
Active Robot Localization with Macro Actions

Koosha Khalvati and Alan K. Mackworth

Abstract— We propose a novel method for solving the lo-
calization problem, particularly useful in self-similar environ-
ments. Localization is the task of determining a robot’s position
with little or no prior knowledge about its initial location.
We introduce a computationally efficient active strategy for
the localization task. The proposed method also automatically
generates optimal macro actions giving the robot the ability
to localize in all environments. Combining the active strategy
and macro actions, the method introduces an efficient strategy
for determining a robot’s position in any environment where
localization is possible.

I. INTRODUCTION

Localization is an essential task in robotics. A robot cannot
be called autonomous without the ability to localize itself.
Furthermore, a robot is often unable to perform other tasks
without being aware of its location. A robot’s ability to
localize itself accurately and efficiently is the subject of
numerous research papers in recent years. It has been proven
that localizing with minimum cost is an NP-hard problem
[2]. Therefore, researchers have sought to find near optimal
solutions efficiently. Active strategies are good candidates to
fulfill these two criteria: near optimality and efficiency. Some
papers covering these strategies have defined heuristics such
as taking the robot to places with the maximum number
of new features [9] or choosing the actions that lead to
minimum expected number of possible states [1] Another
active approach is entropy-based that chooses the action
that minimizes the expected entropy [3]. In this paper, we
introduce a new active strategy for the localization problem,
that can be efficiently computed.

Our main contribution, however, is providing an algorithm
to deal with the problem of self similarity of environments.
This problem is that, due to the self similarity of the environ-
ment, the robot gains no further information by performing
basic actions. Examples of these situations are corridors,
identical offices and big rooms with no objects in them
when the robot uses a limited range laser sensor. In the first
two cases, the robot merely sees similar walls and in the
third, it finds nothing in its laser range. If the robot uses
vision instead of a laser, it may find many similar places
in environments such as hospitals or schools. Many rooms
look the same in hospitals. Also, classrooms and offices may
have the same pattern in schools and the robot cannot localize
itself until it exits a room. In these cases, the robot should
perform a sequence of actions instead of just one. In this
paper, we propose an algorithm to generate optimal cost

This work was supported by NSERC, Canada Research Chairs and ICICS.
K. Khalvati and A.K. Mackworth are both with the Department of

Computer Science, University of British Columbia, Vancouver, B.C. V6T
1Z4 Canada {kooshakh,mack}@cs.ubc.ca

sequences that can reduce the ambiguity in any situation.
Also, this algorithm can be used to determine whether or
not a robot can localize itself in an environment.

II. PREVIOUS WORK

Proof of NP-hardness of finding the optimal strategy
for localization problem was provided by Dudek et al. in
1995 [2]. After that, Tovey and Koenig [15] proved that
even minimizing the cost with factor c log n is NP-hard. So
researchers tried to find near optimal solutions. Koenig et al.
[10] proposed an O(log3 n)-factor algorithm on grid-based
maps and extended it to polygonal maps. The problem of this
algorithm is that its high computational cost (Ω(n12)) allows
it to be used only in very small environments [16]. Rao et
al. [14] also suggested a near optimal randomized algorithm
in polygonal maps. Both of these algorithms assumed that
actions and sensors are noise-free and hence their application
in real environments is still an open issue.

On the other hand, methods proposed for real environ-
ments address concerns with noise and computational effi-
ciency. Although researchers in this area tried to minimize
the action cost by choosing useful heuristics, they did not
discuss the bounds of the cost of the solutions that are
found by their active strategies. Jensfelt et al. [9] proposed
a strategy based on heuristics of going to the places with a
maximum number of new features and avoiding getting to
previous positions. In the method proposed by Gasparri et al.
[5], the robot moves to the nearest obstacle in each step. Fox
et al. [3] proposed an active strategy that chooses the action
that minimizes the expected entropy in each step. Porta et
al. [13] improved the computational cost of their method
by using particle filters. Murtra et al. [1] proposed another
method that minimizes the expected number of hypotheses
instead of entropy at each step. The computational cost of
their algorithm was less than the two previous algorithms
that used entropy.

