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Abstract-Schema-based representations for visual knowledge are 
integrated with constraint satisfaction techniques. This integration is 
discussed in a progression of three sketch map interpretation pro- 
grams: Mapsee-1, Mapsee-2, and Mapsee-3. The programs are evalu- 
ated by the criteria of descriptive and procedural adequacy. The eval- 
uation indicates that a schema-based representation used in 
combination with a hierarchical arc consistency algorithm constitutes 
a modular, efficient, and effective approach to the structured represen- 
tation of visual knowledge. The schemata used in this representation 
are embedded in composition and specialization hierarchies. Speciali- 
zation hierarchies are further expanded into discrimination graphs. 

Index Terms-Constraint satisfaction, discrimination graphs, hier- 
archical arc consistency, model-based vision, recognition, schema rep- 
resentations, sketch maps. 

I. INTRODUCTION 
HIS paper describes the use of constraint satisfaction T techniques in model-based computational vision. Par- 

ticular attention is paid to the integration of constraint sat- 
isfaction techniques with schema-based representations. 
This methodology is examined under two criteria: de- 
scriptive adequacy, the ability of a representational for- 
malism to capture essential visual properties of objects 
and relationships in the visual world, and procedural ad- 
equacy, the capability of the representation to support ef- 
ficient processes of recognition, generation, knowledge 
acquisition, and search [25]. 

The prospect of a general-purpose vision system re- 
mains a goal for the not-so-near future. Such a system 
would be able to interpret virtually any image without 
specific prior expectations of the domain of interpretation. 
The system would be capable of describing each image 
and scene at different levels of detail and abstraction (de- 
scriptive adequacy). As well, it would be able to trans- 
form a description of the image in terms of significant 
features into a domain-specific scene description cor- 
rectly, quickly, and flexibly (procedural adequacy). The 

Manuscript received November 2, 1987; revised August 3, 1988. This 
work was supported by the Natural Sciences and Engineering Research 
Council of Canada under Grants A0948, A9281, and A5502, and by the 
Canadian Institute for Advanced Research. 

J.  A. Mulder is with the Department of Mathematics, Statistics, and 
Computing Science, Dalhousie University, Halifax, N.S. B3H 355, Can- 
ada. 

A. K. Mackworth is a fellow of the Canadian Institute for Advanced 
Research and is with the Department of Computer Science, University of 
British Columbia, Vancouver, B.C. V6T 1W5, Canada. 

W. S .  Havens is with Tektronix Research Laboratories, MS-50-662, 
P.O. Box 500, Beaverton, OR 97077. 

IEEE Log Number 8823851. 

main dilemma is that computational vision is inherently 
an underconstrained task. The image formation process 
confounds information about the objects and their spatial 
relationships, the image projection process, the surface 
reflectance properties of scene objects, the occlusion of 
surfaces, the viewing position of the observer, and the 
like. To overcome this dilemma, computational vision 
systems must use additional sources of knowledge to pro- 
vide the necessary constraints to the recognition process. 
These constraints can range from general knowledge as- 
sumed valid for all scenes (early vision) to specific knowl- 
edge about scene objects and their legitimate configura- 
tions (model-based vision) [ 131. 

Research in computational vision has successfully ex- 
ploited assumptions about surface descriptions, scene il- 
lumination and surface continuity, viewing position, 
lighting position, surface reflectance, motion, surface to- 
pology in scene analysis, and surface orientation [13]. 
Unfortunately, these constraints, while apparently nec- 
essary for producing scene descriptions, are frequently 
embedded in the particular theory being implemented and 
not explicitly represented. Computational vision requires 
explicit object-oriented representations of visual knowl- 
edge. The schema-based methodology discussed in this 
paper provides such a representation. 

Research directed towards characterizing effective rep- 
resentations for visual knowledge forms one part of efforts 
to establish a coherent theory for visual perception. The 
coordination among different knowledge sources through 
constraints forms another part. Most model-based vision 
systems obtain access to the knowledge base of a partic- 
ular domain after a segmentation process has scanned the 
image in search of particular features. The description of 
these features imposes constraints on the interpretations 
possible. Features, constraints, and interpretations can be 
represented as a graph (or hypergraph) with the features 
as variables, each with an associated domain of possible 
interpretations, and the constraints as relations. Suppose 
there are n variables each with domain size a and there 
are e relations among the variables to be satisfied. The 
problem of finding globally consistent interpretations for 
the image then becomes the problem of finding all possi- 
ble n-tuples, such that each n-tuple is an instantiation of 
the n variables satisfying the relations. This problem is 
the constraint satisfaction problem (CSP) [ 181. Since, in 
its full generality, CSP is NP-hard the existence of algo- 
rithms that solve this problem in less than exponential time 
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is unlikely. Depth-first backtracking, for instance, is of 
O(ea")  in its worst case performance [22]. Such perfor- 
mance causes major difficulty in a general-purpose vision 
system in which we can expect domain sizes to be very 
large. 

A variety of approaches have been taken to solving 
CSP's 1241. In particular, since the vision CSP is NP-hard 
various polynomial constraint satisfaction approximation 
algorithms, also referred to as network consistency algo- 
rithms, are attractive. In the next section we briefly dis- 
cuss this approach. 

