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1. Introduction

The central paradox of computational vision is that given only
one or more imagdes of a scene the set of possible scenes
depicted is underconstrained; however, our subjective
experience is the opposite: the scene appears to be heavily
overconstrained. Every aspect of our own visual experience
offers mutually confirming evidence for the existence of a
single, specific, non-ambiguous scene. This paradox can only
be resolved by postulating that any perceiving system must
supply organized knowledge of the scene domain, the imaging
projection process, the radiometric and geometric aspects of
lighting, the reflectance, transmission and refractance
properties of scene materials and many other relevant physical
regularities. This knowledge spans a spectrum from general a
priori knowledge of all scenes in the domain assumed to be
imaged - what can be and what can not - to the specific,
contingent knowledge of the actual scene and imaging situation
involved - what is and what is not.

2. Perception

All perception necessarily involves three domains: W, a set
of possible worlds; I, a set of possible images of the world;
and P, a set of possible projections of W into I.

A particular world, w, leaves a trace of itself, i, in 1I
that is determined by the particular method of projection p.
The triple of configurations in W, P and I is related by
relation of representation [1] R(w,p,i) as shown in Fig. 1.

Parenthetically, this formalism should not be narrowly
interpreted as applying to, say, single perspective views of a
three-dimensional world of opaque objects. The image domain
could include motion primitives, aural or visual stereo pairs,
haptic images or depth maps - whatever is directly sensed by
the perceiver's transducers. The projection domain could
include holographic processes, x-ray, PET, NMR or CAT imaging
or even free hand sketching. The world domain includes three-

dimensional worlds, maps, electric circuits, text and the
like.
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Fig. 1. The world, projection
and image domains

The perceiver, minimally, has knowledge of i, I, W, P and
R. Its task may be represented as finding a constructive
proof for the imaging formula:

AWIP (WeW) A (peP) AR (w,pP,1) . _ . (1)

Any perceiver must be able to represent the potentially (and
usually) infinite set of all solutions in a finite way. The
representation must therefore be an intensional description of
that set rather than an extensional list of its ‘members.

In general the solutions will also be required to
satisfy other constraints. Those constraints can be broadly
categorised as a priori constraints on the nature of
acceptable solutions 1in W or as arising from other images of
the same w. Thus the representation must also. allow
specialization by additional constraints and intersection with
other such representations. It might seem unnecessary to add
the additional criterion that the representation include all
and only those worlds that map to the given image i but many
proposed representations have failed to satisfy this
correctness criterion, in that they have excluded possible
worlds for an image or included impossible worlds.

We assume that R(w,p,i) is restricted to the set of total
many-to-one functional mappings from WxP onto I. This
excludes for example, non-determinism from the imaging
process (but not from the world). Thus, there is a mapping
function,

f: WxP -> I such that R(w,p,i) iff f(w,p) =1,

f does not have a function as an inverse. However it is
possible to partition the set WxP into equivalence classes
such that (w;,p ) and ("2'92) belong to the same equivalence
class WP, iff f%wl,pl) = f(wy,p,) = i. We have:

WP, S WxP
i =



We can project WP; separately onto the set W as Wi and onto P-

as P; where
W, = {w|(ap) (w,p)ewp,}
p; = {pl(@w) (w,p)ewr,}
WP; is a representation of the solution set of

wo%ld-projection pairs for the 1imaging formula (l1). Notice
that if P is a singleton set' {p} (and the perceiver knows
that) there is a one-~to-one correspondence between members of
WP; and W;. Since that assumption is often made, W; is wused
to stand. for the solution set of the simplified imaging
formula:

(IW) (WeW) A R(w,p,1i) |,

The history of computational vision research has been a
search- for good representations of the equivalence class W.
which must be correct, incremental, finite and efficiently
computable from ‘i. Using those criteria the most satisfactory
representations of W; are sets of constraints, induced by i
and p, on the set of possible worlds.

