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Abstract. This paper aims to provide a framework for understanding the con- 
struction of intelligent agents. This is used to explain the history of AI, and pro- 
vide a roadmap of future research. Research has progressed by making simplify- 
ing assumptions about the representations of the agents or about the environments 
the agents act in. In particular, we present a number of dimensions of simplifying 
assumptions that have been made. For each of these dimensions, there is a sim- 
plified case and progressively more complex cases. We argue that an intelligent 
agent needs the complex value in each of these dimensions (i.e., to simultane- 
ously give up many simplifying assumptions). However these dimensions inter- 
act in complex ways. Much of the recent history can be seen as understanding the 
interaction of these dimensions. 

1 Introduction 

A symposium on practical cognitive agents and robots that celebrates 50 years of AI 
seems like a good venue for reflecting on the field; where it has come and where it 
is going. This paper is not a traditional research paper, but should be seen as a very 
high-level overview that gives a rough approximation to the field. From the viewpoint 
of this high level we can see a roadmap of where AI is going, and the many challenges 
that lie ahead of us. Our main aim is to get people to see the big picture and encourage 
work that combines many fields. While many people may see these sub-fields of AI as 
competing, we argue that there is a coherent framework that can sensibly combine the 
AI traditions. 

2 The Dimensions of Complexity 

Agents acting in environments have various ranges of complexity from thermostats to 
companies with multiple goals acting in competitive environments. There are a num- 
ber of simplifying assumptions that have been made in designing agents. Each of these 
simplifying assumptions gives a dimensions of complexity of the design of intelligent 
agents. The dimensions specify which simplifying assumptions to adopt or relax; these 
dimensions typically have multiple levels going from the most simple to the most com- 
plicated. These dimensions have typically been considered separately, but need to be 
combined in order to build an intelligent agent. 

In each of these dimensions there is the simple and the complex. While for any 
particular agent, you should use the appropriate assumptions, a really intelligent agent 
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needs to be complex in all of the dimensions. Making these dimensions explicit should 
help people to choose the appropriate technology for their domain, and lead researchers 
to explore more of the design space. Under the view here, very little of the design space 
of intelligent agents has been explored. 

The dimensions in this paper are related to that of [1] but are different from the 
dimensions of Russell and Norvig [2]. For example, these is no dimension of discrete 
versus continuous, as we expect that we need both discrete and continuous variables 
in an intelligent agent. That is, assuming the world is discrete and assuming the world 
is continuous are both simplifying assumptions that don' t  reflect the complexity of the 
world our agents need to reason in. We also include logical agents, not as competition 
to probabilistic agents, but as complementary. 

Much of the history of AI can be seen as starting from the simple and adding in 
complexity in one of these dimensions. 

2.1 M o d u l a r i t y  

Modular i ty  is important for reducing complexity. It is apparent in the structure of the 
brain, has been discovered by computer scientists, and is an important part of any orga- 
nization of any size [3]. 

Modularity is typically expressed in terms of a hierarchical decomposition. For ex- 
ample, the visual cortex and the eye of a human is a module that takes in light and 
outputs some simplified description of a scene. Large organizations have a hierarchical 
organization so that the top-level decision makers are not overwhelmed by details and 
do not need to micro-manage all details of the organization. Procedural abstraction and 
object-oriented programming in computer science are designed for modularity. 

The first dimension is, whether the representation is 

- fiat: there is no organizational structure 
- hierarehieal:  the agent is organized hierarchically in terms of interacting modules 

This is the question is about whether the agent is reasoning at a single level of abstrac- 
tion or at multiple levels of abstraction. In a flat representation, you choose one such 
level of abstraction and the agent reasons at that level. In a hierarchical representation, 
an agent reasons about multiple levels of abstraction. 

For example, in taking a trip from your home to a conference location overseas, an 
agent needs to get from its home to an airport, fly to an airport near the destination, then 
get from the airport to the destination. The agent needs to make specific motor controls 
to do anything, but it can' t  just reason at the level of these motor controls, as there are 
too many possible sequences of controls and there is too much uncertainty about the 
specific motor controls it will do in the future. Each level of abstraction is correct in 
some sense, as all of them are used to get a working system. 