To solve the problem of self similarity, Fox et al. [3]
put some relative target points among their actions. The
path planning from the current states to the target points
is done by the robot, but the target points themselves are
given by the domain expert. In the method proposed by
Murta et al. [1], some random target points were generated
in a specific range from possible locations and the selection
process was performed among those points. The range should
be large enough to give the robot the ability to localize in all
circumstances and, in the larger ranges, many target points
are needed. This would increase the computational cost. The
method we propose generates all macro actions automatically
and specifies the whole path instead of just target points. We

2012 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 7-12, 2012. Vilamoura, Algarve, Portugal

978-1-4673-1736-8/12/S31.00 ©2012 IEEE 187

call these paths macro actions. Macro action generation is
the subject of some work in related fields as well. Work by
He et al. [8][7] and Kurniawati et al. [11] in planning under
uncertainty and the work of McGovern [12] in reinforcement
learning are examples of macro action generation. However,
their approaches for generating macro actions and the reason
for using them are quite different from ours.

III. MARKOV LOCALIZATION

In a localization problem, it is assumed that the map is
given to the robot. The map is represented as a finite set of
states, S. The state of the robot at step k is xk. Following
[4], we assume that the system is Markovian, in that the
new state of the robot, only depends on the previous state
and the action it took in that state. In each state, the robot
has an observation in the set of all possible observations,
O. The observation at step k is zk and the sequence of all
observations up to step k is Zk. A is the set of all possible
actions which the robot can perform. Each action a ∈ A in
state s has a positive cost, C(s, a). In addition, the action
performed by the robot at step k is uk and the sequence of
all actions performed up to step k is Uk. During localization,
the robot’s belief about being in state s is Bel(xk = s).

Bel(xk = s) = p(xk = s|Uk−1, Zk) (1)

As the system is Markovian, this probability is:

Bel(xk = s) = p(xk = s|uk−1, xk−1, zk) (2)

Localization consists of three steps: (i) Action selection,
(ii) Performing the action and updating the belief based
on that action, and (iii) Observing and updating the belief
based on that observation. At first, we put aside step (i) and
explain the other two steps assuming that the action has been
selected. Suppose the robot is in xk−1 when it performs
action uk−1, the belief states will be updated as below. Belief
is shown by B− in this step because only uk−1 and xk−1
are considered.

Bel−(xk = s) =
∑
xk−1

p(xk|xk−1, uk−1)Bel(xk−1 = s)

(3)

Since Bel−(xk) depends on Bel(xk−1), Bel(x1) should
be given. If the robot has some prior knowledge about its
location, Bel(x1) is defined. On the other hand, if the robot
knows nothing, the probability density of Bel(x1) is uniform
across all states. That is global localization.

For step (iii), when the robot observes zk, the belief states
will be updated, using Bayes theorem:

Bel(xk = s) = p(zk|xk = s)×Bel−(xk = s)/p(zk) (4)

These updates belong to step (ii) and step (iii). Even with
a random strategy in the action selection step, the robot may
localize itself after some actions. But, that accomplishment is
not guaranteed. Even if the robot succeeds in the localization
task, it may take many actions with far higher cost than the
optimal strategy. Finding the optimal strategy is NP-hard [2],
so we attempt to find a near-optimal active strategy to reduce
the cost as much as possible. In the next section we explain
our active strategy for action selection.

IV. AN ACTIVE STRATEGY FOR ACTION SELECTION

A. Additional Variables

Considering the previous variables which are necessary
for the Markov localization problem, we need to define some
additional variables for our strategy based on those. The new
variables are: the observation difference between two states,
the transition function between states assuming the actions
are deterministic, and the cost of an action when we deal
with two states instead of one.
d(si, sj) is the observation difference between two states

si and sj calculated as:

d(si, sj) =
1

2

∑
o∈O

[p(o|si)(1−p(o|sj))+p(o|sj)(1−p(o|si))]

(5)

Two states si and sj are distinguishable if and only if
d(si, sj) is greater than a threshold γ. We should set a
suitable value for γ based on the noise in the observations.
This value is usually very close to the probability of the most
probable observation in a state.