3. Vision

The general view of perception given above can be applied * to
vision in various ways. Both the world domain and the
projection domain can be refined or factored into sub domains.
A possible factoring starts with the "universe" domain, U, in
which each universe is a set of objects possibly moving in
space over time. An instant selected from the time domain, T,

selects out from a universe a particular world in W. A
particular lighting chosen from the illumination domain, M, of
that world produces a 1lit world in L. A view from a

particular direcyion (in V) of that lit world produces a scene
in § while a projection of that scene produces an image in 1I.
These domains and their relational mappings are shown in Fig.
2.

The ordering of the domains shown is somewhat arbitrary and
could be changed for some applications. Indeed, another
version of this scheme could eliminate some of the
arbitrariness of ordering by allowing mapping relations among
more than three domains. However the scheme presented has the
same structure as the archetypal perception model introduced
in Section 2. Each of the relations constrains elements in
three domains and has the same characteristics as the original
relation of representation, R. The convention shown in FPig. 3
indicates that the domain of relation R_ is AxBxC but there is
also a functional mapping £_: AxB -> C such that R (a,b,c) iff
fho(a,b) = c. 1Indeed all of computer graphics is concerned
"with good representations for specific configurations in the
domains shown and the mapping functions, f,. As before, the
mapping function induces an equivalence class partitioning of
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Fig. 2. The domains and
relations for vision

AxB such that for any element ceC there is a class which we
call AB, < AxB with (a,b)eAB, iff f,(a,b) = ¢. The fact that
these eéquivalence classes are, in general, very large
underlies tradeoffs such as surface photometry versus
illumination or object shape versus projection technique that
vary one factor while simultaneously varying another to
produce identical images. )

Fig. 3.The convention for
showing Rn

Thus a given image, 1ieI, induces an equivalence class
partitioning SP; < SxP. By projecting SP; onto § and P
respectively we have S; and P;. S; in turn induces a
partitioning of Lxv, LV, such that each pair (1,v) in LVj maps
into one member of S;. LV; can be similarly projected down
into L; and V; and so forth.

Given the many-to-one nature of the mapping functions the
size of the equivalence classes tends to increase with the
level in the domain hierarchy unless other constraints on the
classes are known a priori or available from other imagery
known to relate to the same situation. Typical of the latter
are motion, stereo and tomography. photometric stereo (2] and

multispectral images which can each be illustrated as follows.
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Fig. 5. Stereo Fig. 6. Photometric
stereo

Fig. 7. Multi-spectral imaging

In multi-image situations that are known to arise from a
single element of some higher domain one can exploit the extra
constraints by intersecting the two (or more) equivalence
classes that are induced in that higher domain: U for motion,

L for stereo, W for photometric stereo, and S for
multispectral imaging.

Most. current theories of computational wvision (3]
distinguish between "viewer-centred" and "object-centred”
representations. "In this scheme the viewer-centred
representations describe equivalence classes in § while

object-centred represéntations describe equivalence classes in
L and W.

The nature of each domain can be elaborated as much as
necessary for any application. 1In a world of opaque objects,
W, for example, could be composed of two domains, one for
object geometry, the other for surface photometry, since they
decouple into image geometry and radiometry. :

In what follows, a brief sketch of some proposals for
describing the equivalence classes in the scene domain, S;,

for orthographic line drawings of a world of opaque polyhedra
will be given within this framework.

4. Some Scene Representations

When we say that a single image underconstrains the scene we
mean -‘simply that even given the knowledge that the projection
is, say, orthographic the equivalence class Sj; contains more
than one member; in fact, it is obviously infinite and yet it
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is clearly a proper subset of S, the set of all possible
scenes. To cope with this, various scene domain
representations have been proposed. Here we can sketch five
proposals and suggest weaknesses in each from the point of
view of the criteria developed here.

