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Abstract
Arc consistency and generalized arc consistency
are two of the most important local consistency
techniques for binary and non-binary classic con-
straint satisfaction problems (CSPs). Based on
the Semiring CSP and Valued CSP frameworks,
arc consistency has also been extended to handle
soft constraint satisfaction problems such as fuzzy
CSP, probabilistic CSP, max CSP, and weighted
CSP. This extension is based on an idempotent or
strictly monotonic constraint combination operator.
In this paper, we present a weaker condition for
applying the generalized arc consistency approach
to constraint-based inference problems other than
classic and soft CSPs. These problems, including
probability inference and maximal likelihood de-
coding, can be processed using generalized arc con-
sistency enforcing approaches. We also show that,
given an additional monotonic condition on the cor-
responding semiring structure, some of constraint-
based inference problems can be approximately
preprocessed using generalized arc consistency al-
gorithms.

1 Introduction
The notion of local consistency plays a central role in con-
straint satisfaction. Given a constraint satisfaction problem
(CSP), local consistency can be characterized as deriving new
constraints based on local information. The derived con-
straints simplify the representation of the original CSP with-
out the loss of solutions. Among the family of local consis-
tency enforcing algorithms or filtering algorithms, arc con-
sistency [Mackworth., 1977a] is one of the most important
techniques for binary classic CSP. It is straightforward to ex-
tend it as generalized arc consistency [Mackworth, 1977b;
Mohr and Masini, 1988] to handle non-binary classic CSPs.

To represent over-constrained and preference-based prob-
lems in the real world, researchers in the constraint pro-
cessing community are increasingly interested in so-called
soft constraint satisfaction problems. Fuzzy CSP, probabilis-
tic CSP, max CSP, and weighted CSP have been proposed
to address these requirements. Semiring CSP [Bistarelli et
al., 1997] and Valued CSP [Schiex et al., 1995] are two

of the most widely studied generalized frameworks. Based
on the two frameworks, arc consistency is also extended as
soft arc consistency to handle soft constraints [Schiex, 2000;
Cooper and Schiex, 2004; Bistarelli, 2004]. The sound-
ness and completeness of soft arc consistency, within the
Semiring CSP framework, relies on the idempotency of the
constraint combination operator. Moreover, the c-semiring
used in the Semiring CSP framework has the special require-
ment of idempotency of the additive operator. The Valued
CSP framework extends soft arc consistency in the Semir-
ing CSP framework. Soft arc consistency in Valued CSP de-
pends on the strictly monotonic constraint combination op-
erator or the fair valuation structure. For most soft con-
straint proposals, the success of soft arc consistency in the
Semiring CSP framework and the Valued CSP framework
has been proven [Schiex, 2000; Cooper and Schiex, 2004;
Bistarelli, 2004]. For problems from other fields that can-
not been as optimization problems, their representations in
the Semiring CSP and Valued CSP frameworks may not be
so straightforward. Preprocessing may be needed before ap-
plying the soft arc consistency enforcing approaches to solve
these problems.

Given the representation analogues of constraint-based in-
ference (CBI) problems, including probabilistic inferences,
decision-making under uncertainty, constraint satisfaction
problems, propositional satisfiability, decoding problems,
and possibility inferences, we present in this paper a weaker
condition for applying local consistency approaches to gen-
eral constraint-based inference problems based on the com-
mutative semiring structure. The weaker condition proposed
here depends only on the existence and property of the combi-
nation absorbing element and does not depend on other semir-
ing properties. More specifically, we reduce a CBI problem
to its underlying classic CSP [Cooper and Schiex, 2004] ac-
cording to the weaker condition. All traditional arc consis-
tency techniques, the most widely studied local consistency
approaches, then can be applied without modification.

We also show that, by satisfying an additional mono-
tonic condition on the semiring structure characterizing the
problem, generalized arc consistency can also be used as
an approximate local consistency enforcing technique for
CBI problems. Here we use a user-controlled threshold
value to approximate the combination absorbing element. A
similar approach can be found in [Rina and David, 2001;



Bistarelli et al., 2002; de Givry et al., 1997].