Observation difference is a number in [0, 1]. When obser-
vation o has a high probability in si and a low probability in
sj , p(o|si).(1−p(o|sj)) would be close to 1 and when o has
high probability in both states, (1−p(o|sj)) is very small and
as a result p(o|si).(1−p(o|sj)) is close to 0. So for the pairs
with similar high probability observations d(si, sj) is close
to 0 but for the states with different observations, it would be
close to 1. Thus, when d(si, sj) is above a threshold, for most
of the expected observations si and sj can be distinguished
from each other with high probability.

Let f∗(s, a) be the state that the robot goes to from state
s with action a in the noiseless case. We can assume that
this state is the most probable state that the robot goes to:

f∗(s, a) = argmaxs′p(s
′|s, a) (6)

If there is more than one s′ with maximum probability, we
choose one of them arbitrarily.

Last, we define cost of an action for two states as:

C(si, sj , a) = max(C(si, a), C(sj , a)) (7)

188

B. Explanation of Algorithm for Action Selection

The original idea for the strategy we are using, comes
from work in the field of active learning by Golvin et al.
[6]. They called their algorithm EC2 (Equivalence Class
Edge Cutting). To explain our strategy, we should define a
graph. The vertices of this graph are the states and the edges
are the actions. Two states si and sj are connected to each
other by action a if and only if f∗(si, a) and f∗(sj , a) are
distinguishable. The weight of the edge is:

w(si, sj , a) = Bel(si)×Bel(sj)×
min(p(f∗(si, a)|si, a), p(f∗(sj , a)|sj , a))/C(si, sj , a) (8)

If the robot assigns zero belief to either of the two states,
the weight of the edge would be 0, so there is no need to
calculate the weight. We only consider the edges between
states with positive belief functions.

For each action a, w(a) is:

w(a) =
∑
si,sj

w(si, sj , a) (9)

In each step of action selection, we choose the action with
the highest assigned weight:

a∗ = argmaxaw(a) (10)

The algorithm is shown below as Algorithm 1.

C. Intuition

The intuitions behind the concept of weight and the action
selection criteria are explained most easily by an example.
Each edge in the graph means the action assigned to the edge
can remove at least one of the two vertices from belief states
(not the states themselves but their future states, f∗). So, the

Algorithm 1: The algorithm for action selection with
basic actions

input : Belief states Bel(.), actions A and their costs
C, observation differences of all pairs d, and
transition function f∗

output: a∗, the action to be performed by the robot

1 foreach a ∈ A do w(a) = 0
2 foreach si, sj , a do
3 if d(f∗(si, a), f∗(sj , a)) > γ then

w(si, sj , a) = Bel(si)×Bel(sj)×
min(p(f∗(si, a)|si, a), p(f∗(sj , a)|sj , a))
/C(si, sj , a)

4 else w(si, sj , a) = 0
5 end
6 foreach si, sj , a do w(a) = w(a) + w(si, sj , a)
7 Select a∗ = argmaxaw(a)

Fig. 1. Example 1. The map and the observations in various states

action with highest weight has most power to distinguish
between states, especially the ones with higher probability.

