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Abstract

Places in an environment can be described by the ob-
jects they contain. This paper discusses the completely
automated integration of object detection and place clas-
sification in a single system. We first perform automated
learning of object-place relations from an online annotated
database. We then train object detectors on some of the
most frequently occurring objects. Finally we use detec-
tion scores as well as learned object-place relations to per-
form place classification of images. We also discuss ar-
eas for improvement and the application of this work to in-
formed visual search. As a whole, the system demonstrates
the automated acquisition of training data containing la-
beled instances (i.e. bounding boxes) and the performance
of a state-of-the-art object detection technique trained on
this data to perform place classification of realistic indoor
scenes.

1. Introduction

The aging population has led to an increased demand for
robots in the home as caretakers and assistants. The qual-
ity of life of the elderly could be dramatically improved if
robots could perform simple chores such as cleaning, tidy-
ing and fetching objects. These tasks require that robots
have some degree of semantic knowledge about human en-
vironments so that they can navigate, search for objects and
communicate with humans successfully. For example, for a
robot to perform the command “bring me an apple”, a robot
must understand the term “apple” and to know which places
in the environment are likely to contain it (e.g., the kitchen).

Unlike rooms that are defined by geometric properties
of the environment (e.g., walls), places are defined by the
objects that they contain and the set of related tasks that oc-
cur within them [20]. Place categorization thus requires the

ability to recognize objects in the environment. Our em-
bodied visual search system, Curious George, has demon-
strated a world-class ability to find query objects in con-
trolled indoor environments by winning the robot league of
the Semantic Robot Vision Challenge (SRVC) [6], an inter-
national competition to evaluate embodied object recogni-
tion systems, in 2007 and 2008. In addition, we won the
software league in 2009. Curious George constructs ob-
ject recognition models based on training imagery collected
from the Internet, and employs a peripheral-foveal vision
system to collect a visual survey of objects in a real envi-
ronment [11]. The success of our platform in the embod-
ied object recognition scenario presents the opportunity to
leverage object maps for higher-level environment under-
standing.

Recognized objects and their locations can be used to
automatically label places in the environment through the
use of annotated databases, as demonstrated by our spatial-
semantic modeling system [24]. We also demonstrated that
the spatial-semantic model can be used to guide a robot to
more productive locations during visual search. The sys-
tem, however, assumed the ability to recognize objects per-
fectly. In this paper, we extend our system to use real object
recognition results by incorporating detector confidences
during place classification.

We seek to provide a robotic system with the ability to
understand and explore the environment in an automated
and scalable fashion, without extensive effort from a system
designer. To this end, we use the images present in the La-
belMe database [19]: a free online data source that provides
a large and growing amount of human-labeled visual data,
much of which contains indoor scenes suitable for place la-
beling and object recognition. The use of Internet imagery
gives the system access to training data for a nearly unlim-
ited number of visual classes with no extra manual effort. In
addition to containing object text labels, LabelMe images
also contain segmentations of objects within them, which
can be used to construct accurate bounding boxes. For ob-
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ject detection, we use a system created by Felzenszwalb
et al. [7] based on mixtures of multiscale deformable part
models (DPM) to perform object detection, due to its high
success in the PASCAL object detection challenge.

In Section 3, we present the methods used to 1) perform
automated data collection, 2) determine useful objects, 3)
train object detectors, and 4) classify scenes. Experiments
and results are discussed in Section 4 . We conclude with
future directions for this research.

2. Related Work

The concept of labeling areas of a 2D map, such as
that captured with Simultaneous Location and Mapping
(SLAM) [4], with descriptive tags has most commonly been
done in topological mapping. Topological maps describe
a location as a set of “places” and “connections”. Kuipers
[9] proposes the Spatial Semantic Hierarchy, where space is
represented at many levels that contain different degrees of
detail and semantic information. Graphs have also been em-
ployed as a means of describing topological maps. In work
by Ranganathan et al. [18] graph-like maps are constructed
where nodes are classified using visual object recognition.
Kröse et al. have developed a series of practical systems [8]
[21] in which the visual similarity between images is used
to cluster regions in the environment. Place labels for the
clusters, however, are provided by a human through speech.

For classifying scenes, Torralba et al. [22] [12] use
global properties of a scene (“gist”) to classify scenes.
Pronobis et al. [14] [16] [15] combine Composed Receptive
Field Histograms, SIFT features and laser data to perform
scene classification in indoor environments, under different
illumination conditions. Local regions are used to infer an
intermediate “theme” of an image in [10] to aid in scene
classification. Several other context- and region-based ap-
proaches have been implemented, and can be found in [3].
In [17], authors report that, for indoor scenes, combining
global and local properties leads to increased performance
in scene classification. However, their reported multi-class
average precision rates for the indoor dataset are still found
to be low.