Note that a fiat representation will be either continuous or discrete; a hierarchical 
representation is typically a hybrid of continuous and discrete processes. It seems that 
the lowest levels are continuous and the highest levels are discrete, and their interface is 
due to discrete objects made of continuous parts or due to discrete events in continuous 
time. 
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As in each of these dimensions, you really want hierarchical decomposition, but in 
order to explore the other dimensions we often ignore the hierarchical structure and just 
assume a fiat representation. Ignoring hierarchical decomposition is often fine for small 
or moderately sized problems, as it is for simple animals, small organizations or small 
to moderately sized computer programs. 

2.2 Succinctness and Expressiveness 

Much of the work on modem AI is about finding compact representations and exploit- 
ing that compactness for computational gains. There are good arguments to say that 
compactness is what enables understanding, and this is the basis of much of machine 
learning. The next dimension is the level of succinctness and expressiveness: how com- 
pact can you state the knowledge about a domain. Succinct descriptions allow for more 
expressiveness. While there are fine distinctions that can be made in terms of succinct- 
ness and expressiveness, at the topmost level, there seems to be three main levels of 
levels. The first is in terms of states, the second is in terms of features, and the third is 
in terms of objects and relations. 

Each of the different ways the world could be to affect what an agent should do is 
called a state. We can split the state of the world into the memory state of the agent, 
and the environment state. 

At the least succinct level, an agent can reason explicitly in terms of individually 
identified states. For example, a thermostat can easily be defined in terms of a few 
memory states and environment states, and the actions can be defined in terms of a 
finite state machine. 

Instead of enumerating states, it is often easier to reason in terms of features or 
propositions. A state can be described in terms of features, where each feature has a 
value in every state, and a state corresponds to assigning a value to each feature. Thirty 
binary features can encode 230 = 1,073, 7,'11,824 states. It may be easier to specify and 
reason with thirty binary variables (or thirty propositions) than with over a billion states. 
It, however, usually isn't  as simple as this as the features are typically interdependent 
and not all combinations of values to features are possible. Representations in terms of 
features are often called factored representations. Note that some questions, e.g., what 
logically follows, can be answered in linear time in the number of states, but is NP- 
complete in terms of features. While NP-complete may seem to be more complex than 
linear, linear in the number of states is the same as exponential in the number of features, 
and you can typically solve NP-complete problems much faster than exponential time 
(e.g., by exploiting structure). 

When describing a complex world, the number of features depends on the number 
and type of individuals. For example, if an agent is enrolling students in courses, there 
may be a feature for every student-course pair where the student took the course that 
gives the grade of the student in the course (the real case is even more complicated if a 
student can take a course multiple times). Rather than having a passed feature for every 
student-course pair that depends on the grade feature for that pair, it may be easier to 
reason in terms of individual students and courses, and the relations grade and passed. 
You can define rules for how passed depends on grade once, and apply it for each 
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student and course. Moreover this rule can be defined before you know of any of the 
individuals and so before you know any of the features. 

Thus, instead of dealing with features or propositions, it is often more convenient 
and efficient to reason in terms of individuals and relationships. For example, one bi- 
nary relation and 100 individuals can succinctly represents 1002 = 10000 propositions 
and 210000 states. By reasoning in terms of relations and individuals, you can specify 
knowledge and reason about whole classes of individuals without ever enumerating the 
features or propositions, let alone the states. Often you even want to reason about infi- 
nite sets of individuals, for example, the set of all English sentences that could be meant 
by a sequence of sounds, which cannot be done at the state or feature level. Allowing 
infinitely many individuals increases the expressiveness. 

The second dimension is thus whether the agent reasons in terms of 

- states 
- features 
- i n d i v i d u a l s  a n d  r e l a t i o n s  

Some of the AI frameworks have been developed in terms of individuals and rela- 
tions, some in terms of features and some have been developed in terms of states. For 
example, modern reinforcement learning [4] was developed in terms of states and has 
been extended to be feature-based, to the point now that no serious reinforcement learn- 
ing is in terms of states. It is an open research problem to extend reinforcement learning 
to individuals and relations. 