2 Background
There are two essential operators in real world CBI problems:
(1) combination, which corresponds to an aggregation of con-
straints, and (2) marginalization, which corresponds to focus-
ing a specified constraint to a narrower scope. These two
operators allow us to use algebraic structures to generalize
CBI problem representations. More specifically, both the ab-
stract CBI representation framework and the generalized arc
consistency approach in this paper are based on the semiring
structure, an important notion in abstract algebra. This sec-
tion introduces the definition of a semiring and related prop-
erties.
Definition 1 (Semiring) Let A be a set. Let ⊕ and ⊗ be two
closed binary operators defined on A. Here we define opera-
tor ⊗ as taking precedence over operator ⊕. S = 〈A,⊕,⊗〉
is a semiring if the operators satisfy the following axioms:
• Additive associativity: ∀a, b, c ∈ A, (a ⊕ b) ⊕ c = a ⊕

(b⊕ c);
• Additive commutativity: ∀a, b ∈ A, a⊕ b = b⊕ a;
• Multiplicative associativity: ∀a, b, c ∈ A, (a⊗ b)⊗ c =
a⊗ (b⊗ c);

• Left and right distributivity: ∀a, b, c ∈ A, a⊗ (b⊕ c) =
a⊗ b⊕ a⊗ c and (b⊕ c)⊗ a = b⊗ a⊕ c⊗ a.

To capture the computational properties of various infer-
ence approaches, we use commutative semiring, an extended
algebraic notion of semiring, to formally represent CBI prob-
lems in this paper.
Definition 2 (Commutative Semiring) A commutative
semiring S = 〈A,⊕,⊗〉 is a semiring that satisfies the
following additional conditions:
• Multiplicative commutativity: ∀a, b ∈ A, a⊗ b = b⊗a;
• Multiplicative identity: there exists a multiplicative

identity element 1 ∈ A, such that a ⊗ 1 = 1 ⊗ a = a
for any a ∈ A;

• Additive identity: there exists an additive identity ele-
ment 0 ∈ A, such that a ⊕ 0 = 0 ⊕ a = a for any
a ∈ A;

We will show in the following sections that the applica-
tion of local consistency techniques depend on the existence
of a multiplicative (or combination) absorbing element. It is
easy to show the uniqueness of the multiplicative absorbing
element given the multiplicative commutativity of a commu-
tative semiring, according the definition below.
Definition 3 (Multiplicative Absorbing Element) An ele-
ment α⊗ ∈ A is the multiplicative absorbing element of a
commutative semiring S = 〈A,⊕,⊗〉 if a⊗α⊗ = α⊗⊗a =
α⊗ for any element a ∈ A.

Similarly the additive absorbing element α⊕ is defined as:
Definition 4 (Additive Absorbing Element) An element
α⊕ ∈ A is the additive absorbing element of a semiring
S = 〈A,⊕,⊗〉 if a ⊕ α⊕ = α⊕ ⊕ a = α⊕ for any element
a ∈ A.

Furthermore, we say that⊕ is idempotent if a⊕a = a, and
⊗ is idempotent if a ⊗ a = a. For some semirings, we can
define a partial order over the elements of S if ⊕ is idempo-
tent.

Definition 5 (Partial Order ≤S [Bistarelli, 2004]) Given a
semiring S = 〈A,⊕,⊗〉, there exist a partial order ≤S over
S such that a≤Sb, ∀a, b ∈ A if:

• ⊕ is idempotent;

• a⊕ b = b.

Given a partial order ≤S of semiring S = 〈A,⊕,⊗〉, we
know that the additive identity element 0 is the minimum el-
ement of the ordering. In other words, 0≤Sa,∀a ∈ A. If the
additive absorbing α⊕ exists, it will be the maximum element
of the ordering according to the partial order definition. Also
note that the two conditions are only sufficient conditions for
the existence of a partial order. For example, the commuta-
tive semiring Sprob = 〈R+ ∪ {0},+,×〉 has a partial order
while does not satisfy the two conditions.

Finally, we define two more important properties for some
commutative semirings. The two properties are the founda-
tion of applying local consistency techniques to general CBI
problems.

Definition 6 (Eliminative Commutative Semiring) A com-
mutative semiring S = 〈A,⊕,⊗〉 is eliminative if:

• There exists the multiplicative absorbing element α⊗ ∈
A;

• α⊗ = 0, in other words, the multiplicative absorbing
element is equal to the additive identity element.