Object-based methods have also been used for scene
classification, as in [23], where places and functional re-
gions of the environment are labeled based on object oc-
currences. However, the main drawbacks of these meth-
ods is that they are environment-specific (objects are hand-
picked) and require manual training of detectors for the se-
lected objects. The challenges in selecting reliable objects
that can be recognized in various environments, and gath-
ering the required training data have prompted researchers
to use alternate techniques such as the ones mentioned pre-
viously. In addition, generic object class recognition has
been a challenging task in computer vision research. More

recently, part-based models have shown themselves to be
highly effective for detection of both rigid and deformable
objects [5]. This method, however, requires a large amount
of training data with segmented examples of objects.

We pursue object-based scene classification since we be-
lieve that this method is more effective for indoor scenes
and generalizable to a large number of previously-unseen
indoor environments. We use object occurrence informa-
tion from the LabelMe database to inform classes of useful
objects for detector training. We train these detectors auto-
matically using DPMs on segmented and annotated images
in the LabelMe database. Finally, we incorporate detec-
tions and detector confidences into our framework in [24]
for more robust place labelling.

3. Automated Place Labeling

We have developed a system to categorize scenes based
on object detectors learned from LabelMe images. Our sys-
tem is composed of four separate components. Firstly, we
perform fully automated data collection from LabelMe, thus
facilitating the collection of training images used to recog-
nize a large number of object categories. We compute a
Count Model that represents the number of times an ob-
ject is observed in each place type in the LabelMe data
based on user-provided text labels. We then use images
from LabelMe to train windowed object detectors for the
most frequently-occurring objects. Finally, we learn a Place
Model that is used to predict the most likely place type given
the detected objects in a scene.

Figure 1. A kitchen scene from the LabelMe

database. The polygons used to segment ob-

jects in the scene are shown as colored lines.

3.1. LabelMe Data collection

LabelMe is an online database of user-annotated images.
In LabelMe, the user can annotate an object in an image by
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selecting a region of the image using a polygon and giv-
ing that region a label. The entire scene can also have a
description contained in the filename. Figure 1 shows a
kitchen scene from LabelMe with several labeled objects.
We use LabelMe in two ways. Training of object detectors
requires tight bounding boxes that we can acquire using the
LabelMe polygons. Our Count Model is computed using
the correspondence between labels of objects in an image
and the place name descriptor found in the image filename.
Note that in creating this model, we do not directly analyze
the images in the dataset, and instead focus on the textual
annotations in each image.

3.2. Count Model

In order to perform place classification based on objects,
we first need to learn a model of objects and their number
of occurrences in each place type. We can obtain this infor-
mation from the LabelMe database by querying for scenes
and recording the number of annotated occurrences of each
object in the scene, as in Vasudevan et al. [23].

The counts table ctp(o) contains the number of times ob-
ject o occurs in images of place type p. If the number of
images of place type p is np, the likelihood of observing
object o in place p is computed as

P (o|p) = ctp(o)

np
(1)

We refer to this likelihood as the Count Model as in [24],
which is used to inform detector training and learning of
the Place Model described below.

3.3. Detector Training

To train object detectors, we use the mixtures of multi-
scale DPM described in [7]. Their system works at two lev-
els by modeling both the entire object as well as its parts.
It learns the number of parts an object consists of, the posi-
tions of these parts, and the variation in positions. The sys-
tem employs a margin sensitive technique for data-mining
hard negative examples to improve classification. The un-
derlying model is called latent SVM, which is a reformu-
lation of MI-SVM [2] in terms of latent variables. The ap-
proach alternates between fixing latent values for positive
examples and optimizing the SVM object function.

The approach described above must be trained on images
of the target objects with accurate bounding boxes, making
many conventional data sources unusable. However, La-
belMe provides user-defined bounding polygons that we use
to determine training image bounding boxes. We optimized
the parameters of the DPM to train all detectors in less than
two hours on machines with 2 Intel quad-core Xeon 3.2
GHz processors with 32GB of memory.