2 . 3  P l a n n i n g  H o r i z o n  

The next dimension is how far ahead the agent plans for. For example, when a dog is 
called to come, it needs to turn around to start running in order to get a reward in the 
future. It does not act only to get an immediate reward, but it also plausibly doesn't  act 
for goals arbitrarily in the future. 

How far the agent "looks into the future" when deciding what to do is called the 
p l a n n i n g  h o r i z o n .  That is, the planning horizon is how far ahead the agent considers 
the consequences of its actions. For completeness we include the static case where the 
agent isn' t  reasoning in time. 

The next dimension has four values: 

- A static domain is one where time isn't  involved 
- A finite stage problem is where the agent looks for a fixed finite number time steps 

ahead. For example, a doctor may have to treat a patient but may have time for 
some testing, and so there may be two stages, a testing stage and a treating stage, 
to plan for. In the degenerate case where an agent only looks one time step ahead, 
it is said to be greedy or myopic. 

- An indefinite stage problem is when the agent looks ahead some finite, but not 
predetermined, number of steps ahead. For example, an agent who wants to get to 
some location may not know a priori how many steps it will take to get there. 

- An infinite stage problem is one where the agent plans for going on forever. This 
is often called a process model. For example the stabilization module of a robot 
should plan on going on forever. 
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Note that the planning horizon interacts with the level of abstraction. For example, at 
one level of abstraction the dog may be getting an immediate reward (it comes and gets 
a treat), but at another level of abstraction it may be an indefinite stage: at the level of 
deciding where to place its paws, there may be a long time until it gets the reward. 

2.4 Uncer ta in ty  

An agent could reason assuming there is no uncertainty or it could reason taking its un- 
certainty about the domain into consideration. This will be divided into two dimensions: 
one about the uncertainty about the effect of actions, and one about the uncertainty from 
sensing. Different domains can have different degrees of uncertainty in action effects or 
sensing. 

In each dimension, you can either have 

- no uncertainty 

- disjunctive uncertainty, where you can state that some set of worlds are possible, 
but not specify which one actually holds 

- probabilistic uncertainty, where as well as specifying which worlds are possible, 
you put a probability distribution over the worlds. 

There are three main reasons for the extra power of probabilities. The first is that proba- 
bilities are what is needed for making decisions [5, 6]. The second reason is that proba- 
bilities are what can be obtained from data (Bayes rule specifies how to combine back- 
ground knowledgewith data). The third is that you don't need to make any a priori 
assumptions of what is possible and impossible, but you can use empirical data to make 
informed decisions. In many domains, you can't a priori rule out any possibilities. 

Sens ing  Uncertainty In some cases you can observe the state of the world. For exam- 
ple, in some board games or on a factory floor, you may know the state of the world. 
In many other cases you only have some noisy perception of the state, and the best 
you can do is to have some probability distribution over the states based on what you 
perceive. For example, a medical doctor may only have a probability distribution over 
what diseases a patient may have based on observing the patient's symptoms. 

The fourth dimension is whether the agent can determine the state from the obser- 
vations: 

- Fully-observable is where the agent knows the state of the world from the obser- 
vations. 

- Partially-observable is when the agent doesn't observe the state of the world, but 
there can be many states that possible given an observation. An agent that uses 
disjunction to state uncertainty can conjoin the observations to its knowledge. When 
it is using probabilities to measure uncertainty, an agent needs to condition on the 
observations. 
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Effect Uncer ta inty  In some cases you know the effect of an action. That is, given a 
state and an action, you can predict the result of carrying out that action in that state. For 
example, you may be able to predict the effect of deleting a file given the state of your 
computer system. In many cases, it is difficult to predict the effect of an action, and the 
best you can do is to have a probability distribution over the effects. For example, you 
may not know the effect of calling your dog, even if you knew the state of the dog. But 
based on experience you have some idea of what it will do. You may even have some 
idea of what some other dog you have never seen will do; otherwise you will not have 
any reason to call a dog if you want it to come. 