Definition 7 (Monotonic Commutative Semiring) A com-
mutative semiring S = 〈A,⊕,⊗〉 is monotonic if:

• There exists a total order ≤S on A;

• The additive identity element 0 is the minimum element
w.r.t. ≤S. In other words, 0≤Sa, ∀a ∈ A;

• Additive Monotonic: a≤Sb implies a ⊕ c≤Sb ⊕ c,
∀a, b, c ∈ A;

• Multiplicative Monotonic: a≤Sb implies a⊗ c≤Sb⊗ c,
∀a, b, c ∈ A.

Table 1 displays some commutative semirings with their
identity and absorbing elements and properties.

In the following sections, we use bold letters to denote sets
of elements and regular letters to denote individual elements.
Given a set of elements X and an element Z ∈ X, X−Z de-
notes the set of elements X \ {Z}. Given a value assignment
x of variable subset X and Y ⊆ X, x↓Y denotes the value
assignment projection of x onto the variable subset Y.

3 A Semiring-Based Unifying Framework for
CBI Problems

Constraint-Based Inference (CBI) is an umbrella term for var-
ious superficially different problems. It concerns the auto-
matic discovery of new constraints from a set of given con-
straints over individual entities. New constraints reveal undis-
covered properties about a set of entities. A constraint here is



No. S ⊕,0 ⊗,1 α⊗ α⊕ Eliminative Monotonic
1 {true, false} ∨, false ∧, true false true Yes No
2 [0, 1] max, 0 min, 1 0 1 Yes Yes
3 R

+ ∪ {0} max, 0 min,∞ 0 ∞ Yes Yes
4 [0, 1] max, 0 ×, 1 0 1 Yes Yes
5 R

− ∪ {0} max, −∞ +, 0 −∞ 0 Yes Yes
6 N

+ ∪ {0} max, 0 +, 0 ∞ ∞ No Yes
7 R

+ ∪ {0} +, 0 ×, 1 0 ∞ Yes Yes
8 R

+ ∪ {0} max, 0 ×, 1 0 ∞ Yes Yes
9 N

+ ∪ {0} min,∞ +, 0 ∞ 0 Yes Yes
10 N

+ ∪ {0} min,∞ ×, 1 ∞ 0 Yes Yes

Table 1: Properties of Various Commutative Semirings

seen as a function that maps possible value assignments to a
specific value domain. Many practical problems from differ-
ent fields can be seen as constraint-based inference problems.
These problems cover a wide range of topics in computer sci-
ence research, including probabilistic inferences, decision-
making under uncertainty, constraint satisfaction problems
(CSP), propositional satisfiability problems (SAT), decoding
problems, and possibility inferences.

A CBI problem is defined in terms of a set of variables
with values in finite domains and a set of constraints on
these variables. We use commutative semirings to unify the
representation of constraint-based inference problems from
various disciplines into a single formal framework [Chang,
2005], based on the synthesis of the existing generalized rep-
resentation frameworks [Bistarelli et al., 1997; Schiex et al.,
1995; Kohlas and Shenoy, 2000] and algorithmic frameworks
[Dechter, 1996; Kask et al., 2003; Aji and McEliece, 2000]
from different fields. Formally:

Definition 8 (Constraint-Based Inference (CBI) Problem)
A constraint-based inference (CBI) problem P is a tuple
(X,D,S,F) where:
• X = {X1, · · · , Xn} is a set of variables;
• D = {D1, · · · ,Dn} is a collection of finite domains,

one for each variable;
• S = 〈A,⊕,⊗〉 is a commutative semiring;
• F = {f1, · · · , fr} is a set of constraints. Each con-

straint is a function that maps value assignments of a
subset of variables to values in A

More specifically, we use Scope(f) to denote the subset
of variables that is in the scope of the constraint f . We use
DX to denote the value domain of a variable X . Given a
variable X ∈ Scope(f), Scope(f)−X denotes the variable
subset Scope(f) \ {X}. Then we define the two basic con-
straint operators as follows.

Definition 9 (The Combination of Two Constraints) The
combination of two constraints f1 and f2 is a new constraint
g = f1⊗ f2, where Scope(g) = Scope(f1)∪Scope(f2) and
g(w) = f1(w↓Scope(f1)) ⊗ f2(w↓Scope(f2)) for every value
assignment w of variables in Scope(g).

