap created between the robots.

2.2 Adversarial repeated coverage

Some work considered the existence of adversary agents in
the workspace, where the goal is to maximize the detection

rate of the intruder(s) in the work space. The main idea behind
these patrolling strategies is to use non-deterministic, prob-
abilistic algorithms in order to avoid static patrolling pat-
terns which, in an adversarial scenario, could be exploited
by intruders.

Sak et al. (2008) considered the case of multi-agent patrol
in adversarial environments in general graphs. The authors
assumed three types of intruders in the environment: a ran-
dom intruder, an intruder that waits until the patrolling agent
leaves a node to penetrate the area, and an statistical intruder
that collects statistics on the period between visits to a ran-
dom node and predicts the timing of the next safe visit to
the node. Some patrolling algorithms were experimentally
evaluated by simulation. The results showed that no patrol
strategy was optimal for all the possible adversaries.

Ahmadi et al. (2006) addressed the problem of multi-robot
repeated coverage of a grid-based target area in order to detect
a set of events of interest. The frequency of the events occur-
rence in the environment can possibly be non-uniform. Thus,
the robots should visit the points with non-uniform frequency.
The main contribution of the paper is an online area partition-
ing method among the robots through a negotiation mecha-
nism, which is adaptive to non-uniform frequency of event
occurrence in the target area.

Guo et al. (2007) studied a centralized multi-robot system
for patrolling continuous environments. In this paper, the
area is partitioned into sub-regions using a Voronoi Diagram.
Robots are then distributed from their initial positions to their
sub-regions, and finally, each robot patrols its sub-region in
order to detect a possible intrusion of an adversary agent into
that sub-region.

Agmon et al. (2008b) studied patrolling a cyclic bound-
ary, in which the robots’ goal is to maximize their rewards
by detecting an adversary agent, which attempts to penetrate
through a point on the boundary unknown to the robots. In
their scenario, the full-knowledge adversary knows the loca-
tion of the robots and the patrol strategy and needs a time
interval of length t to accomplish the intrusion. They also
examined the case of a zero-knowledge adversary (Agmon
et al. 2008c) and a partial-knowledge adversary (Agmon et al.
2009b) in perimeter patrolling. The uncertainty in the robots’
perception was investigated in (Agmon et al. 2009a), in which
the ability to detect the intruders decreased as the distance
grew. Czyzowicz et al. (2011) addressed the same problem
using a team of verable speed robots.

Fazli and Mackworth (2012a,b) addressed the problem of
repeated coverage by a team of robots of the boundaries of a
target area and the structures inside it. The robots have lim-
ited visual and communication range. Events may occur on
any parts of the boundaries and may have different impor-
tance weights. In addition, the boundaries of the area and
the structures are heterogeneous, so that events may appear
with varying probabilities on different parts of the boundary,
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and these probabilities may change over time. The goal is
to maximize the reward by detecting the maximum number
of events, weighted by their importance, in minimum time.
The reward a robot receives for detecting an event depends
on how early the event is detected.

Girard et al. (2004) studied a centralized system composed
of multiple unmanned air vehicles patrolling a border area.
The border is represented as a continuous two-dimensional
region divided in sub-regions. Each sub-region is assigned to
an air vehicle that repeatedly patrols it with a spiral trajectory
to detect the possible intrusions in that sub-region.

3 Problem definition and preliminaries

The problem is to cover the environment repeatedly over
time using a given number of robots. To this end, we make
the following assumptions.

Assumption 1 The environment boundary is a known 2D
simple polygon containing static polygonal obstacles.

Assumption 2 Each robot, in the set of robots R, is repre-
sented by a point in the environment.

This assumption reduces the problem to covering a polyg-
onal environment by a team of point robots without loss of
generality. This follows from using the standard approach
to robot motion planning in an environment with polygonal
obstacles for the computation of the configuration space. In
this case, configuration space is the set of all admissible posi-
tions of the robot, i.e. the Minkowski sum (Skiena 1998) of
the set of obstacles and the boundary of the environment with
the shape of the robot

Assumption 3 The robots are presumed to have a 360◦ field
of view and a predefined circular limit of visual range.

Assumption 4 The robots are homogeneous, with the same
speed, and can move in any direction.

In order to evaluate the coverage mission, some metric
criteria need to be determined, but before that we introduce
some basic definitions:

• Full Single Coverage: all the robots traverse the paths
assigned to them just once.
• Visiting Period (VP): the time interval between two visits

to a point of interest in the target area. A point of interest
can have more than one Visiting Period, due to the pos-
sibility that the point may be visited more than once in
different time intervals by one or more than one robot in
a Full Single Coverage. For example, in Fig. 1, point A
(shown by the red dot) has three Visiting Periods, two are
determined by the black robot/tour and one is determined
by the blue robot/tour 2.

2 All figures in this paper are best viewed in color.

A

Fig. 1 Visiting Period and Visiting Frequency

• Average Visiting Period (AVP): the average of the Visiting
Periods of a point of interest.
• Worst Visiting Period (WVP): the maximum period of

time it takes a point of interest to be re-visited in the
target area.
• Visiting Frequency (VF): the number of visits to a point

of interest by a single robot in a Full Single Coverage.
If a point of interest is visited by more than one robot
in a Full Single Coverage, the point will have more than
one Visiting Frequency, each associated with a different
robot. For example, in Fig. 1, point A has two Visiting
Frequencies, one is determined by the black robot/tour
and the other is determined by the blue robot/tour. The
Visiting Frequency of point A on the black tour is 2 and
on the blue tour is 1.

The repeated coverage algorithms will be evaluated based
on the following metrics:

• Total Path Lengths (TPL): the sum of the lengths of the
paths assigned to the robots in order to have a Full Single
Coverage.
• Total Average Visiting Period (TAVP): the average of the

Average Visiting Periods of all the points of interest in
the target area.
• Total Worst Visiting Period (TWVP): the maximum Worst

Visiting Period of all the points of interests in the target
area.
• Balance in Workload Distribution (BWD): the degree of

balance in the workload distribution among a team of
robots. A workload distribution is completely balanced
if the standard deviation of the lengths of the constructed
paths for the robots is zero: the paths assigned to the
robots all have equal lengths.

In this study, the aim is to minimize TPL, TAVP, and TWVP
and to maximize BWD in the repeated coverage scenario.

3.1 Computing the evaluation metrics

The paths of the robots in the target area may either not
overlap, that is, there is no common Point of Interest among
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(a) Non-overlapped Paths

(b) Overlapped Paths

Fig. 2 Non-overlapped versus overlapped paths for two robots

the robots’ paths (as shown in Fig. 2), or may overlap, that is,
there are some common Points of Interest among the robots’
paths (e.g. red dots shown in Fig. 2b). Considering this, the
evaluation metrics are defined as below:

T P L =
|R|∑

i=1

Length(Path(ri )). (1)

|R| is the number of robots, Path(ri ) is the path built for
robot ri , and Length(Path(ri )) is the length of the path.