The first representation uses Cartesian coordinate
geometry. In a viewer-centred frame, let the image occupy the
X~y coordinate plane and the projection be along the z axis.
If the scene domain representation uses triples of reals as
Cartesian coordinates, the scene representation fails the test
of finiteness: the depth of the scene cannot be determined.
To aliow for that the second representation uses the
equivalence class concept: represent all scenes which can be
transformed into each other by a translation along the viewing

direction by a single configuration. The group of
translations along the 2z axis partitions S into a set of
equivalence classes. Each equivalence class has an infinite

number of members but it has a finite canonical representation
as, say, the member of the class with a distinguished point
having a 2z coordinate of zero. Unfortunately there is still
an infinite number of equivalence classes that each map into a
given image. We can now go on and look for another group of
transformations which induce a further eguivalence
partitioning of our equivalence classes.

The third scene representation is the edge labelling
approach [1,4]. The equivalence class descriptions are based
on categorizing edges into four (or more) classes with respect
to the dihedral angle the surfaces meet at and which view of
the edge the viewer sees. Two scenes are then in the same
equivalence class if they have the same visible edge and
surface connectivitv and each edge has the same convex,
concave or occluding label in each scene regardless of the
actual dihedral angle between the two surfaces meeting at the
edge. This equivalence class description is certainly finite;
however, it is not correct. In general, not every member of
the equivalence class produced can in fact map into the given
image. This is always true but a convincing demonstration is
given by "impossible objects" which are images that have no
scene domain correspondent whereas the edge labelling
algorithms return a non-empty equivalence class [4,5].

A fourth, more adequate, scene equivalence class
representation is the gradient space representation of surface
orientation [4,5]. This starts from the observation that
equivalence classes induced by the translation group allow for
one degree of freedom in the scene representation, but there
are at least two more: the orientation of any surface in the
scene can be arbitrarily specified. If there is a surface
visibly intersecting that one another degree of freedom is
introduced: the dihedral angle between them is unconstrained.
However the locations of edge projections in the image supply
a number of constraints in the scéne that do constrain surface
position and orientation in the scene thereby restricting the
number of additional degrees of freedom in the scene
description. A program POLY [5] based on this analysis,
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constructs equivalence class descriptions that are finite and
eliminate many of the incorrect scene configurations allowed
by edge 1labelling without, however, eliminating 'them all
(6,7]. The descriptions are efficiently computable and are
amenable to refinement or intefsection. with constraints

available from a priori knowledge and multi-image constraints
{8).

There is a general lesson in the wusefulness of
surface-based, viewer-centred intermediate scene
representations, If a priori scene constraints such as "“all
surfaces are flat" or "all surfaces are smooth almost
everywhere" are available. then it is necessary to find some
configuration space in which such constraints are expressible.
Minimally such a space must allow descriptions of the relevant
objects (surfaces and edges, here) and constraints among the
objects that are back-projected from the image description.
Such a configuration space description is the requisite
equivalence class description.

Another viewer — centred scene representation is the
"intrinsic image" proposal [9]. Arrays of scalars are used to
hold values at each image location for the various scene
parameters that are confounded into image intensity such as
surface illumination, albedo, orientation and depth. For our
ourposes here, the intrinsic image representation is not
adequate. It does not satisfy the criteria of "finiteness,
correctness, refinability and' efficient computability. It
must be possible to construct finite equivalence class
descriptions that describe the set of all scenes that could
have produced the image and then refine that set .as additional
constraints become available. This process must use symbolic
descriptions in the scene domain. Arrays of scalars can only
represent one of the infinite number of members of the
equivalence class. On the other hand, in an over-constrained
imaging situation, where a particular member of several of the
confounded domains 1is known and specified a priori, the
intrinsic image representation is adequate.

5., Conclusion

The knowledge sources required to resolve the vision paradox
can be constructed by understanding the confounding mapping
processes discussed here. The needed equivalence class
descriptions are best represented as sets of symbolic
constraints on the allowable domain elements in a
configuration space for the domain.

The general scheme is presented here to provide a framework
for understanding theories of perception. It is not a theory
of perception; however, any theory of perception must account
for the fact that a perceiver does not perceive the world
directly, pace Gibson [10]. The trace of the world available
to the perceiver is a multiple confounding of configuratiocns
from many different domains. We see only the shadows dancing
on the wall of Plato's cave.
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