Definition 10 (The Marginalization of a Constraint)
The marginalization of X from a constraint f , where

X ∈ Scope(f), is a new constraint g =
⊕

X f , where
Scope(g) = Scope(f)−X and g(w) =

⊕
xi∈DX

f(xi,w)

for every value assignment w of variables in Scope(g).

According to the definitions of the CBI problem and the ba-
sic constraint operators, we can define the abstract inference
and allocation tasks for a CBI problem.

Definition 11 (The Inference Task for a CBI Problem)
Given a subset of variables Z = {Z1, · · · , Zt} ⊆ X,
let Y = X \ Z, the inference task for a CBI problem
P = (X,D,S,F) is defined as computing:

gCBI(Z) =
⊕

Y

⊗

f∈F

f (1)

Given a CBI problem P = (X,D,S,F), if ⊕ is idempo-
tent, we can define the allocation task for a CBI problem.

Definition 12 (The Allocation Task for a CBI Problem)
Given a subset of variables Z = {Z1, · · · , Zt} ⊆ X,
let Y = X \ Z, the allocation task for a CBI problem
P = (X,D,S,F) is to find a value assignment for the
marginalized variables Y, which leads to the result of
the corresponding inference task gCBI(Z). Formally, we
compute:

y = arg
⊕

Y

⊗

f∈F

f (2)

where arg is a prefix of operator ⊕. In other words, arg⊕
is an operator that returns arguments of the ⊕ operator. For
example, when ⊕ = max, arg⊕ = argmax that returns a
value assignment that leads to the maximal possible element
in S.

In general, ⊗ is a combination operator in CBI problems
that combines a set of constraints into a constraint with a
larger scope; ⊕Y = ⊕X\Z is a marginalization operator
that projects a constraint over the scope X into its subset
Z, through enumerating all possible value assignments of
Y = X \ Z.

Many CBI problems from different disciplines can be em-
bedded into our semiring-based unifying framework [Chang,
2005]. These problems include the decision task and alloca-
tion task of CSP and SAT, Max SAT and Max CSP, Fuzzy
CSP, Weighted CSP, probability assessment, most probable



Input: A CBI problem P = (X,D,S,F)
Output: A generalized arc consistency CBI problem P′ =

(X,D′,S,F′)
1: Let Q be a queue of all the variable-constraint pairs

(X, f)
2: repeat
3: Pop the first variable-constraint pair (X, f) ∈ Q
4: if REVISE(X, f) then
5: for each g ∈ F with X ∈ Scope(g) do
6: Remove all tuples in g with the value that is re-

moved from X
7: for each Z ∈ Scope(g) and X 6= Z do
8: if Pair (Z, g) /∈ Q then
9: Q := Q ∪ {(Z, g)}

10: end if
11: end for
12: end for
13: end if
14: until Q is empty
15: Return P′ := P

Figure 1: Generalization of Generalized Arc Consistency Al-
gorithm GGAC(P)

explanation (MPE), dynamic Bayesian networks (DBN), pos-
sibility inference with various t-norms, and maximum likeli-
hood decoding. In [Chang, 2005], we also generalized vari-
ous systematic inference approaches, including exact and ap-
proximate variable elimination, exact and approximate junc-
tion tree and variants, and loopy message propagation, into
this semiring-based unifying framework.

4 Applying Arc Consistency to CBI Problems
4.1 Arc Consistency and Eliminative Property
Here, we are particularly interested in CBI problems defined
on a commutative semiring S = 〈A,⊕,⊗〉 with the elimi-
native property. More specifically, we propose in this paper
that local consistency techniques in constraint processing can
be extended to handle general CBI problems like probabil-
ity inference and maximum likelihood decoding, if the cor-
responding commutative semiring of the problem representa-
tion is eliminative. Formally, we define the generalized arc
consistency of a CBI problem as follows:

Definition 13 (A CBI Problem is GGAC) A CBI Problem
P = (X,D,S,F) with an eliminative commutative semir-
ing S is generalized arc consistent (GGAC) if: ∀f ∈ F,
∀X ∈ Scope(f), ∀x ∈ DX , ∃w, a value assignment of vari-
ables Scope(f)−X , s.t. f(x,w) 6= α⊗

Figure 1 shows a generalized version of generalized arc
consistency (GGAC) enforcing algorithm for a CBI problem
P = (X,D,S,F) with an eliminative commutative semiring
S. The procedure REVISE of GGAC is shown in Figure 2.