T AV P

=
∑

node∈PoI AV P(node)

|PoI | , PoI = Points of Interest,

(2)

where
AV P(node) = Length(Path(ri ))

V Fi (node) , i ∈ {1, 2, . . . , |R|},
node ∈ Path(ri ), if node is not a common Point of Interest
among the robots’ paths, or

AV P(node) = 1{∑
i

V Fi (node)
Length(Path(ri ))

} , i ∈ {1, 2, . . . , |R|},
node ∈ Path(ri ), if node is a common Point of Interest
among the robots’ overlapped paths.

V Fi (node) is the node Visiting Frequency in Path(ri ).

T W V P = maxnode∈PoI (W V P(node)), (3)

where
W V P(node) = max {V Pi (node)} , node ∈ Path(ri ),

if node is not a common Point of Interest among the robots’
paths, or

W V P(node) = mini=1,2,...,|R|{max {V Pi (node)}},node
∈ Path(ri ), if node is a common Point of Interest among the
robots’ overlapped paths.
{V Pi (node)} is the set of all the Visiting Periods of the

node in Path(ri ).
In computing the WVP of a Point of Interest which is com-

mon among the robots’ paths, we first calculate the maximum
Visiting Period of the point in each robot’s path, and then
choose the minimum of the maximum values. Recall that

each Point of Interest can belong to the path of more than
one robot, and can also have more than one Visiting Period
in each robot’s path.

BW D(Paths)

= (1− ST D({Length(Path(ri ))|i=1, 2, . . . , |R|})
ST D(

{
T P L, α1, α2, . . . , α|R|−1|αi=0

}
)

)×100,

(4)

where ST D(.) is the population standard deviation, and
Paths = {

Path(r1), Path(r2), . . . , Path(r|R|)
}

is the |R|
paths created for the |R| robots. For the case of one robot,
we assume that BW D(Paths) = 100. In BW D’s compu-
tation, ST D({Length(Path(ri ))|i = 1, 2, . . . , |R|}) is the
population standard deviation of the set of paths created for
the robots, and ST D(

{
T P L, α1, α2, . . . , α|R|−1|αi = 0

}
) is

the worst case scenario, in which one robot is in charge of
the whole task, i.e. T P L , and the other robots are idle with
zero path length (α1, α2, . . . , α|R|−1).

3.2 Stages of the repeated coverage algorithms

The different stages of the proposed repeated coverage algo-
rithms are as follows:

1. The locations of static guards (Points of Interest) required
to cover visually a given 2D environment are determined,
allowingfor thelimitedrangeoftherobots’vision(Sect.4).

2. A graph is built on the guards and the obstacles based on
either the Visibility Graph or the Constrained Delaunay
Triangulation (Sect. 5).

3. The graph is reduced to either the Reduced-Vis or the
Reduced-CDT representation (Sect. 6).

4. Cluster-based Coverage Algorithms: The Reduced Graph
is partitioned into as many clusters as the number of
robots. To this end, three different clustering algorithms
are introduced, namely: Uninformed Clustering, Edge-
based Clustering, and Node-based Clustering. Finally,
a tour is built for each robot on the clustered Reduced
Graph. For this purpose, two tour building algorithms
are proposed, namely: Double-Minimum Spanning Tree,
and the Chained Lin–Kernighan algorithms (Sect. 7).

5. Cyclic Coverage Algorithm: Cyclic Coverage finds the
shortest tour on the whole VG or CDT graph, passing
through all the static guards, and then distributes the
robots equidistantly around it (Sect. 8).

Since the problem is a repeated coverage scenario, we can
ignore the initial cost of moving the robots from their initial
locations to their assigned paths in the target area, as that
time is negligible compared to the recurring patrol time.

In the following sections, we will explain the different
stages of the proposed algorithms for repeated coverage of a
target area in detail.
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4 Locating guards with limited visual range

In our problem definition, we presume the robots are
equipped with panoramic cameras with a 360 ◦ field of view.
However, the cameras’ visual range is limited. The proposed
approach initially locates a set of guards (Points of Interests)
required to visually cover an entire area. The term guard is
taken from the Art Gallery Problem (O’Rourke 1987). These
static guards are control points that can jointly cover the
whole environment while satisfying the limited visual range
constraint of the robots (Faigl et al. 2011). In other words, if
there are as many robots as there are guards, and each robot
were stationed on a guard, the entire area would be covered
visually by the robots.

To locate the guards, the algorithm decomposes the ini-
tial target area, a 2D simple polygon with static obstacles,
into a collection of convex polygons using a Trapezoidal
Decomposition method, and then applies a post-processing
approach to eliminate as many trapezoids as possible (Zalik
and Clapworthy 1999). The post-processing step is more
effective in cluttered areas, and since the number of guards
located by the algorithm is directly correlated to the num-
ber of trapezoids, fewer trapezoids will result in fewer
guards.

At the next step, a divide-and-conquer method (Kazazakis
and Argyros 2002) is used to successively subdivide each of
the resulting convex polygons (trapezoids) into smaller con-
vex sub-polygons until each of them can be covered visually
by one guard.

Figure 3c, d show the computed guards after trapezoida-
tion (Fig. 3b) on the sample environment of Fig. 3a.

5 Building the graphs

Having located the static guards in the previous step, the
Visibility Graph and the Constrained Delaunay Triangula-
tion are then built on the obstacles’ nodes and the computed
guards.

5.1 Visibility Graph

The Visibility Graph (VG) is a graph structure used in com-
putational geometry and robot motion planning (Latombe
1991). In our VG, the computed guards and the corners of
the area in the Euclidean plane comprise the nodes of the
Visibility Graph. If two nodes are mutually visible, they are
connected using an edge in the VG. Two nodes of the environ-
ment are mutually visible if the line segment joining them
does not intersect any obstacle (De Berg et al. 2008). Fig-
ure 4a illustrates the Visibility Graph built on the sample
environment.

5.2 Constrained Delaunay Triangulation

The Delaunay Triangulation of a set of nodes in the Euclidean
plane is a triangulation such that the circumcircle of any trian-
gle in the triangulation does not contain nodes other than the
three that define it (Lee and Schachter 1980). The Delaunay
Triangulation corresponds to the dual graph of the Voronoi
Tessellation (Okabe et al. 2000).