Consider the map in Fig. 1. The robot is initially in one
of the shaded squares, s1 to s4, and the beliefs of the robot
are:

Bel(s1) = 0.2
Bel(s2) = 0.2
Bel(s3) = 0.1
Bel(s4) = 0.5

We have an observation in each square, 0 or 1, as shown
in the map. In addition, the observation in s1 to s4 is 0.
We have four actions: up, down, right and left, all with
unit costs. The actions and observations are noise free. With
these assumptions we would like to localize the robot with
this active strategy. Which action should be chosen next?
To answer this question we build the graph (Fig. 2). For
example, if the robot performs ‘up‘, it will observe 1 if it is
in s1 and it will observe 0 if it is in s2. So after performing
up at least one of these states would be removed. The weights
of the actions are :

w(up) = Bel(s1) ∗Bel(s2) +Bel(s2) ∗Bel(s3) +
Bel(s2) ∗Bel(s4) = 0.16

w(down) = Bel(s1) ∗Bel(s3) +Bel(s1) ∗Bel(s4) +
Bel(s2) ∗Bel(s3) +Bel(s2) ∗Bel(s4) = 0.24

w(right) = Bel(s1) ∗Bel(s4) +Bel(s2) ∗Bel(s4) +
Bel(s3) ∗Bel(s4) = 0.25

w(left) = Bel(s1) ∗Bel(s2) +Bel(s1) ∗Bel(s4) +
Bel(s2) ∗Bel(s3) +Bel(s3) ∗Bel(s4) = 0.21

So right would be chosen. After performing this action
either the robot would know its exact position by observing
0 or a state with high probability would be removed from the
belief states. In the latter case, as the state was not a correct
hypothesis, this elimination is a significant achievement. On
the other hand, if the robot performs up, with the chance
of 0.8 it would only eliminates a state with probability of
0.2. No matter what the robot observes, actions down and
left reduce the number of states with positive probability to
2. This reduction is a good improvement, but the high prior
probability of s4 leads the algorithm to choose right.

189

The presence of min(p(f∗(si, a)|si, a), p(f∗(sj , a)|sj ,
a)) in the formula, is a way to deal with noise. An action with
greater noise has less chance of being selected because the
states would be removed from belief set only if the action
is performed accurately. We also consider the cost of the
action in our formula, because our goal is to perform the
localization task with the least possible cost.

In the active learning field, Golovin et al. proved that the
cost of the policy that is generated by EC2 is near optimal
and its bound is:

C(πEC2) ≤ (2 ln(1/pmin) + 1)C(π∗) (11)

In their problem, the algorithm tries to select the correct
hypothesis among many by choosing a subset of tests with
minimum cost from a set of all possible tests. π∗ is the
optimal policy and pmin is the probability of the least
probable hypothesis. In that problem tests are performed
without noise and the weights only contain probabilities of
two hypotheses and their cost [6].

V. MACRO ACTIONS

There are many situations, where because of the symmetry
in the environment, none of the actions are useful for
localization. In these cases, we need a sequence of actions
instead of a single basic action. In this part we propose an
algorithm that generates minimum cost sequences of actions
that solve the problem of localization no matter where the
robot is. We call these sequences macro actions.

Our strategy of action selection is based on the actions
that distinguish between each of a pair of states. So if there
is a situation where no action can be selected, it means that
there is no action for any pair of states. Therefore, we build
the macro actions based on these pairs. In other words, for
any pair of states, we find a sequence of actions that can
distinguish between them. In generating these macro actions
the actions are assumed to be deterministic, so only f∗ is
used.

A. The Macro Action Algorithm

Algorithm 2 generates macro actions. For each
pair of states, we should find a macro action that
can resolve the localization problem. This macro
action is called macro action(si, sj) and its cost is
C(macro action(si, sj)). First we set macro action