Theorem 1 (GGAC Enforces Generalized Arc Consistency)
Applying GGAC algorithm to a CBI problem
P = (X,D,S,F) with an eliminative commutative semiring
S = 〈A,⊕,⊗〉 leads to a generalized arc consistent CBI
problem P′ = (X,D′,S,F′).

Input: A variable X ∈ X and a constraint f ∈ F
Output: TRUE if a value is removed from the domain of X

else FALSE
1: flag := TRUE
2: for each x ∈ DX do
3: for each value assignment w of Scope(f)−X do
4: if f(x,w) 6= α⊗ then
5: flag := FALSE
6: Break loop
7: end if
8: end for
9: if flag then

10: Remove x from DX

11: Return TRUE
12: end if
13: end for
14: Return FALSE

Figure 2: Procedure REVISE(X, f) for Eliminating a Do-
main Value from a Variable According to the Local Constraint

Proof: Assume there exists a constraint f ′ ∈ F′ and a
variable X ∈ Scopef ′ that lead to generalized arc inconsis-
tency in P′. We know the pair (X, f ′) must be popped from
the queue sometime since X and f ′ are in P′. However, the
REVISE procedure ensures that every pair popped from the
queue is generalized arc consistent, which contradicts the as-
sumption. 2

The equivalency of a CBI problem with an eliminative
commutative semiring and the generalized arc consistency
CBI problem yielded by GGAC algorithm in Figure 1 w.r.t.
the results of their inference tasks is proven by Theorem 2.

Theorem 2 (Closure of GGAC) Let P = (X,D,S,F) be a
CBI problem and the commutative semiring S = 〈A,⊕,⊗〉
is eliminative. Let P′ = (X,D′,S,F′) be the CBI problem
yielded by GGAC algorithm. For any subset of variables Z ⊆
X, the inference tasks for P and P′ are equivalent.

Proof: Let (X, f) be a pair that is revised by the pro-
cedure REVISE, where x ∈ DX is removed because
of generalized arc inconsistency. Consider the global
constraint g of the combination of all the constraints in
P = (X,D,S,F). We have g(X) = f(X↓Scope(f)) ⊗⊗

h∈F,h6=f h(X↓Scope(h)). More specifically, for any value
assignment u of variables X−X , we have g(x,u) =
f(x,u↓Scope(f)) ⊗

⊗
h∈F,h6=f h(u↓Scope(h)) = α⊗, since

f(x,u↓Scope(f)) = α⊗ is the absorbing element of the oper-
ator⊗. Given g(X = x,u) = α⊗ is also the identity element
of the operator ⊕, the inference task of P (Equation 1) is to
compute:

gCBI(Z) =
⊕

Y

g(X,X−X)

=
⊕

Y

(g(X = x,X−X)⊕ g(X 6= x,X−X))

=
⊕

Y

g(X 6= x,X−X) (3)



On the other hand, let us consider the global constraint g′
of P′ = (X,D′,S,F′). We have: g′(X) =

⊗
f ′∈F′ f ′ =

g(X 6= x,X−X) according to the GGAC algorithm in Figure
1. Then it is straightforward to get g′CBI(Z) =

⊕
Y g′(X) =

gCBI(Z). 2

In other words, Theorem 2 shows that when we detect that
there exists a constraint of a given CBI problem on an elim-
inative semiring structure that maps all its value assignments
with a specific value to the multiplicative absorbing element,
the value can be safely removed from the variable’s domain.
All value assignments with this value can be safely removed
from any constraint with this variable in its scope, without
modifying the computational result of the inference task.

Theorems 1 and 2 together imply the correctness of the
GGAC algorithm.

Theorem 3 (Time Complexity of GGAC) The worst case
time complexity of the GGAC algorithm in Figure 1 is O(r ·
dk+1), where r is the number of constraints, d is the maximum
domain size, and k is the maximum scope size of constraints.