The Constrained Delaunay Triangulation (CDT) is a vari-
ant of the standard Delaunay Triangulation in which a set of
pre-specified edges (in our case, the edges of the obstacles)
must lie in the triangulation (Chew 1987). A Constrained
Delaunay Triangulation is not truly a Delaunay Triangu-
lation. Some of its triangles might not be Delaunay, but
they are all Constrained Delaunay. Figure 4 illustrates the
Constrained Delaunay Triangulation built on the sample
environment.

6 Graph Reduction

The aim of the Graph Reduction method is to improve effi-
ciency by minimizing the average or total time taken for
the robots to traverse the graph. Algorithm 1 describes the
steps of the construction of a Reduced Graph (Reduced-Vis
or Reduced-CDT) on a given environment. The input to the
algorithm is the VG or the CDT discussed in Sect. 5.

The method starts by using the Floyd-Warshall algorithm
to find the set M D = {

(ci j , gi , g j )|gi , g j ∈ Vvis−cdt
}

of

Algorithm 1: Graph Reduction
Input:
Graph Gvis−cdt (Vvis−cdt , Evis−cdt ), where Vvis−cdt = SG

⋃
P

/* VG or CDT */
SG = {g1, g2, . . . ., gm} /* Static Guards */
P={p1, p2, . . . ., pn} /* Endpoints of Obstacles */

Output:
Gr−vis−cdt (Vr−vis−cdt , Er−vis−cdt ) where
Vr−vis−cdt = SG

⋃
P̃ , P̃ ⊂ P /* Reduced Graph */

1 begin
2 Vr−vis−cdt ←− φ

3 Er−vis−cdt ←− φ

4 (M D, S P)←− FloydWarshall(Gvis−cdt )

5 (i, j)←− arg min
(i, j)

{ci j |(ci j , gi , g j ) ∈ M D and gi , g j ∈ SG}
6 ri j ←− GetCorrespondingShortest Path(i, j)
7 Gr−vis−cdt (Vr−vis−cdt , Er−vis−cdt )←−

I ni tial ReducedGraph(ri j )

8 while ¬ all the guards added do
9 g←− FindClosestGuardT o(Gr−vis−cdt )

10 Expand(Gr−vis−cdt , g)

11 end
12 return Gr−vis−cdt (Vr−vis−cdt , Er−vis−cdt )

13 end
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Fig. 3 Locating guards in a sample environment

minimum distances, ci j , and the set S P = {
(ri j , gi , g j )|gi ,

g j ∈ Vvis−cdt
}

of shortest paths, ri j , between any pair of
guards gi and g j of the input graph (line 4).

The minimum value of all the minimum distances in M D
is then selected (line 5) and its corresponding shortest path
in S P (line 6), including all its nodes and edges, forms the
initial component of the Reduced Graph (line 7).

Next, among all the guards that have not yet been added
to the graph, the algorithm finds the closest guard to the cur-
rent component (line 9), merging the corresponding short-
est path with it (line 10). Following the same process, the

algorithm keeps expanding the component until there are no
more guards to be added to the graph (lines 8–11). The resul-
tant graph is the final Reduced Graph (line 12). The nodes
of the graph includes all the guards (SG), as the Points of
Interests in the target area and the subset of the obstacles’
nodes (P̃ ⊂ P). Traversing the Reduced Graph guarantees
complete coverage of the target area given the limited visual
range of the robots.

Figure 4b, d illustrate, respectively, the Reduced-Vis and
the Reduced-CDT computed on the VG and the CDT of Figure
4a, c.
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Fig. 4 Graphs and Reduced Graphs

7 Cluster-based coverage algorithms

Cluster-based coverage algorithms decompose the Reduced
Graph into |R| (number of robots) clusters, T = {T1, T2, . . . ,

T|R|
}
, such that

|R|⋃
i=1

VTi = SG; SG is the set of all guards

and VTi is the set of guards of the cluster Ti . Below,
three different Cluster-based coverage algorithms are pre-
sented. The input of the proposed algorithms can be either
of the Reduced Graphs. Having built the clusters on the
Reduced Graphs, a tour is built on the generated cluster for

each robot. The tour building algorithms are discussed in
Sect. 7.4.

7.1 Uninformed Clustering Coverage

Uninformed Clustering Coverage (Algorithm 2) partitions
the Reduced Graph into |R| clusters by removing the |R|−1
longest edges of the graph (line 2). Thereafter, a tour is built
on each cluster generated for the robots (lines 3–5). There is
no overlap (existence of common guards) among the tours
built by Uninformed Clustering Coverage.
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Fig. 5 Tours built by eight robots by Uninformed Clustering Coverage

Figure 5 illustrates the tours built for eight robots on the
sample environment by the Uninformed Clustering Coverage
algorithm.

7.2 Edge-based Clustering Coverage

Edge-based Clustering Coverage (Algorithm 3) builds a set
of |R| clusters on the Reduced Graph. The clusters are ini-
tiated as follows: the endpoint guards of the longest path in
the original graph (VG or CDT) are selected as the starting
points of the first two clusters. For the next cluster, a guard
is selected such that it maximizes the sum of the distances
from the starting points of the first two clusters. Similarly,

for the next cluster, a guard is selected that maximizes the
sum of the distances from the starting points of the first three
clusters. This continues until |R| initial guards are found for
the |R| clusters of the robots (line 2). The aim of this part
and the reason to initiate the clusters in the original VG or
CDT graph is to distribute the clusters spatially as much as
possible far away from each other in the target area. Distance
between the guards in the original graph, in contrast with the
Euclidean distance, takes into account the obstacles in the
area, and is more accurate than the distance in the Reduced
Graph, because there are many edges between the nodes in
the original graph which were removed from the Reduced
Graph.
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Starting from the initial guards, clusters are expanded in
the Reduced Graph sequentially by choosing one guard at
a time, until all the guards of the Reduced Graph have been
selected at least once (lines 3–11). Each cluster selects guards
in a way that satisfies the following constraints:

• Find the nearest immediate (that is, ignoring the corners
of the obstacles) unselected guard in the Reduced Graph,
add it and the corresponding edge/path to the cluster. In
case of a tie, choose the guard which maximizes the sum
of the distances from the guards most recently selected by
the other clusters (line 5). This aims to avoid the overlap
among the clusters during their expansion as much as
possible.
• Do not add a guard which has already been chosen by any

other cluster, unless there is no other unselected imme-
diate guard (lines 6–8).

Remove Common Guards: When all the guards of the
graph have been selected by at least one cluster, remove as
many as possible of the common guards shared by the clus-
ters of the robots. To this end, for each cluster, discard the
guards and their corresponding edges/paths from the cluster
if they have been selected earlier by any other cluster (lines
13–19). There are cases where the overlap among the clus-
ters cannot be resolved. If removing the overlap among the
clusters disconnects any of them, then the overlap is left in
all the clusters.