Fig. 2. Example 1. The graph that is built in our strategy

empty for all pairs. Then, for each pair of si and sj that are
distinguishable, macro action(si, sj) is set to zero with zero
cost, which means that without any action we can distinguish
between them. In the next step, we look at each pair with an
undefined macro action (Line 11) and for each basic action
a we check whether macro action(f∗(si, a), f∗(sj , a))
is defined or not (Line 12). If it is, we can build
a path for si and sj by adding a to the head of
macro action(f∗(si, a), f∗(sj , a)) (Line 24). The cost
of the new path would be max(C(si, a), C(sj , a)) +
C(macro action(f∗(si, a), f∗(sj , a))) (Line 25). However,
we do not set this macro action at the first step. We merely
calculate the cost for all pairs and only set the macro actions
of those with minimum costs (Line 23). After the first step
of calculating new macro actions for all pairs and setting
the minimum sequences, we repeat this step and recalculate
the paths, find minimum ones (Line 14 and line 18) and
update them (Lines 23-26). We repeat this step until no
macro action can be built. Most of the time this would
happen because we have already built the macro actions
for all of the pairs, but there may be situations when there
exist two states for which we cannot find a sequence. In
this situation, we can say that if the robot is in one of these
states, it can never localize itself. In fact, our algorithm can
be used as a test to see whether a robot can always localize
itself in the map.

Algorithm 2 generates exactly one action sequence for
each pair of states. This sequence is optimal in determin-
istic environments and near-optimal in noisy environments.
The proof of optimality of these sequences in deterministic
environments is given in the Appendix.

VI. PERFORMING ACTIVE LOCALIZATION WITH MACRO
ACTIONS

The localization algorithm with macro actions, Algorithm
3, is quite similar to Algorithm 1. This time, we consider not
only the basic actions of the robot, but also macro actions
that were generated previously. To consider the macro actions
in the graph we should define f∗ and the cost for them. If
we have a macro action a′ that is a sequence of basic actions
〈a1, a2, ..., al〉, then f∗(s, a′) is calculated by this recursive
formula:

f∗(s, 〈a1, ..., al〉) = f∗(f∗(s, 〈a1, ...al−1〉), al) (12)

The cost of this macro action for states si and sj is calculated
the same way we calculate costs in generating macro actions:

C(si, sj , 〈a1, ...al〉) = max(C(si, a1), C(sj , a1))+

C(f∗(si, a1), f∗(sj , a1), 〈a2, ..., al〉) (13)

Also, p(f∗(s, a′)|s, a′) is obtained by the following formula:

p(f∗(s, 〈a1, ..., al〉)|s, 〈a1, ..., al〉) = p(f∗(s, a1)|s, a1)×
p(f∗(f∗(s, a1), 〈a2, ..., al〉)|f∗(s, a1), 〈a2, ..., al〉) (14)

190

Algorithm 2: The algorithm for generating macro actions
input : Set of states S, actions A and their costs C,

observation differences of all pairs d, and
transition function f∗

output: Macro actions for all pairs of states

1 MAX = very large value
2 foreach si, sj do macro action(si, sj) = ∅
3 foreach si, sj that d(si, sj) > γ do
4 macro action(si, sj) = 0
5 C(macro action(si, sj)) = 0
6 end
7 min set = {(s1, s2, a1)} //set this value just to enter

the while loop at first
8 while min set 6= ∅ do
9 min set = ∅

10 min cost = MAX
11 foreach si, sj , a that macro action(si, sj) = ∅ do
12 if macro action(f∗(si, a), f∗(sj , a)) 6= ∅ then
13 if C(si, sj , a) +

C(macro action(f∗(si, a), f∗(sj , a))) =
min cost then

14 add (si, sj , a) to min set
15 end
16 if C(si, sj , a) +

C(macro action(f∗(si, a), f∗(sj , a)))
<min cost then

17 Set min set empty
18 add (si, sj , a) to min set
19 min cost = C(si, sj , a) +

C(macro action(f∗(si, a), f∗(sj , a)))
20 end
21 end
22 end
23 foreach (si, sj , a) in min set do
24 macro action(si, sj) =

〈a,macro action(f∗(si, a), f∗(sj , a)〉
25 C(macro action(si, sj)) = min cost
26 end
27 end

The other parts of the algorithm are exactly the same.
One important thing to note about performing a macro
action is that if a macro action is selected during the action
selection part, the robot performs it step by step. This
means that after performing each single action of sequence,
it observes the environment and updates its beliefs. If the
observations are the same as robot’s expectation (the action
has been performed accurately), it will continue executing
the sequence; if not, it ignores the rest of the sequence and
the action selection method is called again. The algorithm is
shown below as Algorithm 3.