Proof: Basically the GGAC algorithm is a straightforward
revision of the generalized arc consistency enforcing algo-
rithm for classic non-binary CSPs [Mackworth, 1977b]. For
each constraint with at most k variables in its scope we need
dk checks. Each variable-constraint pair enters the queue at
most d times, so the total number of checks is O(r · dk+1). 2

We extend the application of Theorem 2 by introducing an-
other equivalency statement of the inference task for a CBI
problem.

Theorem 4 Solving the inference task of a CBI problem P =
(X,D,S,F) is equivalent to solving P′ = (X,D,S,F′),
where F′ = Fp ∪ {f}, Fp ⊂ F and f =

⊗
h∈F\Fp

h.

Proof: Easy to prove given the definition of the inference
task of a CBI problem in Equation 1. 2

Combining Theorem 2 and Theorem 4 lead to the local
consistency property of general CBI problems. We do not
have to focus on the original constraints in F of the CBI
problem P = (X,D,S,F). We can combine some origi-
nal constraints to a local constraint, then apply the conclusion
of Theorem 2 to refine the representation of the original CBI
problem.

If the allocation task can be defined on a CBI problem P =
(X,D,S,F), in other words, ⊕ is idempotent, we have the
analogous result, as shown in Theorem 5.

Theorem 5 (Closure of GGAC for Allocation Task) Let
P = (X,D,S,F) be a CBI problem and the commutative
semiring S = 〈A,⊕,⊗〉 is eliminative. ⊕ is idempotent. Let
P′ = (X,D′,S,F′) be the CBI problem yielded by GGAC
algorithm. For any subset of interested variables Z ⊆ X, we
have the allocation tasks for P and P′ are equivalent.

Proof: Similar to the proof of Theorem 2. It is easy to show
that the value x ∈ DX cannot appear in any value assignment
that leads to the inference task’s result gCBI(Z). 2

Through shrinking the domain of a variable as well as
deleting possible value assignments of constraints, the size
of the original CBI problem is reduced by factor (|DX | −
1)/|DX |. Repeatedly applying the GGAC algorithm, we will

Input: A CBI problem P = (X,D,S,F) and a variable
subset Z of interest

Output: gCBI(Z) =
⊕

X\Z

⊗
f∈F f

1: P := GGAC(P)
2: Let Y = X \ Z
3: Choose an elimination ordering σ =< Y1, · · · , Yk > of

Y
4: for i = k to 1 do
5: F′ := ∅
6: for each f ∈ F do
7: if Yi ∈ Scope(f) then
8: F′ := F′ ∪ {f}
9: F := F \ {f}

10: end if
11: end for
12: f ′ :=

⊕
Yi

⊗
f∈F′ f

13: F := F ∪ {f ′}
14: for each X ∈ Scope(f ′) do
15: if REVISE(X, f’) then
16: P := GGAC(P)
17: Break loop
18: end if
19: end for
20: end for
21: Return gCBI(Z) :=

⊗
f∈F f

Figure 3: Generalization of Variable Elimination with Arc
Consistency Algorithm GVE-AC(P,Z)

get a series of equivalent smaller CBI problems. The general-
ized arc consistency enforcement provides opportunities for
performing inference more efficiently. We may either pre-
process the CBI problem then apply regular systematic or
stochastic inference approaches or simplify the problem dur-
ing the application of inference approaches. For example,
it is straightforward to incorporate generalized arc consis-
tency enforcing into a generalized variable elimination algo-
rithm [Chang, 2005], as shown in Figure 3, if a CBI problem
P = (X,D,S,F) has an eliminative commutative semiring
S.

4.2 Approximate Local Consistency and
Monotonic Property

Given a CBI problem P = (X,D,S,F), if the commuta-
tive semiring S = 〈A,⊕,⊗〉 is both eliminative and mono-
tonic, we can propose a scheme to enforce local consistency
approximately for this CBI problem. In other words, for an
eliminative and monotonic commutative semiring, we use an
element ε ∈ A to approximate the multiplicative absorbing
element α⊗ that is equal to the additive identity element 0 for
an eliminative commutative semiring.