Finally, a tour is built on the generated cluster for each
robot (line 20).

Figure 6 illustrates the tours built for eight robots on the
sample environment by the Edge-based Clustering Coverage
algorithm.

Algorithm 2: Uninformed Clustering Coverage
Input:
Gr−vis−cdt : the Reduced-Vis or the Reduced-CDT Graph
|R|: Number of Robots

Output:
A set of |R| tours, T ours = {

T1, T2, . . . , T|R|
}

where
|R|⋃
i=1

VTi = SG, SG is the set of all guards and VTi is the set of

guards of the tour Ti

1 begin
2 /*Remove |R| − 1 longest edges of

Gr−vis−cdt*/
T ours ←− ConstructClusters(Gr−vis−cdt )

3 foreach Ti ∈ T ours do
4 Ti ←− BuildT our(Ti )

5 end
6 return T ours
7 end

Algorithm 3: Edge-based Clustering Coverage
Input:
Gvis−cdt (Vvis−cdt , Evis−cdt ), where Vvis−cdt = SG

⋃
P /*

VG or CDT */
SG = {g1, g2, . . . ., gm} /* Static Guards */
P={p1, p2, . . . ., pn} /* Endpoints of Obstacles */
Gr−vis−cdt : the Reduced-Vis or the Reduced-CDT Graph
|R|: Number of Robots

Output:
A set of |R| tours, T ours = {

T1, T2, . . . , T|R|
}

where
|R|⋃
i=1

VTi = SG, SG is the set of all guards and VTi is the set of

guards of the tour Ti

1 begin
2 T ours ←− I ni tiateClusters(Gvis−cdt )

3 while ¬ all the guards of the graph Gr−vis−cdt visited do
4 foreach Ti ∈ T ours do
5 find g ∈ V which is the nearest immediate guard to Ti

in Gr−vis−cdt and ¬ visited
6 if there is no such a guard g then
7 find g ∈ V which is the nearest immediate guard

to Ti in Gr−vis−cdt
8 end
9 Ti .add(g)

10 end
11 end
12 foreach Ti ∈ T ours do
13 if there are common guards between Ti and another

cluster then
14 if the guards have been selected earlier by the other

cluster then
15 if ¬ removing the common guards from Ti

disconnects either cluster then
16 RemoveCommonGuards From(Ti )

17 end
18 end
19 end
20 Ti ←− BuildT our(Ti )

21 end
22 return T ours
23 end

7.3 Node-based Clustering Coverage

Node-based Clustering Coverage (Algorithm 4) initially
uses the k-Means clustering algorithm (Hartigan and Wong
1979) to divide the guards into |R| disjoint clusters {T1, T2,

. . . , T|R|}, in which each guard belongs to the cluster with
the nearest mean (line 2). In other words, given the set
of guards {g1, g2, . . . ., gm}, k-Means minimizes the within-
cluster sum of squares:

argmin
T

|R|∑

i=1

∑

g j∈Ti

∥∥g j − μi
∥∥2

, (5)

where μi is the mean/centroid of the guards in cluster Ti .∥∥g j − μi
∥∥2 is the distance between a guard and the centroid
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Fig. 6 Tours built by eight robots by Edge-based Clustering Coverage

of the cluster determined based on their distance in the orig-
inal VG or CDT graph. Distance between the guards in the
original graph, in contrast with the Euclidean distance, takes
into account the obstacles in the area, and is more accurate
than the distance in the Reduced Graph, because there are
many edges between the nodes in the original graph which
were removed from the Reduced Graph.

In the first iteration of k-Means, the initial means are found
in the same way as finding the starting points of the clusters
discussed in Edge-based Clustering Coverage. This aims to
distribute the clusters spatially as much as possible far away
from each other in the target area. Given this initial set of

|R| means, the algorithm proceeds by alternating between
two steps: (1) Assignment Step: Assign each guard to the
cluster with the closest mean, (2) Update Step: Calculate the
new means to be the centroid of the guards in the cluster.
Since the computed centroids may not lie on the guards of
the graph, they are matched to the closest guard in the envi-
ronment.

Having built the |R| clusters on the guards (line 3), we
connect each pair of guards in each cluster if they have a
corresponding path (including the intermediate nodes of the
obstacles) in the Reduced Graph (line 5). Thereafter, we do a
connectivity test on all the clusters, meaning that every pair
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Algorithm 4: Node-based Clustering Coverage
Input:
Gvis−cdt (Vvis−cdt , Evis−cdt ), where Vvis−cdt = SG

⋃
P /*

VG or CDT */
SG = {g1, g2, . . . ., gm} /* Static Guards */
P={p1, p2, . . . ., pn} /* Endpoints of Obstacles */
Gr−vis−cdt : the Reduced-Vis or the Reduced-CDT Graph
|R|: Number of Robots

Output:
A set of |R| tours, T ours = {

T1, T2, . . . , T|R|
}

where
|R|⋃
i=1

VTi = SG, SG is the set of all guards and VTi is the set of

guards of the tour Ti

1 begin
2 I ni tialCentroids ←−

Find I ni tialCentroids(Gvis−cdt , |R|)
3 T ours ←− k Means(Gvis−cdt , |R| , I ni tialCentroids)
4 foreach Ti ∈ T ours do
5 Ti ←− ConnectGuards(Ti , Gr−vis−cdt )

6 DCComponents ←− Find DCComponents(Ti )

7 Ti ←− Build M ST (Gvis−cdt , DCComponents)
8 Ti ←− BuildT our(Ti )

9 end
10 return T ours
11 end

of guards in each cluster should be connected through a path.
To this end, we first find the disconnected components within
the cluster (line 6) and then compute the Minimum Spanning
Tree on them by getting help from the edges of the original
VG or CDT graph, and the nodes of the obstacles (line 7). The
Minimum Spanning Tree will not add any other new guard
to the set of guards existing in the cluster. This prevents the
overlap among the clusters; however, the tree can add any
nodes of the obstacles in the environment to the cluster. We
add the Minimum Spanning Tree’s corresponding edges and
nodes to the cluster (line 7), and finally a tour is built on the
cluster (line 8). The tour is then assigned to a robot, and the
robot repeatedly traverses the tour. In Node-based Clustering
Coverage, there is no overlap among the tours generated by
the algorithm,

Figure 7 illustrates the tours built for eight robots on the
sample environment by the Node-based Clustering Coverage
algorithm.

7.4 Building the tour

Having built the clusters on the Reduced Graph, we use two
algorithms to build the tours on the clusters:

7.4.1 Double-Minimum Spanning Tree (Double-MST)

Double-Minimum Spanning Tree takes a cluster as an input
and returns a cycle whose length is twice the length of the

cluster. In this algorithm, every edge of the cluster is visited
twice.