VII. IMPLEMENTATION AND COMPUTATIONAL COST

Our method puts most of the computational work into
the offline computation that is done only once per map

and can be used many times. The most time consuming
algorithm in this computation is the algorithm for macro
action generation. On the other hand, we try to make the
online part of our method as fast as possible and use a
common technique to reduce its time complexity.

A. Offline Computation

The first precomputation is calculating p(o|s) for all
observations and states and putting them in a lookup table as
in [3]. This lookup table reduces the time needed for updating
beliefs after an observation and also finding distinguishable
pairs. The second precomputation is generating macro ac-
tions for all pairs of states (Algorithm 2). This algorithm is
quite expensive and in the case where all actions have unit
cost, it takes O(|S|2 × k) where k is the maximum length
optimal path required to distinguish two states. In the worst
case k would be O(|S|) and the total time needed is O(|S|3).
But usually it is far less than |S|. For actions with different
costs, if the cost of the maximum cost action is Cmax and
the cost of minimum cost action is Cmin, in the worst case,
the computational cost would be O(|S|3×Cmax/Cmin). For
each pair the macro action should be stored and this requires
|S|(|S| − 1)/2 memory. For memory usage efficiency, we
need only store the macro actions for the states that are not
distinguishable, not storing empty sets.

B. Online Computation

In the online stage of the method, if there are n states
with positive probability, action selection takes O(n2×|A′|)
where A′ is the set of candidate actions and macro actions.
A common method for reducing computational cost is to
assume the probability density is a mixture of Gaussians
[3] [1]. To do this, states with a probability higher than a
threshold would be selected and are assumed to be the mean

Algorithm 3: The algorithm for action selection with
macro actions

input : Belief states Bel(.), actions A and their costs
C, observation differences of all pairs d, and
transition function f∗, and macro actions

output: a∗, the action or the sequence of actions that
should be performed by the robot

1 A′ = ∅
2 foreach si, sj that Bel(si)×Bel(sj) > 0 do add
macro action(si, sj) to A′

3 foreach a′ ∈ A′ do w(a′) = 0
4 foreach si, sj , a

′ do
5 if d(f∗(si, a;), f∗(sj , a

′)) > γ then
w(si, sj , a

′) = Bel(si)×Bel(sj)×
min(p(f∗(si, a

′)|si, a′), p(f∗(sj , a′)|sj , a′))
/C(si, sj , a

′)
6 else w(si, sj , a

′) = 0
7 end
8 foreach si, sj , a

′ do w(a′) = w(a′) + w(si, sj , a
′)

9 Select a∗ which a∗ = argmaxa′w(a′)

191

Fig. 3. The map of the self similar environment used in the experiment.
The environment is 30m × 18m. The width of the corridors is 2m and
their maximum length is 14m.

of Gaussian densities that model probability of all states.
If the number of these means is m, the complexity of the
action selection is O(m2× |A′|). This computational cost is
O(n × m × |A|) for entropy based localization [3] and as
m� n our approach is much more efficient.

In the case where the robot has no prior knowledge about
its position (global localization), to avoid high computational
cost the robot selects the first few (3 to 10) actions randomly
because the number of possible states is very large, but it
would drastically reduce in the first few steps.

VIII. EXPERIMENTS

We simulated a robot with a noisy laser range finder in a
30m×18m self similar environment, shown in Fig. 3. It has
long corridors (14m) that are usually the main cause of sim-
ilarity in real environments for laser range finder robots. The
angular resolution of the range finder is 1◦ and its maximum
angular range is 240◦. The maximum laser range is 10m. The
basic actions are going 20cm forward, backward, left and
right and also turning 5◦ clockwise or counterclockwise, all
with unit costs. All actions are performed accurately only
85% of the time. The map is grid-based and the grid size for
the state space is (20cm, 20cm, 5◦). As a result, there exist
2,881,196 pairs of indistinguishable states.