Formally, we define the generalized ε arc consistency of a
CBI problem as follows:
Definition 14 (A CBI Problem is ε-GGAC) A CBI Problem
P = (X,D,S,F) with an eliminative commutative semiring
S is ε generalized arc consistent (ε-GAC) if: ∀f ∈ F, ∀X ∈
Scope(f), ∀x ∈ DX , ∃w, a value assignment of variables
Scope(f)−X , s.t. f(x,w)≥Sε



Input: A variable X ∈ X, a constraint f ∈ F, an element
ε ∈ A

Output: TRUE if a value is removed from the domain of X;
FALSE if else

1: flag := TRUE
2: for each x ∈ DX do
3: for each value assignment w of Scope(f)−X do
4: if ε≤Sf(x,w) then
5: flag := FALSE
6: Break loop
7: end if
8: end for
9: if flag then

10: Remove x from DX

11: Return TRUE
12: end if
13: end for
14: Return FALSE

Figure 4: Procedure ε-REVISE(X, f, ε) for Eliminating a
Domain Value from a Variable According to the Approxima-
tion of a Local Constraint

An ε-GGAC algorithm can be achieved by modifying
the REVISE procedure in Figure 2 to the procedure ε-
REVISE(X, f, ε) in Figure 4. It is straightforward to show
that the GGAC algorithm in Figure 1 with the procedure ε-
REVISE leads to a ε-GGAC CBI problem of the given CBI
Problem P = (X,D,S,F) with an eliminative and mono-
tonic commutative semiring S.

Theorem 6 show that ε-GGAC algorithm can be used to
simplify the original CBI problem with a controlled thresh-
old. The simplified CBI problem gives a lower bound on the
estimation of the inference task.

Theorem 6 (Lower Bound Estimation of ε-GGAC )
Given a CBI problem P = (X,D,S,F) with an eliminative
and monotonic commutative semiring S = 〈A,⊕,⊗〉, the ε-
GGAC algorithm yields a CBI problem P′ = (X,D′,S,F′)
that is an approximation of P w.r.t. the results of their
inference tasks. For any value assignment z of interested
variables Z, the inference task of P′, g′CBI(z), is a lower
bound of gCBI(z), w.r.t. the partial order ≤S of the
monotonic commutative semiring S.

Proof: Let (X, f) be a pair that is revised by the procedure
ε-REVISE, where x ∈ DX is removed because of ε general-
ized arc inconsistency. Consider the global constraint g of the
combination of all the constraints in P = (X,D,S,F). We
have g(X) = f(X↓Scope(f)) ⊗

⊗
h∈F,h6=f h(X↓Scope(h)).

More specifically, for any value assignment u of vari-
ables X−X , we have g(x,u) = f(x,u↓Scope(f)) ⊗⊗

h∈F,h6=f h(u↓Scope(h)). Since α⊗≤Sf(x,u↓Scope(f))≤Sε

and ⊗ is monotonic, we have α⊗≤Sg(x,u).
Given that α⊗ is also the identity element of the operator

⊕ (S is eliminative) and ⊕ is monotonic, the inference task
of P (Equation 1) is to compute:

gCBI(Z) =
⊕

Y

g(X,X−X)

=
⊕

Y

(g(X = x,X−X)⊕ g(X 6= x,X−X))

≥S

⊕

Y

g(X 6= x,X−X) (4)

On the other hand, let us consider the global con-
straint g′ of P′ = (X,D′,S,F′). We have: g′(X) =⊗

f ′∈F′ f ′ = g(X 6= x,X−X) according to the ε-GGAC
algorithm. Then it is straightforward to get g′CBI(Z) =⊕

Y g′(X)≤SgCBI(Z) for every value assignment of inter-
ested variable subset Z. 2

Theorem 7 (Time Complexity of ε-GGAC) The worst case
time complexity of the ε-GGAC algorithm is O(r · dk+1),
where r is the number of constraints, d is the maximum do-
main size, and k is the maximum scope size of constraints.