7.4.2 Chained Lin–Kernighan (CLK)

Chained Lin–Kernighan, a modification of the Lin–Kernighan
algorithm (Lin and Kernighan 1973), is generally consid-
ered to be one of the best heuristic methods for generating
optimal or near-optimal solutions for the Euclidean Trav-
eling Salesman Problem (Applegate et al. 2003). Given the
distance between each pair of a finite number of nodes in
a complete graph, the Travelling Salesman Problem (TSP)
is to find the shortest tour passing through all the nodes
exactly once and returning to the starting node (Applegate
et al. 2007).

Lin–Kernighan is a local search algorithm (Hoos and
Sttzle 2004) and a generalization of the k-opt algorithm
(Chandra et al. 1999). A k-opt algorithm explores all the
TSP tours which can be obtained by removing k edges from
the original tour and adding k different edges such that the
resulting tour is feasible. In order to improve the efficiency,
Lin and Kernighan introduce a variable k-opt algorithm,
which adaptively decides at each iteration what value of k
to use (Lin and Kernighan 1973). Given the computation
time limit, the process is repeated by generating new ini-
tial tours and applying the Lin–Kernighan algorithm to pos-
sibly find a tour shorter than the best one thus far. Martin
et al. (1991, 1992) suggest that instead of repeatedly start-
ing from new tours, which is inefficient, the alternative is to
perturb the Lin–Kernighan tour, and then reapply the algo-
rithm. If this leads to a shorter tour, then discard the old
tour, and start with the new one. Otherwise, continue with
the old tour and perturb it again. The implementation of
the Chained Lin–Kernighan method which we use in our
study is based on the Concorde TSP library (Applegate et al.
2003).

Having built the clusters on the Reduced Graph, the
Chained Lin–Kernighan algorithm takes the distance matrix
of the guards of each cluster in the initial VG or CDT graph
as an input, and finds the shortest tour passing through all
the guards of the cluster. The matrix represents the shortest
path distances between all pairs of guards of the cluster in
the initial VG or CDT graph, without taking into account any
additional guards other than the ones existing in the cluster.
However, the shortest path between the guards in the cluster
can include any nodes of the obstacles in the environment.
This guarantees that if there is not an overlap among the
guards of the generated clusters, then there will not be any
overlap among the guards of the tours either after applying
the Chained Lin–Kernighan algorithm on the clusters. The
input to the Chained Lin–Kernighan algorithm should be a
complete graph and the distance matrix is indicative of a
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Fig. 7 Tours built by eight robots by Node-based Clustering Coverage

complete graph, even though the clusters themselves are not
complete.

7.5 Overlap among the tours

Overlap (existence of common guards) among the tours gen-
erated by the Cluster-based algorithms affects the
performance of the algorithms in some cases. The affected
cases will be discussed in Sect. 10.

In summary, there is no overlap among the tours built by
the Uninformed Clustering Coverage and the Node-based

Clustering Coverage algorithms, using either Double-MST or
CLK. The reason is that the original clusters (before building
the tours on them) generated by these two coverage algo-
rithms have no overlap on the guards. However, there may
be some unresolved overlaps among the clusters and as a
result among the tours generated by Edge-based Clustering
Coverage, using either Double-MST or CLK. In the event of
an overlap among the tours, the robots assigned to each of
the overlapped tours, all have to traverse the common parts
among themselves.
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Fig. 8 Tour built by eight robots by Cyclic Coverage algorithm

8 Cyclic algorithm

We develop a method called Cyclic Coverage (Algorithm 5)
and use it as a benchmark to compare the repeated cover-
age algorithms. Similar to the Cluster-based coverage algo-
rithms, Cyclic Coverage locates the guards, and builds the
graph (VG or CDT). However, rather than reducing and par-
titioning the graph among the robots, it creates a tour passing
through all the guards of the graph, using the Chained Lin–
Kernighan algorithm (line 2). The input of the Chained Lin–
Kernighan algorithm is the distance matrix of the guards
in the VG or CDT graph. The proposed algorithm then dis-
tributes the robots equidistantly around the tour and moves
them repeatedly around it (line 3). In this algorithm, in some

Algorithm 5: Cyclic Coverage Algorithm
Input:
Gvis−cdt (Vvis−cdt , Evis−cdt ), where Vvis−cdt = SG

⋃
P /*

VG or CDT */
SG = {g1, g2, . . . ., gm} /* Static Guards */
P={p1, p2, . . . ., pn} /* Endpoints of Obstacles */
|R|: Number of Robots

Output:
A tour, dT our , distributed among the robots, passing through all
the guards of the VG or CDT graph.

1 begin
2 tour ←− BuildT our(Gvis−cdt )

3 dT our ←− DistributeRobots(tour, |R|)
4 return dT our
5 end

rare cases, there may be some overlaps among the segments
assigned to the robots.

Cyclic Coverage produces optimal or near-optimal solu-
tions for the single robot case under Total Path Length and the
Total Worst Visiting Period. The notion of Balance in Work-
load Distribution is not defined in this approach, since all the
robots traverse the whole tour built on the original graph.

Figure 8 illustrates the tours built for eight robots on the
sample environment by the Cyclic Coverage algorithm.

9 Complexity analyses of the algorithms

The basic version of the coverage problem with just one
robot with unlimited visual range operating in a simple poly-
gon without obstacles has an exact polynomial time solution
(Carlsson et al. 1999; Tan 2001). But, extending the problem
to support robots’ limited visual range, obstacles in the envi-
ronment, or allowing multiple robots make the correspond-
ing decision problems NP-hard (Nilsson 1995). Interestingly,
it is impossible even to develop polynomial approximation
algorithms, when optimizing each of the metrics (TPL, TAVP,
TWVP, and BWD) defined for the repeated coverage problem,
unless P = NP (Packer 2008). Furthermore, optimizing all the
metrics simultaneously is another challenge, because some
are mutually conflicting in the coverage scenario.

In summary, the time complexity of the stages of the pro-
posed coverage algorithms are shown in Table 1.