We trained detectors for a subset of the most frequently
occurring objects based on the Count Model. Following is
a list of the objects we trained detectors for: bowl, book-
shelf, cabinet, chair, cupboard, desk, dishwasher, faucet,
keyboard, laptop, microwave, monitor, mouse, mousepad,
mug, oven, plate, pot, refrigerator, sink, speaker, stove. The
precision-recall rates for a few categories, as well as visu-
alizations of a detector model can be found in the Experi-
ments section.

3.4. Place Model

Given a Count Model, the Place Model is used to pre-
dict the most likely place type of the observed objects. The
prior probability for each place type p is set to be uniform,
since we expect to see all place types with equal probability
on average in our test data. We can compute the posterior
probability of the place type p given a detection det as fol-
lows:

P (p|det) = P (p|o)P (o|det) + P (p|¬o)P (¬o|det) (2)

P (o|det) represents the detection confidence as a probabil-
ity derived from the SVM output. We compute this by train-
ing a sigmoid function on a hold-out set from the training
data as described in [13]. We subsequently fit SVM scores
of the observed detections in the test data to this function.
We compute the probability of place type p given object o
as:

P (p|o) = P (o|p)P (p)�
i P (o|pi)P (pi)

(3)

In order to predict the place type given a group of objects,
we need to combine the possibly conflicting predictions of
the objects present. We refer to this problem as place clas-
sification and propose the following scheme to obtain a so-
lution. We allow every detection det observed in the test
scene to contribute a vote for each place type p weighted
by its posterior place probability P (p|det) and the average
detector precision (apdet). The average precision for each
detector is determined by computing the true positive rates
on the hold-out set from the training data. Since the de-
tection score threshold learned during training is set to pro-
duce high recall and low precision rates, we eliminate votes
of detections with very low scores. The final (unnormal-
ized) place probability distribution (ppd) is computed as a
weighted sum of the detection votes as follows:

ppd(p) =
�

det

(P (p|det) ∗ apdet) (4)

We multiply the posterior place probability by the detector’s
average precision to account for the fact that some object
detectors are more successful than others. The predicted la-
bel for the scene is the place type with the highest weighted
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sum of votes. Note that in order to achieve the best results
(reported in this paper), we square the posterior probability
since we have discovered empirically that while high (and
low) detection scores are quite reliable, intermediate scores
that lie close to the SVM margin are less reliable, and thus
need to be suppressed. Future work involves investigating
more theoretically founded approaches to solving the place
classification problem.

4. Experiments

In this paper, we attempt to classify kitchens and offices.
However, due to the automated nature of our system, we
can easily learn models for other types of places including
bathrooms and bedrooms by simply querying LabelMe for
more scenes.

4.1. Count Model

Figure 2 shows the Count Models learned for kitchens
and offices. We display the 15 most frequently occurring
objects in each place type. As seen in the figures, some of
the objects have unusable labels due to the ambiguous user
entries. We thus select a limited number of the objects, and
show later on that these are in fact sufficient for the task
of place classification. Future work could involve language
processing to eliminate ambiguous labels as well as com-
bine synonymous labels together.

4.2. Detection

Figure 3 provides visualizations of the bowl detector us-
ing the DPM. We trained detectors using at most 200 posi-
tive examples and 400 negative examples for each class. We
set the number of components of the mixture model to 2 for
most classes. Thus, training examples are split into 2 com-
ponents based on the aspect ratio of the bounding boxes they
contain. DPMs are trained on each component individually
and merged together to form the final model. For classes
with limited training data, we only used 1 component.

In order to produce precision-recall and average preci-
sion rates for each category, we validated the models on im-
ages of LabelMe objects that were not used in training. We
used loosely cropped versions of these images to prevent
unannotated true positive examples in an image from be-
ing detected as false positives. Figure 4 shows some of the
most and least successful detection results. As seen, objects
that are usually fairly obscured by other objects (furniture
such as desks and tables) tend to perform the worst. This is
due to the fact that training images for these classes mostly
contain views of cluttered table/desk tops. Alternate views
of furniture can be gathered by using other Internet sources

(a) Kitchens

(b) Offices

Figure 2. Counts of the types of objects found

in kitchen and office scenes.

such as Walmart, which would provide additional structure
(e.g. table legs) for use in training detectors.

4.3. Place Model

We designed experiments to test place classification in
two different scenarios. In the first experiment, we attempt
classification of places based on cropped images of the ob-
jects they contain. In the second, we classify full images
that depict a scene containing different types and numbers
of objects.