Proof: The worst case time complexity of the ε-GGAC
algorithm is the same as the GGAC algorithm, which is O(r ·
dk+1). 2

5 Arc Consistency in Probability Assessment:
An Example

Probability inference problems can be seen as constraint-
based inference by treating conditional probability distribu-
tions (CPDs) as soft constraints over variables. A Bayesian
network (BN) [Pearl, 1988] is a graphical representation for
probability inference under conditions of uncertainty. BN
is defined as a directed acyclic graph (DAG) where ver-
tices X = {X1, · · · , Xn} denote n random variables and
directed edges denote causal influences between variables.
D = {D1, · · · , Dn} is a collection of finite domains for
the variables. A set of conditional probability distributions
F = {f1, · · · , fn}, where fi = P (Xi|Parents(Xi)) is at-
tached to each variable (vertex) Xi. Then the probability dis-
tribution over X is given by P (X) =

∏n

i=1 fi.
As a fundamental problem of probability inference, the

probability assessment problem in Bayesian networks com-
putes the posterior marginal probability of a subset of vari-
ables, given values for some variables as known evidence.
We show in [Chang, 2005] that the probability assessment
problem can be represented as a CBI problem using the com-
mutative semiring Sprob = 〈R+ ∪ {0},+,×〉. We show
in this section that our GGAC and ε-GGAC enforcing algo-
rithms can preprocess the probability assessment problem ef-
ficiently. It is easy to show that α⊗ = 0 = 0 and Sprob is
monotonic.

The Bayesian network used here is the Insurance network
from the Bayesian network Repository [Friedman et al., ].
The network has 27 variables and 27 non-binary constraints
(CPDs). In our experiments, we randomly choose two vari-
ables as observed. The ε-GGAC algorithm is used to prepro-
cess the problem. The junction tree algorithm in Lauritzen-
Spiegelhalter architecture [Lauritzen and Spiegelhalter, 1988]
is used to infer the marginal probability of every unobserved
variable. We compare the number of binary operations re-
quired for probability assessment after using the ε-GGAC al-
gorithm (shown as a fraction of the number required without
ε-GGAC) and the resultant error of the marginal probability
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Figure 5: The number of binary operations required for prob-
ability assessment after using the ε-GGAC algorithm (shown
as a fraction of the number required without ε-GGAC) and
the resultant error of the marginal probability for the Insur-
ance network as a function of ε

for the Insurance network as a function of ε in Figure 5. At
each value of ε, we collect data for 5 runs. Results of our ex-
periments are shown in Figure 5. It is clear that ε controls the
tradeoff of the precision and the speed of the inference.

6 Conclusion and Future Works
As the most important local consistency techniques in con-
straint programming, arc consistency [Mackworth., 1977a]
and its non-binary version, generalized arc consistency
[Mackworth, 1977b; Mohr and Masini, 1988], are widely
studied. The soft arc consistency algorithms [Schiex, 2000;
Cooper and Schiex, 2004; Bistarelli, 2004] in the Semiring
CSP [Bistarelli et al., 1997] and Valued CSP [Schiex et al.,
1995] frameworks extend successfully the notion of arc con-
sistency to the soft constraint processing. As the first result of
this paper, we propose a weaker condition of applying gen-
eralized arc consistency enforcing techniques to a broader
coverage of constraint-based inference problems, based on a
semiring-based unified framework for CBI problems [Chang,
2005]. The weaker condition proposed here depends only on
the existence and property of the combination absorbing ele-
ment and does not depend on other semiring properties. We
also present a concept of ε-GGAC that simplifies the repre-
sentation of a CBI problem approximately. We show in this
paper that the approximate inference task is a lower bound of
the exact one w.r.t the total ordering of values in the commu-
tative semiring structures. We also presented several general-
ized arc consistency enforcing algorithms in this paper. The
worst time complexity of our generalization of generalized
arc consistency enforcing algorithm is O(r · dk+1), where r
is the number of constraints, d is the maximum domain size,
and k is the maximum scope size of constraints. Our gener-
alization of generalized arc consistency provides opportuni-
ties to researchers in the constraint programming community
to extend their knowledge of local consistency enforcing ap-

proaches to other constraint-based inference problems such
as probability inference and decoding problems.

Recently, many stronger local consistencies, such as di-
rectional arc consistency [Cooper and Schiex, 2004], full di-
rectional arc consistency [Larrosa and Schiex, 2003] and ex-
istential arc consistency [de Givry et al., 2005], as well as
Soft Arc Consistency [Cooper and Schiex, 2004] have been
studied to solve Weighted CSP, Max-SAT, and Bayesian net-
works [Larrosa et al., 2005]. We intend to compare the
GGAC and ε-GGAC with these stronger local consistencies
in handling different probability assessment problems in fu-
ture work. Theoretical analysis of error bounds introduced
by ε-GGAC algorithm is another research direction following
the results of this paper.
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