10 Evaluation and experimental simulations

We have developed a simulator to test the algorithms in differ-
ent scenarios. The simulator can support different numbers
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Table 1 Time complexity of different stages of the repeated coverage algorithms

Stages of the algorithms Time complexity

Locating Guards O(n2 log n2)

Building Graph Visibility Graph O((n + m)3)

Constrained Delaunay Triangulation O((n + m)log(n + m))

Graph Reduction O(m3)

Clustering the Reduced Graph Uninformed Clustering O(|R|(n′ + m))

Edge-based Clustering O(|R|mlog(m))

Node-based Clustering O(|R|I m)+ O(m2)

Cyclic O(m2.2)

Building Tours Double-MST O(n′ + m)

Chained Lin–Kernighan O(m2.2)a

n number of obstacles’ nodes, n′ number of obstacles’ nodes in the reduced graph, m number of guards, I number of iterations of the algorithm,
|R| number of robots
a This entry is based on experimental results (Lin and Kernighan 1973; Applegate et al. 2003). The worst case time complexity of the Chained
Lin–Kernighan algorithm is apparently not available in the literature (Helsgaun 2009)

of robots in the target area, different visual ranges for the
robots, and varying degrees of clutter in the environment.
A random map generator was also developed as a part of
the simulator which extends a library (Tomás and Bajuelos
2004) to build rectilinear or non-rectilinear polygons with
free form polygonal obstacles within the space. Maps can
have different numbers of nodes and percentages of clutter.
The simulator will be made freely available online.

The goal of the experiments is to evaluate the performance
of the four repeated coverage algorithms:

• Uninformed Clustering Coverage (UCC)
• Edge-based Clustering Coverage (ECC)
• Node-based Clustering Coverage (NCC)
• Cyclic Coverage (CC)

under the effect of the following independent variables:

• Visual range of the robots.
• Environment representation (i.e. the combination of the

graph representation and the tour building algorithms).

For the environment representation, we have four com-
binations of the graph representation and the tour building
algorithms:

• Visibility Graph (VG) and Double-MST
• Visibility Graph (VG) and Chained Lin–Kernighan (CLK)
• Constrained Delaunay Triangulation (CDT) and Double-

MST
• Constrained Delaunay Triangulation (CDT) and Chained

Lin–Kernighan (CLK)

The performance of the coverage algorithms is evaluated
based on these criteria:
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Fig. 9 Percentage of clutter in each map

• Total Path Length (TPL)
• Total Average Visiting Period (TAVP)
• Total Worst Visiting Period (TWVP)
• Balance in Workload Distribution (BWD)

We consider three types of environments in the experi-
ments: sparse (0–25 % cluttered), semi-cluttered (25–50 %
cluttered), cluttered (50–75 % cluttered). Ten different maps
are used in the experiments for each of the three environment
types (30 in total). The clutter percentage of an environment
is the ratio of the area of the obstacles to the whole target
area: Obstacles

Obstacles+ FreeSpace . Figure 9 represents the percent-
age of clutter in each of the maps used in the experiments.
The size of the environments is 15 m×15 m.

Figure 10a shows the average number of guards computed
on the 30 maps used in the experiments under visual ranges
up to 4 m. As shown in the figure, the number of computed
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(a) Average Number of Guards Computed on the Selected Maps as a
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Fig. 10 Number of guards versus the robots’ visual range

guards declines with the increase in the visual range of the
robots, and after visual range of 1.5 m, the number of guards
becomes essentially fixed. Based on this distribution and
some initial experiments to find the proper interval between
the visual ranges, so that the difference of the results between
two subsequent visual ranges is shown more clearly, we chose
visual ranges 0.25 m, 0.5 m, 0.75 m, 1 m and 1.5 m to evalu-
ate the algorithms. Figure 10b shows the number of guards
computed on each of the selected maps (sorted from least
cluttered to most cluttered) under the chosen visual ranges
for the robots. The trend of the figure implies that as the
clutter of the environment increases, the number of guards
declines in general.

In order to eliminate the dependency of the results on
specific maps, we use the results of Cyclic Coverage with
Visibility Graph under TPL, TAVP, and TWVP as the refer-
ence and the results of the coverage algorithms on each map,
under TPL, TAVP, and TWVP, are normalized as ratios to the
reference solution.

For optimization metrics TPL, TAVP, and TWVP, the aver-
age values of ratios over all the maps are shown respec-
tively in Figs. 11, 12, and 13 for different numbers of robots
(1, 2, . . . , 15), under the selected visual ranges. Note that
the figures do not demonstrate the average of the actual
values of the coverage algorithms but the average normal-
ized ratios to the reference solution over all the maps.
That is why the values of Cyclic Coverage with Visibil-
ity Graph, shown by the red line in Figs. 11, 12, and 13,
is fixed (equal to 1) for different number of robots. For
BWD, since the values are bounded between 0 and 100, we
show the average of the actual values over all the maps in
Fig. 14.

In sum, we have collected data from 9000 = 4
CoverageAlgori thms× 15 Robots× 5 V isual Ranges×
30 Maps runs of the simulator. The results can be used
as a framework for choosing an appropriate combination
of repeated coverage algorithm, environment representation,
and the robots’ visual range based on the particular scenario
and the metric to be optimized.

10.1 Running time of the algorithms

Table 2 shows the average running time of all the stages
of building a Reduced Graph over all the maps, under the
selected visual ranges of the robots. The stages include:
computing the guards, building the graph (VG or CDT), and
reducing the graph.

Tables 3, 4, 5, and 6 respectively show the average run-
ning time of the Uninformed Clustering Coverage (UCC),
Edge-based Clustering Coverage (ECC), Node-based Clus-
tering Coverage (NCC), and the Cyclic Coverage (CC) algo-
rithms over all the maps and all number of robots, under the
selected visual ranges of the robots and the two tour building
algorithms.

The simulations were run on a single-core Pentium 4
(3.2 Ghz) desktop computer, with 3GB of memory.

10.2 Results for Total Path Length

Figure 11 shows the performance of the coverage algorithms
for Total Path Length on the basis of the pre-determined
visual ranges of the robots, and the choice of environment
representation.
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(a) Robots’ Visual Range = 0.25m
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(c) Robots’ Visual Range = 0.75m
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(d) Robots’ Visual Range = 1m
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(e) Robots’ Visual Range = 1.5m

Fig. 11 Total Path Length. CC=Cyclic Coverage, UCC=Uninformed Clustering Coverage, ECC=Edge-based Clustering Coverage,
NCC=Node-based Clustering Coverage, DMST=Double-MST, CLK=Chained Lin–Kernighan, VG=Visibility Graph, CDT=Constrained
Delaunay Triangulation

Effect of Robots’ Visual Range: In all the tested visual
ranges for the robots, at least one of the Cluster-based
algorithms (i.e. Uninformed Clustering Coverage) outper-
forms Cyclic Coverage (p < 0.01), and interestingly,

as the visual range of the robots increases, there are
more Cluster-based algorithms dominating Cyclic Cover-
age, especially in the scenarios in which more robots are
involved.
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(d) Robots’ Visual Range = 1m
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(e) Robots’ Visual Range = 1.5m

