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LOGIC AND DEPICTION

Logic-based tools have been widely used in artificial intel-
ligence. Many cognitive areas, for example, language un-
derstanding, robot planning, commonsense reasoning,

. and problem solving (qv) have benefited from various uses
of logic. However, the perceptual areas, such as computa-
tional vision have not generally been seen as amenable to
logic-based approaches. In this article, a theory of depic-
tion is outlined within a framework for image interpreta-
tion tasks (Reiter and Mackworth, 1989). The theory has
two sets of goals: scientific and engineering. The scientific
goals include understanding the concept of an interpreta-
tion of an image and understanding the role constraint
satisfaction (gv) plays in image interpretation. The engi-
neering goals include the provision of tools for specifying
the behavior of image interpretation systems and tools for
verifying that a system meets its specification. Potential
benefits include the advantages of a common framework
for vision and graphics systems and the provision of more
modular and portable systems.

The methods proposed are based on a two-domain the-
ory of perception. For any perceptual task at least two
domains must be distinguished: the signal domain and the
referent domain (or, for deconstructionists, the signifier
and the signified). For vision the image domain and the
scene domain are initially distinguished. All objects are
either image objects or scene objects. Given those domains
axioms can be written down in, say, first-order logic, con-
straining the image and scene objects. For a given applica-
tion there are three classes of general axioms: image axi-
oms [, scene axioms S, and mapping axioms M. Axioms in
I mention only image domain objects and their attributes
and relations. Similarly, axioms in S are confined to de-
scribing legitimate scenes. Each axiom in M mentions ob-
Jects in both domains; it may use a reserved predicate
Ali,s) signifying that image object i depicts scene object s.
If the theory is to be used for image interpretation axioms
that describe the particular image to be interpreted, I; are
also required. The theory states that an interpretation of
an image corresponds to a logical model of the set of axi-
oms [, UIU S U M. This provides a formal task specifica-
tion for image interpretation. This specification is then
refined by model-preserving transformations to a prov-
ably correct implementation that computes all or some of
the interpretations of the image.

The theory is illustrated with a specification in first-
order logic of a simple sketch map interpretation task.
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Consider the sketch maps shown in Figure 1. For this task
each region must depict a land area or water area and
each chain of line segments must depict a road, a river, or
a shore. Roads and rivers appear only on land; shores
separate land and water. Rivers must flow into other riv-
ers or shores. Given that background knowledge the im-
age in Figure 1a depicts one of three possible scenes. Ei-
ther regions r, and r, both depict land while chain ¢;
depicts a road; ry depicts land (an island), r, depicts water,
and c, depicts a shore; or finally, r; depicts water (a lake),
rz depicts land, and ¢, depicts a shore. For this application
I consists of taxonomy axioms (eg, “each image object is a
chain or a region”). I, consists of a description of the image
in terms of primitive predicates (“chain ¢, bounds region
r”) and closure axioms (eg, “c; is the only chain”). S con-
sists of taxonomy axioms (“each linear-scene-object is a
road, a river, or a shore”), and general scene knowledge
(“the inside area of a shoreline is land if and only if its
outside is water” and “rivers lead to other rivers or
shores”). The mapping knowledge M includes axioms such
as “each image object i depicts a unique scene object o(i),”
“depiction holds only between image and scene objects,” “a
chain depicts a linear-scene-object,” and the like. Given
that specification it is possible to refine it to an equivalent
formula in propositional logic by eliminating the quantifi-
ers over finite domains and various other database-ori-
ented transformations. To find all the visual interpreta-
tions it is necessary only to find all the logical medels of
that formula using standard SAT or CSP techniques (see
CONSTRAINT SATISFACTION).