Our macro action generation method generated 6,073
macro actions with lengths of 1 to 31 for this environment.
To show the effect of macro actions, we tested our method
with and without macro actions. In the case where we only
used basic actions, when there was no action able to reduce
uncertainty, a random basic action was generated. In both
tests the robot is considered localized, if and only if its
certainty about its position is greater than 0.95 or the number
of basic actions performed exceeds 500. We ran 1000 trials
of global localization and tested both strategies in each
trial. In each trial, the initial location was selected randomly
from the locations which have the same observation in the
noiseless case with at least one other location, meaning that
the robot has to perform at least one action to accomplish the
localization task. The strategy of using macro actions, passed
all the trials in less than 500 actions. The other strategy,
failed to accomplish the task in less than 500 actions, in 138

TABLE I
FRACTION ACCOMPLISHED IN THE LOCALIZATION TASK WITH FEWER

THAN 500 BASIC ACTIONS WITH AND WITHOUT MACRO ACTIONS

Method Fraction accomplished
Macro actions 100%

Basic actions and random walk 86.2%

TABLE II
NUMBER OF AVERAGE BASIC ACTIONS FOR LOCALIZATION WITH AND

WITHOUT MACRO ACTIONS

Method Average number of basic actions
Macro actions 25.61

Basic actions and random walk 79.13

trials (Table I). Moreover, in the trials where both strategies
accomplished the task, the macro action strategy performed
the localization task significantly better than the other one
on average, using fewer than one third the basic actions.
The average number of basic actions that are needed for
localization in successful trials is shown in Table II.

IX. DISCUSSION

In this paper, we have introduced a new active strategy for
localization and macro actions that are generated automati-
cally by the robot, giving it the ability to localize itself in
any environment where localization is possible. Our method
is based on Markov localization. One of the drawbacks
of Markov localization is that we need to represent states
explicitly and a large number of states is needed for large
environments especially for 3D navigation. As a result our
method is more useful for 2D navigation in small to medium-
sized self-similar environments where single action based
methods do not work.

APPENDIX

A. Proof of Correctness of the algorithm for generating
macro actions in deterministic environments

Theorem: In a deterministic environment, for any pair of
states, Algorithm 2 finds the minimum length macro action
that can distinguish between them.

Proof: We do this by induction:
Basis: The algorithm finds the macro action for the states

that are distinguishable by zero cost.
As costs of all actions in any state are positive, zero cost

means that the states are distinguishable and there is no need
for macro action. We set these macro actions to zero in the
line 3 of Algorithm 2 which means there is no need for a
macro action. Therefore, costs and macro actions of all of
those pairs are defined initially in our algorithm.

The inductive step: Assuming that macro actions of all
pairs with minimum cost macro action of less than cost P
are defined and no other macro action is set, the macro action
of pairs with minimum cost macro action of cost P will be
defined in the next step.

If the minimum cost macro action of si and sj costs
P , first of all it is not defined yet because only macro

192

actions with cost of less than P have been defined.
If this macro action is a single action a with cost P ,
it will be defined in this step because f∗(si, a) and
f∗(sj , a) are distinguishable and macro actions of all
distinguishable pairs are proven to be set in basis.
Macro action of (si, sj) will be set to a attached to
macro action(f∗(si, a), f∗(sj , a)) which is zero, meaning
no action. And if this macro action is not a single action
we show it by 〈b1, b2, ..., bk−1, bk〉 that each bi is one
basic action. As all actions have positive cost, C(si, sj , b1)
is positive and (C(f∗(si, b1), f∗(sj , b1), 〈b2, ..., bk〉)) is
less than P . Thus macro action(f∗(si, b1), f∗(sj , b1))
has been already defined and as both 〈b2, ..., bk〉
and macro action(f∗(si, b1), f∗(sj , b1)) are
minimal, the costs of them are exactly equal.
macro action(f∗(si, b1), f∗(sj , b1)) is minimal by
the induction assumption and 〈b2, ..., bk〉 is minimal
because if it is not, we can put the minimal path after
b1 and find another path with less cost for distinguishing
between si and sj . This contradicts the assumption that
the minimum cost macro action of si and sj costs P . So
macro action of si and sj will be defined by attaching b1 to
macro action(f∗(si, b1), f∗(sj , b1)) with cost P .