Fig. 12 Total Average Visiting Period. CC=Cyclic Coverage, UCC=Uninformed Clustering Coverage, ECC=Edge-based Clustering Coverage,
NCC=Node-based Clustering Coverage, DMST=Double-MST, CLK=Chained Lin–Kernighan, VG=Visibility Graph, CDT=Constrained
Delaunay Triangulation

Increasing the robots’ visual range leads to increases in the
distance between the guards computed in the environments,
and as a result increases in the the length of the edges of the
graph built on the environment. Subsequently, Cluster-based

algorithms, while building the clusters, remove the edges
in between them, unless the resultant clusters overlap one
another, in case of using Edge-based Clustering Coverage,
and this overlap can not be resolved. Increasing the visual
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(c) Robots’ Visual Range = 0.75m
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(e) Robots’ Visual Range = 1.5m

Fig. 13 Total Worst Visiting Period. CC=Cyclic Coverage, UCC=Uninformed Clustering Coverage, ECC=Edge-based Clustering Coverage,
NCC=Node-based Clustering Coverage, DMST=Double-MST, CLK=Chained Lin–Kernighan, VG=Visibility Graph, CDT=Constrained
Delaunay Triangulation

range and the number of robots leads to, respectively, longer
and more edges being removed from the Reduced Graph,
and consequently improving the Total Path Length by the
Cluster-based algorithms.

Effect of Environment Representation: As for the impact
of the VG and the CDT on the performance of the algorithms,
we did not find significant differences between the two under
this criterion. However, as for the impact of the tour build-
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(c) Robots’ Visual Range = 0.75m
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(d) Robots’ Visual Range = 1m

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

10

20

30

40

50

60

70

80

90

100

Number of Robots

B
al

an
ce

 in
 W

or
kl

oa
d 

D
is

tr
ib

ut
io

n

UCC−VG−DMST
UCC−VG−CLK
ECC−VG−DMST
ECC−VG−CLK
NCC−VG−DMST
NCC−VG−CLK
UCC−CDT−DMST
UCC−CDT−CLK
ECC−CDT−DMST
ECC−CDT−CLK
NCC−CDT−DMST
NCC−CDT−CLK

(e) Robots’ Visual Range = 1.5m

Fig. 14 Balance in Workload Distribution. UCC=Uninformed Clustering Coverage, ECC=Edge-based Clustering Coverage, NCC=Node-
based Clustering Coverage, DMST=Double-MST, CLK=Chained Lin–Kernighan, VG=Visibility Graph, CDT=Constrained Delaunay Trian-
gulation

ing algorithms, all the coverage mechanisms perform signif-
icantly better under CLK than Double-MST (p < 0.01), but
this superiority declines with the increase of the robots’ visual
range and the number of robots. Increasing the robots’ visual

range leads to fewer guards being computed in the environ-
ment, and as a result decreases in the size of the graph and the
Reduced Graph (in terms of the number of edges) built on
the environment. Increasing the number of robots also leads
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Table 2 Building Reduced Graph running time (msec)

Visual Range 0.25 m 0.5 m 0.75 m 1 m 1.5 m

Reduced Graph 13352 1494 599 496 492

Table 3 UCC running time (msec)

Visual Range 0.25 m 0.5 m 0.75 m 1 m 1.5 m

UCC-DMST 109 80 71 71 71
UCC-CLK 48628 3060 383 238 232

Table 4 ECC running time (msec)

Visual Range 0.25 m 0.5 m 0.75 m 1 m 1.5 m

ECC-DMST 43725 3306 483 180 169
ECC-CLK 95369 9229 847 336 320

Table 5 NCC running time (msec)

Visual Range 0.25 m 0.5 m 0.75 m 1 m 1.5 m

NCC-DMST 2048 295 102 81 79
NCC-CLK 49598 5434 481 260 240

Table 6 CC running time (msec)

Visual Range 0.25 m 0.5 m 0.75 m 1 m 1.5 m

CC 711 210 129 121 114

to smaller clusters being built out of the Reduced Graph, and
as the size of the clusters declines, the difference between
Double-MST and CLK built on the clusters declines as well.

Conclusion: Uninformed Clustering Coverage, with no
overlap among the tours it builds and removing the longest
edges of the Reduced Graph, outperforms the other algorithms
including Cyclic Coverage under Total Path Length. Node-
based Clustering Coverage also dominates Edge-based Clus-
tering Coverage (p < 0.01). Possible overlaps among the
tours generated by Edge-based Clustering Coverage dilutes
the algorithm’s performance under Total Path Length.

Overall, the results imply that although Cyclic Coverage
produces optimal or near-optimal solutions for single-robot
cases, it is not the best solution when extending the problem
to multi-robot scenarios.

Under this criterion, the coverage algorithms show sim-
ilar performance under the two graph representation algo-
rithms (i.e. VG and CDT), but the choice of tour building
algorithm significantly affects the coverage approaches, in
that using CLK lead to shorter paths for the robots compared
with Double-MST.

10.3 Results for Total Average Visiting Period

Figure 12 shows the performance of the coverage algorithms
for Total Average Visiting Period on the basis of the pre-
determined visual ranges of the robots, and the choice of
environment representation.

Effect of Robots’ Visual Range: As the visual range of the
robots increases, the Cluster-based algorithms show better
performance. For visual ranges of 0.75 m, 1 m, and 1.5 m,
both the Node-based Clustering Coverage (p < 0.01) and
the Edge-based Clustering Coverage (p < 0.01) algorithms
dominate Cyclic Coverage, especially in the scenarios in
which more robots are involved. However, for small visual
ranges (i.e. 0.25 m), Cyclic Coverage is the best choice of
the coverage mission (p < 0.01). For visual range of 0.5 m,
Node-based Clustering Coverage, Edge-based Clustering
Coverage and Cyclic Coverage are all in balance.

Similar to the Total Path Length, increasing the visual
range and the number of robots lead to respectively longer
and more edges being removed from the Reduced Graph
by the Cluster-based algorithms, enabling them to outper-
form Cyclic Coverage under Total Average Visiting Period.
Node-based Clustering Coverage and Edge-based Cluster-
ing Coverage also outperform Uninformed Cyclic Coverage
(p < 0.01) by building more balanced clusters (see Sect.
10.5), helping improve the Total Average Visiting Period.

Effect of Environment Representation: As for the impact
of the VG and the CDT on the performance of the algorithms,
we did not find a significant difference between the two under
this criterion. However, as for the impact of the tour build-
ing algorithms, all the Cluster-based algorithms perform bet-
ter under Double-MST than CLK (p < 0.01). Double-MST
leverages overlapped paths for the robots, and so improves
the performance under Total Average Visiting Period com-
pared to CLK which discourages overlapped paths.