The dynamics can be: 

- Determin i s t i c  when the state resulting from carrying out an action in state is deter- 
mined from the action and the state 

- S tochast ic  when there is uncertainty over the states resulting from executing a 
given action in a gives state. This either means a disjunction over possible resulting 
states or a probability over the resulting states. 

2.5 Goa l s  versus  c o m p l e x  pre ferences  

An agent may have a simple goal which is a state to be reached or a proposition to be 
true, such as to get someone a coffee (i.e., end up in a state where they have coffee). 
Other agents often have more complex preferences. For example, a medical doctor may 
be expected to to take into account suffering, life expectancy, quality of life, monetary 
costs (for the patient, the doctor and society), the ability to justify decisions in case a 
law suits, the short-term and long-term effects, and to trade these off when they conflict. 

- a c h i e v e m e n t  goal  is a goal to achieve. This can be a complex logical formula. 
- c o m p l e x  pre ferences  that may involve tradeoffs between various desiderata, per- 

haps at different times. 

For complex preferences, you can distinguish ordinal preferences where it is only the 
ordering of the outcomes that is important, and cardinal preferences where the actual 
values matter, for example if you are adding them or have expectations over them. 

This preference models interacts with the other dimensions. In particular, when 
there is uncertainty, you typically want to reason about how bad the state is when you 
don' t  achieve a goal. There are standard arguments that agents should adopt a cardinal 
preference measure, known as utility, when dealing with preferences under uncertainty 
(see e.g., [6]). 

2.6 S ingle  or  mul t ip le  agents  

Reasoning about a single agent can be much easier than reasoning about multiple agents 
mainly because, in a multiple agent setting, an agent needs to reason strategically; the 
other agents may act to trick or manipulate it. The is particularly apparent when reason- 
ing in partially observable environments or with simultaneous actions when it is often 
optimal to act randomly because other agents can exploit deterministic strategies. Even 
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when the agents are cooperating and have a common goal, the problem of coordination 
and communication makes multi-agent reasoning challenging, and it is still sometimes 
optimal to act stochastically. 

The next dimension is: 

- s ingle  agent  is where an agent assumes that any other agents are part of the envi- 
ronment. This is a reasonable assumption if the other agents are not going to change 
what they do based on the agent's action. 

- mult ip le  agent  reasoning is when the reasoning of other agents needs to be taken 
into account. This happens when there are multiple intelligent agents whose goals 
or preferences depend, in part, on what other agents do. 

It turns out that reasoning in the presence of other agents is much more difficult if 
the agents act simultaneously or if the environment is partially observable. 

2.7 Learn ing  from exper ience  

In some cases, you may have a good model of the agent and the environment, but often 
you don't  have a good model, but need to use data from past experiences to help decide 
good actions. The next dimension is whether: 

- k n o w l e d g e  is given.  
- k n o w l e d g e  is l earned from data  or  past  exper ience .  That is, the knowledge 

needed to decide what to do is not provided as part of the model. 

Learning is a huge field in itself, but doesn't stand in isolation from the rest of AI. 
Often there is considerable background knowledge that is used to determine what data 
to collect, the structure of the data, and to design the resulting representations that need 
to be learned. 

2.8 Perfect  rat ional i ty  versus  b o u n d e d  rat ional i ty  

Sometimes an agent can derive what the best action is if it were given enough time, but 
often there are computational limitations that prevents the computer from being able to 
find the best action soon enough to be able to act on it. In some domains, it may not 
much use to take ten minutes to derive what the best thing to do ten minutes ago, when 
the agent has to act n o w .  Often instead we need to trade off how long it takes to get a 
solution with how good the solution is; it may be better to find a reasonable solution 
quickly than find a better solution later, because the world will have changed during 
the computation. This is known as bounded rationality [3, 7, 8]. The next dimension is 
whether there is: 

- perfect  rat ional i ty  where an agent reasons about the best action without taking 
into account its limited computational resources 

- b o u n d e d  rat ional i ty  where an agent decides on the best action that it can find given 
its computational limitations. 