As a macro action with cost P is defined, all macro actions
with cost of greater than P are not minimum and would not
be defined in this step.

REFERENCES

[1] A. Corominas Murtra, J.M. Mirats Tur, and A. Sanfeliu. Efficient
active global localization for mobile robots operating in large and
cooperative environments. In IEEE International Conference on
Robotics and Automation, pages 2758–2763, May 2008.

[2] G. Dudek, K. Romanik, and S. Whitesides. Localizing a robot
with minimum travel. In Proceedings of the sixth annual ACM-
SIAM symposium on Discrete algorithms, SODA, pages 437–446,

Philadelphia, PA, USA, 1995. Society for Industrial and Applied
Mathematics.

[3] D. Fox, D. Burgard, and S. Thrun. Active Markov localization for
mobile robots. Robotics and Autonomous Systems, 25:195–207, 1998.

[4] D. Fox, W. Burgard, and S. Thrun. Markov localization for mobile
robots in dynamic environments. Journal of Artificial Intelligence
Research, 11:391–427, 1999.

[5] A. Gasparri, S. Panzieri, F. Pascucci, and G. Ulivi. A hybrid active
global localisation algorithm for mobile robots. In IEEE International
Conference on Robotics and Automation, pages 3148 –3153, april
2007.

[6] D. Golovin, A. Krause, and D. Ray. Near-optimal Bayesian active
learning with noisy observations. CoRR, abs/1010.3091, 2010.

[7] R. He, E. Brunskill, and N. Roy. Puma: Planning under uncertainty
with macro-actions. In Proceedings of the Twenty-Fourth Conference
on Artificial Intelligence (AAAI), Atlanta, GA, 2010.

[8] R. He, E. Brunskill, and N. Roy. Efficient planning under uncer-
tainty with macro-actions. Journal of Artificial Intelligence Research,
40:523–570, 2011.

[9] P. Jensfelt and S. Kristensen. Active global localization for a mobile
robot using multiple hypothesis tracking. IEEE Transactions on
Robotics and Automation, 17(5):748–760, October 2001.

[10] S. Koenig, M. S. B Mitchell, A. Mudgal, and C. Tovey. A near-tight
approximation algorithm for the robot localization problem. SIAM,
39(2):461–490, 2009.

[11] H. Kurniawati, D. Yanzhu, D. Hsu, and W. S. Lee. Motion planning
under uncertainty for robotic tasks with long time horizons. Interna-
tional Journal of Robotics Research, 30:308–323, March 2011.

[12] A. Mcgovern. acQuire-macros: An algorithm for automatically learn-
ing macro-actions. In NIPS Workshop on Abstraction and Hierarchy
in Reinforcement Learning, 1998.

[13] J. M. Porta, J. J. Verbeek, and B. J. A. Kröse. Active appearance-based
robot localization using stereo vision. Autonomous Robots, 18:59–80,
January 2005.

[14] M. Rao, G. Dudek, and S. Whitesides. Randomized algorithms for
minimum distance localization. International Journal of Robotics
Research, 26:917–933, September 2007.

[15] C. Tovey and S. Koenig. Gridworlds as testbeds for planning with
incomplete information. In Proceedings of the National Conference
on Artificial Intelligence, pages 819–824, 2000.

[16] C. Tovey and S. Koenig. Localization: Approximation and perfor-
mance bounds to minimize travel distance. IEEE Transactions on
Robotics, 26(2):320–330, April 2010.

193