For the map domain these models all share in common
fixed extensions of all the image, scene, and mapping
predicates except ROAD(.), RIVER(), SHORE(),
LAND(.) and WATER(.). For the example in Figure 1a the
three models correspond to the descriptions:

LAND(o (r1)) A\ LAND(o(rp)) N\ ROAD(o (cy))
WATER(o(r1)) AN LAND(o (ry)) N\ SHORE(c(¢y))
LAND(o(ry)) N WATER(o (r3)) \ SHORE (o (cy))

For the map shown in Figure 1b there are four possible
interpretations corresponding to:

LAND(o(ry)) N LAND(o (ro)) A\ ROAD(o (cy))
. AN ROAD(o(c2)) N ROAD(0 (c3))

(a) (b)

Figure 1. Two simple maps.

Reprinted from Encyclopedia of Artificial intelligence, Second Edition,
Copyright © 1992 by John Wiley & Sons, Inc.
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WATER(o(r))) N LAND(o (re)) AN SHORE(o (cy))
AN ROAD(o(cy)) /N ROAD(o (¢c3))

WATER(o(ry)) /N LAND(o (rg)) N SHORE(a(c1))
A RIVER(a (c2)) N ROAD(o (c3))

WATER(a(ry)) /\ LAND(o (ry)) N\ SHORE(a (c1))
A\ RIVER(a{cp)) N\ RIVER(o (c3))

Image interpretation is just an instance of the task of
evidential reasoning. In general, suppose there is a sys-
tem S whose system description is available as a set of
first-order sentences SD. Given a set of observations of the
system Obs the task is to determine a description of the
system’s internal state State chosen from a set of possible
internal states States. This characterization of evidential
reasoning tasks covers, for example, both image interpre-
tation and diagnosis.

There are essentially two competing logical frame-
works for solving such tasks: consistency based and ab-
ductive (Poole, 1989a). The consistency-based approach
allows any State € States such that SD U Obs U {State} is
consistent (Reiter, 1987; de Kleer and co-workers, 1990).
The abductive approach imposes the stronger require-
ments that SD U {State} be consistent and SD U {State} |
Obs. The logical framework for depiction and image inter-
pretation described above is a consistency-based theory.
The abductive approach is typified by Theorist (Poole and
co-workers, 1987). Poole (1989b) describes how to imple-
ment in Theorist a system for map interpretation using
essentially the same image domain, scene domain, and
mapping knowledge.
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LOGIC, CONDITIONAL

Conditional logic examines the proof theory and seman-
tics for ordinary conditionals in natural language. Con-
temporary work in this area is motivated by the so-called
paradoxes of material implication and by the apparent
non truth-functionality of many ordinary conditionals. A
standard formal language for representing the logical
structure of conditionals has been developed, and several
conditional logics have gained widespread attention. Both
possible worlds and probabilistic semantics have been pro-
posed as alternatives to the classic truth functional ac-
count of conditionals. Within the artificial intelligence
community there have been several efforts to develop non-
monotonic reasoning systems based on conditional logic
(see REASONING, NONMONOTONIC).

PROBLEMS WITH MATERIAL IMPLICATION

The typical conditional has the structure “If A, then C”
where A is called the antecedent and C the consequent of
the conditional. The classic treatment of conditionals
translates ordinary language conditionals into material
conditionals. A material conditional, represented A D C,
is a compound expression of which the truth value is a
function of the truth values of its antecedent and conse-
quent as defined by Table 1. A D C is true whenever A is
false or C is true, and this is the source of the so-called
paradoxes of implication. Where A is the false sentence
“Shakespeare didn’t write Hamlet” and C is the sentence
“Someone other than Shakespeare wrote Hamlet,” both
the material conditional A O C and the corresponding
English conditional

1. If Shakespeare didn’t write Hamlet, then someone
else wrote Hamlet

are true. But if the mood of sentence 1 is changed from
indicative to subjunctive, the resulting English condi-
tional

2. If Shakespeare had not written Hamlet, then some-
one else would have written Hamlet.

is at least improbable. Perhaps indicative conditionals can
be represented as material conditionals, but most condi-
tionals in the subjunctive mood cannot. The problem is not
that the material conditional is the wrong truth function
for representing English subjunctive conditionals; these
conditionals cannot be represented by any truth function.
Consider the following four conditionals:

Table 1.
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