Computational limitations include computation time, memory and numerical accuracy 
(caused by computers not representing real numbers exactly). 
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CP classical planning 
MDPs Markov decision processes 
IDs Influence Diagrams 
RL Reinforcement Learning (classical formulation, such as Q-learning) 
POMDPs Partially observable Markov decision processes 
GT Game theory representations of strategic and extensive form of a game. 

Fig. 1. Some classic representations in terms of the dimensions 

3 Traditions in AI Agent research 

In this section, we show how many of the traditions of agents in AI (and other disci- 
plines) can be seen in terms of these dimensions. 

Much of the work in AI can be seen as extending one of the base formalisms to cover 
more of the dimensions. The base formalisms we consider are the first-order predicate 
calculus, Markov decision processes and the extensive form of a game. 

3.1 Logical AI 

Logical AI has a long tradition of reasoning about agents, particularly in the planning 
community [9-11]. This work is based on the foundation of the first-order predicate 
calculus, which has the notion of objects and relations at the forefront. Logical AI had 
traditionally eschewed probabilities, even claiming they were "epistemologically inade- 
quate" [ 12]. We venture to suggest that this is because logical AI had traditionally been 
dealing with objects and relations; and in some sense, combining this dimension with 
the other dimensions has been the most challenging. To make progress in some of the 
other dimensions, it seems as though you need to (at least initially) give up on reasoning 
with objects and relations. 

The planning work has traditionally concentrated on indefinite horizon problems 
with goals. There has been considerable work on hierarchical planning (see e.g., [ 13]). 
There has also been considerable work on multi-agent reasoning in this tradition [14], 
which is quite distinct from the work based on game theory that is described below. 
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3.2 Decision-theoretic Planning and Reinforcement Learning 

A different tradition in AI is based on the foundations of Markov decision processes 
(MDPs) [15]. An MDP is a state-based model with stochastic dynamics, infinite or 
indefinite state, and is fully observable. 

The idea of decision theoretic planning [16] is to extend Markov decision processes 
to reason in terms of features. This factored MDP model has been extended to be re- 
lational [17, 18] and also to hierarchical domains [19]. The MDP model has also been 
extended to be partially observable in the POMDP model [20]. 

Reinforcement learning [4, 21] has been a core part of AI since Samuel's checkers 
player. In the 1980's there was considerable advance in reinforcement learning follow- 
ing the formalization in terms of Markov decision processes (and so defined in terms of 
states). In these frameworks, agents can learn what to do (sometimes, but not always, 
by learning a model). In terms of the dimensions, these methods allowed stochastic 
dynamics, but assumed full observability. They were infinite stage (which can also im- 
plement indefinite stage problems). Except for toy problems for which you can reason 
in terms of states, virtually all current reinforcement learning is in terms of features (see 
e.g., [22]), using some sort of function approximation over the features. There has been 
notable work extending reinforcement learning to be hierarchical [23], and for multiple 
agents [24]. 

3.3 Multi-agent Systems 

There is also a large body of work that starts from reasoning with multiple agents, 
which is the subject of game theory [6]. There are two classic representations, namely 
the strategic form of a game or the extensive form of a game. Partial observability 
makes games much more difficult. With agents taking turns and full observability, the 
minimax algorithm (with a-/3-pmning) can solve or approximately solve quite large 
games (e.g., chess). With simultaneous moves or partial observability, the story is much 
more complicated as sometimes stochastic policies are optimal; you have to reason 
about how the other agents are reasoning about you. 

There has been considerable work on factored representations of games, i.e., rea- 
soning where some aspect of the game is described in terms of features (e.g., [25, 26]) 
and learning in games (e.g., [27]). 

4 Difficulty in Combining Dimensions 

Unfortunately these dimensions interact with each other in complex ways. Much of the 
work cited in the previous sections can be seen as extending one of the base formalisms 
(such as logic, MDPs or the extensive form of a game) to include other dimensions. 