4.3.1 Place Classification of Object Images

This scenario was chosen since it most closely resembles
the type of challenge faced by our robots in the SRVC chal-
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(a) Bowl side view (b) Bowl sideview parts

(c) Bowl top view (d) Bowl top view parts

Figure 3. Visualizations of the Felzenszwalb

et al. object classifier. The images on the left

show an expected intensity of gradients in a

grid pattern for the entire object. On the right,

they show the gradients in the parts model.

(a) Mouse (b) Bowl

(c) Table (d) Whiteboard

Figure 4. The precision/recall rates of object

detectors. Top rows shows 2 of the most suc-

cessful classifiers and the bottom row shows

2 of the least successful classifiers.

lenge. In the SRVC, our robot identifies the location of un-
known objects in the environment using cues such as 3D
shape. Once an unknown object is found, the robot uses its

camera to take cropped high resolution images of the target
object from different viewpoints.

Figure 5. The layout of a house used in place

classification with object images. The points

represent the positions of the centroids of

objects in the environment.

For this experiment, we constructed a dataset of 8 home
models based on real home environments in order to eval-
uate the place classification method. This data consists of
a selection of layouts (studio apartment, regular apartment,
bungalow, etc.) of varying complexity along with the loca-
tions, labels and images of some of the contained objects
(see Figure 5 for an example). The images for the objects
are randomly chosen cropped LabelMe images that were
not used in object detection training. Additionally, for each
object, we choose 5 different example images to simulate
various viewpoints that the robot might collect of an object.
The task is to classify the type of scene for clusters of ob-
jects that are spatially co-located using the reported detec-
tions in all object images. We assume that clustering of im-
ages based on spatial location has been performed. This can
be done based on image similarity as in [8]. Alternatively,
our Cluster Model described in [24] can possibly be used
to perform clustering based on both spatial and semantic in-
formation. Figure 6 shows the confusion matrix for the final
place labeling of object clusters. As seen, our place classifi-
cation algorithm produces assignments that perfectly match
the ground-truth place labels for kitchen and office scenes.
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Figure 6. The confusion matrix for place clas-

sification of object images.

4.3.2 Place Classification of Scene Images

Our second experiment is to classify a place given a sin-
gle image that shows a part of the scene and can contain
several objects. This is a more challenging task since the
objects are not segmented and we only have a single image
that does not show the entire scene. Place classification is
performed by running all of our object detectors on each
test image, and using the resulting detections as input to the
Place Model, which infers the place label.

Images from the inside of houses were downloaded from
internet websites such as Photobucket. To prevent bias from
our knowledge of the types of objects we were using to clas-
sify scenes, images were labelled as either kitchen, office or
other by third parties using a questionnaire. A total of 67
images were labeled by them as kitchens and offices and
used for this experiment.

The results of this classification are shown as a confu-
sion matrix in Figure 7. Given the difficulty of the task,
our model performs extremely well at distinguishing be-
tween offices and kitchens based on a relatively small set
of trained detectors. This demonstrates that objects present
in a scene are very useful in classifying it. Future work in-
volves testing our approach on the large database of indoor
scenes used in [17], where their reported precision rates for
kitchens and offices are fairly low.

5. Discussion

One of the greatest challenges we encounter in this work
is acquiring good training data from LabelMe. For many
classes, such as pot, the images in LabelMe are of different
types of sub-classes (such as flower pots, ornamental pots
and cooking pots). In future work, we would like to auto-

Figure 7. The confusion matrix for place clas-

sification of scene images.

mate clustering of objects into different types using tech-
niques such as gist descriptors and comparing the differ-
ences of LabelMe polygons. Also, more work is needed in
text processing to identify objects that are synonomous such
as stoves and ovens. We also believe that improvements
could be made to our object detector to be more robust to
incorrectly labeled images.

We would like to attempt place classification on data col-
lected by our robot from the SRVC competition. With our
robot, we are able to acquire 3D layouts of the environ-
ment captured with a panning laser range finder. This 3D
data allows us to identify structures such as tables and desks
and automatically segment and acquire multiple images of
objects on their surface. We can also use the place labels
to guide visual search of novel objects using the Location
Model described in [24]. In addition, we need to investigate
the use of place labels as context to enhance recognition of
objects that are currently difficult to recognize. Finally, we
need to incorporate spatial relationships between objects to
enhance place classification and informed search.

6. Conclusion

In conclusion, we have demonstrated a system that can
perform place classification using object detection, on both
segmented images of objects from the environment and full
images of scenes. In addition, we have shown that, with
a state-of-the-art object detector trained with large, freely
available data sources like LabelMe, we can effectively both
detect and classify a wide variety of objects in realistic in-
door images.
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