Conclusion: The Node-based Clustering Coverage and
the Edge-based Clustering Coverage algorithms are the best
options when working with robots having medium and large
visual ranges, and Cyclic Coverage is the choice of the cov-
erage mission for robots with small visual ranges.

Under this criterion, the coverage algorithms show similar
performance under the two graph representation algorithms
(i.e. VG and CDT), but the choice of the tour building algo-
rithm significantly affects the coverage approaches, such that
using Double-MST outperforms CLK in minimizing the Total
Average Visiting Period of the points in the target area.

10.4 Results for Total Worst Visiting Period

Figure 13 shows the performance of the coverage algo-
rithms for Total Worst Visiting Period on the basis of the
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pre-determined visual ranges of the robots, and the choice of
environment representation.

Effect of Robots’ Visual Range: Cyclic Coverage domi-
nates the Cluster-based algorithms under Total Worst Vis-
iting Period in all the tested visual ranges for the robots
(p < 0.01). Node-based Clustering Coverage also outper-
forms the other Cluster-based algorithms (p < 0.01). Node-
based Clustering Coverage builds more balanced clusters
compared to Uninformed Clustering Coverage (see Sect.
10.5), and builds clusters with no overlap compared to Edge-
based Clustering Coverage. More balanced and less over-
lapped clusters helps improve the Total Worst Visiting Period.

Effect of Environment Representation: As for the impact
of the VG and the CDT on the performance of the algorithms,
we did not find significant difference between the two under
this criterion. However, as for the impact of the tour build-
ing algorithms, all the coverage mechanisms perform signif-
icantly better under CLK than Double-MST (p < 0.01), but
this superiority declines with the increase of the robots’ visual
range and the number of robots. Increasing the robots’ visual
range leads to fewer guards being computed in the environ-
ment, and as a result decreases in the size of the graph and the
Reduced Graph (in terms of the number of edges) built on
the environment. Increasing the number of robots also leads
to smaller clusters being built out of the Reduced Graph, and
as the size of the clusters declines, the difference between
Double-MST and CLK built on the clusters declines as well.

Conclusion: Cyclic Coverage is the best choice for min-
imizing the Total Worst Visiting Period, regardless of the
visual range of the robots.

Under this criterion, the coverage algorithms show similar
performance under the two graph representation algorithms
(i.e. VG and CDT), but the choice of tour building algorithm
affects the coverage approaches especially in small visual
ranges, such that using CLK outperforms Double-MST in
minimizing the Total Worst Visiting Period of the points in
the target area.

10.5 Results for Balance in Workload Distribution

Figure 14 shows the performance of the coverage algorithms
for Balance in Workload Distribution on the basis of the pre-
determined visual ranges of the robots, and the choice of
environment representation.

Effect of Robots’ Visual Range: For small visual ranges
(i.e. 0.25 m, 0.50 m), we noticed slight improvements in the
Balance in Workload Distribution with the increase in the
number of robots in the environment. However, for visual
range of 0.75 m, this improvement disappears for the Node-
based Clustering Coverage and the Edge-based Clustering
Coverage algorithms, and for visual ranges of 1 m and 1.5 m,
the Balance in Workload Distribution declines in both the

algorithms, especially in Node-based Clustering Coverage
and in scenarios in which more robots are involved.

As discussed before, as the robots’ visual range increases,
the number of guards being computed in the environment and
as a result the size of the built graph (in terms of the number
of edges) declines. Hence, increasing the number of robots in
the environment also makes building balanced clusters out
of a graph smaller in size even more difficult. Edge-based
Clustering Coverage is less affected by this issue, as it main-
tains some overlaps among the clusters.

Effect of Environment Representation: As for the impact of
the VG and the CDT on the performance of the algorithms, we
did not find any significant difference between the two under
this criterion. However, as for the impact of the tour building
algorithms, all the Cluster-based algorithms perform slightly
better under CLK than Double-MST (p < 0.01).

Conclusion: For small visual ranges, Node-based Clus-
tering Coverage is the best choice for the coverage mission;
however, with the increase of the visual range, Edge-based
Clustering Coverage dominates the Node-based Clustering
Coverage algorithm for maximizing the Balance in Workload
Distribution.

Under this criterion, the coverage algorithms show similar
performance under the two graph representation algorithms
( i.e. VG and CDT), but the choice of tour building algorithm
affects the coverage approaches, such that using CLK slightly
outperforms the Double-MST in maximizing the Balance in
Workload Distribution among the robots.

11 Conclusions and future work

We have addressed the problem of repeated coverage of a
target area, of any polygonal shape, by a team of robots
having a limited visual range. Three distributed Cluster-
based algorithms, namely: Uninformed Clustering Cover-
age, Edge-based Clustering Coverage, Node-based Cluster-
ing Coverage, and a method called Cyclic Coverage are intro-
duced for the problem. We evaluated the performance of the
repeated coverage algorithms under the effects of the follow-
ing variables: (1) Environment Representation, and the (2)
Robots’ Visual Range. A comprehensive set of performance
metrics were considered, including Total Path Length, Total
Average Visiting Period, Total Worst Visiting Period, and the
Balance in Workload Distribution. Cyclic Coverage, used as
a benchmark to compare the algorithms, produces optimal or
near-optimal solutions for the single robot case under some
metrics, however, it is not always the best solution when
extending the problem to multi-robot scenarios. Moreover,
Cyclic Coverage may not be an appropriate approach com-
pared with the Cluster-based algorithms, when for example,
the robots have different speeds, or the target area consists
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of regions with different priorities for coverage. The results
can be used as a framework for choosing an appropriate
combination of repeated coverage algorithm, environment
representation, and the robots’ visual range based on the par-
ticular scenario and the metric to be optimized.

There are many challenging future research directions for
this problem, including:

1. Heterogeneity: In a coverage scenario, various forms of
heterogeneity can be allowed such as different motion or
sensing capabilities of the robots.

2. Open Systems: A new robot could be added to the team
during execution. To this end, the robots should recalcu-
late their paths so that the coverage mission could incor-
porate the newly added robot.

3. Priority: In some applications, parts of the target area
should be visited or covered more often than others.

4. Robustness: There are many robustness criteria that need
to be dealt with in the real world, such as robot action fail-
ure, communication failure, message loss, and the like.

5. Uncertainty: Noisy sensors of the robots, action uncer-
tainty, unknown obstacles, and the like can lead to differ-
ent challenging problems. In the case of noisy sensors,
the accuracy of the area information achieved by a robot
varies with the distance of the area from the robot.

6. Dynamic Environments: The robot team should have the
ability to change its behavior over time in response to a
changing environment with dynamic obstacles, either to
improve performance or to prevent unnecessary degra-
dation in performance.
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