The partial observability dimensions is the most problematic. Partial observabil- 
ity makes muti-agent reasoning much more complicated, and also it makes the indef- 
inite and infinite horizon problems more complicated (e.g, POMDPs are much more 
complicated to reason with than MDPs). It also makes effect uncertainty redundant, as 
stochastic effects can be modeled as deterministic actions with hidden variables. 
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The modularity dimension interacts with other dimensions in complicated ways. 
The levels of abstraction interact in complex ways with uncertainty: at one level of 
abstraction an action may be deterministic whereas at another level it may be stochastic. 
For example, in the partial observability dimension, consider the result of flying to 
Perth. At one level of abstraction you may know where you are (in Perth), at a lower 
level of abstraction, you may be quite lost and not know where you are on a map of the 
airport. At an even lower level of abstraction, e.g., at a level responsible for maintaining 
balance, you may know where you are: you are standing on the ground. At a higher level 
of abstraction you may be very unsure whether you have impressed your companion. 
The levels abstraction also interacts in complex ways with the succinctness dimension; 
some levels of abstraction may be simple enough to be able to reason in terms of a finite 
set of states, whereas other levels of abstraction may require reasoning about individuals 
and relations. In going to Perth, you may be able to reason about your location as a 
state, but at a lower level of abstraction, you may need to reason about your multiple 
pieces of luggage and how to collect them all before leaving the airport. And at an even 
lower level of abstraction, your balancing mechanism may only have a few states to 
distinguish. 

Three of these dimensions promise to make reasoning simpler, although exactly 
how to do this remains problematic. 

- Simon [3] argues that any natural or artificial complex system must be hierarchical 
otherwise the complexity makes the design (by people or by nature) impossible. 

- Reasoning in terms of individuals and relations also promises to make systems sim- 
pler. Representing using objects and relations is more compact, and we would hope 
that we can exploit this complexity in reasoning, without mapping into features (or 
states). There has been a huge advance, particularly under the umbrella of "graph- 
ical models", that shows how representations in terms of features can be exploited 
for reasoning. Reasoning in terms of individuals and relations should be able to 
provide more computational leverage (e.g., by reasoning at a lifted level for logic 
[28] or for probabilities [29]). 

- Bounded rationality promises to simplify reasoning, by having principled reasons 
for approximation, but how to do this is even less well understood than the other 
dimensions. 

How to deliver on these promised has been problematic, although there has been sig- 
nificant advances (e.g., [30]). 

Note also that adding in individuals and relations, doesn't just mean adding prob- 
abilities to relations, as we also need to be concerned about existence uncertainty and 
identity uncertainty [31, 32], as well as combining the uncertainty with rich ontologies 
and reasoning about the creation and destruction of objects through time. 

5 N e x t  5 0  y e a r s  

This dimensional view points to where AI is going in the next 50 years. In essence we 
need to remove simplifying assumptions in all of these dimensions. This has proved to 
be very challenging. 



Dimensions of Complexity of Intelligent Agents 91 

Progress can be achieved through several paths, for example, hierarchical relational 
reinforcement learning in partially observable domains. An alternative may be starting 
from logical representations and adding uncertainty and combining it with inductive 
logic programming to learn the structure of the dynamics and the rewards. You could 
also imagine starting at POMDPs and adding learning and relations. Whether these end 
up at the same point or which one will lead to an intelligent system the quicker is an 
open problem. The point of this paper, is that no matter where we start from, we want 
to have the complex in all of the dimensions of this paper. 

In some sense adding the relational has proved to be problematic. However, it isn't  
clear that the problem isn't  as much sociological as technical. There are really sophisti- 
cated logic-based representations that haven't  been extended into the other dimensions 
of this paper. In order to combine them with the other dimensions, they probably need 
to be simplified; we can only really understand the complex in terms of the simpler 
components. It isn' t  clear that the sophistication will survive the combination; the rep- 
resentations that will survive may not be sophisticated in all of the dimensions. 

6 Conclusion 

This paper has tried to place the history of AI in terms of a number of dimensions, where 
the dimensions are not alternatives, but where an intelligent system needs the complex 
value in all of these dimensions. Much of the history of AI can be seen as growing from 
the simplest of these dimensions. We are currently writing a textbook based on these 
ideas (the second edition of [33]), and we would like to create a discussion about the 
components of a really intelligent agent. Hopefully this discussion can also encourage 
people to work on the big picture as well as the narrow fields of AI. 
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