This paper focusses on the integration of constraint sat- 
isfaction techniques with schema-based representations. 
We discuss this interaction in a progression of three sketch 
map interpretation programs. In these programs a scene 
interpretation takes the form of a scene constraint graph. 
Schema-based representations are involved in the con- 
struction of this graph, whereas network consistency al- 
gorithms control the propagation of constraints through 
the graph. The discussion of sketch map interpretation 
programs is linked to related work in computational vi- 
sion, but no effort has been made to provide an in-depth 
overview of such work. For recent reviews of research in 
model-based vision, see Binford [4] and Tsotsos [42]. 

Sketch maps capture in a simple form fundamental 
problems of representing and applying knowledge. Some 
problems of segmenting and interpreting real imagery are 
isolated while others are ignored. Furthermore, tech- 
niques for understanding sketch maps have application in 
interpreting real imagery [9], 1401, [6]. All three pro- 
grams, Mapsee-1, 2, and 3 are evaluated using the eval- 
uation criteria of descriptive and procedural adequacy. A 
schema-based representation is introduced in Mapsee-2. 

11. CONSTRAINT SATISFACTION 
In a graph that contains n variables, a constraint satis- 

faction algorithm has to test all possible explicit and im- 
plicit k-ary constraints (k 5 n).  The term network con- 
sistency is often used as an umbrella for a group of 
algorithms which propagate constraints over a graph but 
which do not always solve the constraint satisfaction 
problem. They are approximation algorithms in that they 
enforce necessary but not always sufficient conditions for 
the existence of a solution. Network consistency algo- 
rithms evolved from research in the polyhedral domain 
[43], [ 181, but have a much wider applicability [24]. Most 
of these algorithms are characterized by the fact that they 
test constraints in a local neighborhood only. Node con- 
sistency [18], for example, tests for unary constraints 
only, arc consistency [18], [22] tests unary and binary 
constraints, whereas k-consistency [8] tests up to k-ary 
constraints (k 5 n) .  

In order to find all n-tuple variable instantiations that 
satisfy the constraints, constraint satisfaction algorithms 
have to test all possible combinations between values in 
the variable's domain. Algorithms like depth-first back- 
tracking keep an explicit record of consistent value com- 
binations. Image features have many possible local inter- 

pretations. However, when more global constraints are 
imposed most of the local interpretations are invalidated. 
One particular weakness of depth-first backtracking is that 
it keeps track of many interpretation combinations which 
will eventually be eliminated. The advantage of network 
consistency algorithms such as arc consistency is that it 
does not keep track of all interpretation combinations. Arc 
consistency tests and eliminates domain values that are 
inconsistent with all values in the domains of adjacent 
variables. 

The algorithm AC-3 [ 181 illustrates this operation which 
is characteristic for network consistency algorithms. Var- 
ious derivatives of this algorithm were used in the Mapsee 
programs to be described later. The description of AC-3 
provided here is an informal one. For a more formal treat- 
ment of AC-3, see [ 181 and [24]. 

AC-3 enforces node and arc consistency in a constraint 
graph. Node consistency is established by defining a un- 
ary predicate P, which tests P, (k) for each label k in the 
domain D, of each vertex i in the graph. Inconsistent la- 
bels are removed from D,. After the establishment of node 
consistency all arcs A, are stored on a queue. Arc con- 
sistency is tested for each arc A,J on this queue. A ,  is con- 
sistent if for each label k in D, there is at least one label 
m in DJ for which P,(k, m) is true. Any k that is incon- 
sistent is removed from D , .  If A, was inconsistent, then 
all arcs pointing at vertex i (except A,, ) are merged with 
the queue. 

AC-3 does not maintain a record of label compatibility. 
The consistency test is terminated at the first m in DJ that 
is consistent with k.  Based on the number of predicate 
evaluations, AC-3 is of O ( e a 3 )  in the worst case and of 
0 ( ea2 ) in the best case [22]. This is a major improvement 
over exponential depth-first backtracking. 

The price, of course, is that AC-3 is not guaranteed to 
solve the constraint satisfaction problem. The strength of 
algorithms like AC-3 is that they can be used as a prepro- 
cessor for a constraint satisfaction algorithm such as back- 
tracking or recursive arc consistency with domain subdi- 
vision. AC-3 removes all elements that are locally 
inconsistent. This has the net effect of reducing the do- 
main size of each variable. Thus, backtracking can oper- 
ate with a relatively small domain size. Experience with 
the Mapsee programs has taught us that AC-3 often re- 
duces the domain size of each variable to one. In this case, 
this corresponds to a solution. Under this circumstance 
AC-3 provides a linear time algorithm for finding the one 
solution satisfying all constraints. 

The complexity properties make network consistency 
algorithms an attractive tool to use in image interpreta- 
tion. As mentioned before, general-purpose vision sys- 
tems will have to cope with large domain sizes. Efficient 
constraint satisfaction algorithms are therefore necessary. 
Effective constraint satisfaction, however, is not the only 
problem model-based vision systems face. The construc- 
tion of a constraint graph over which the constraints are 
propagated is a problem in itself. We will see that com- 
bining a schema-based representation with constraint 
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c 

Fig. 1. Four sketch maps. (a) Porpoise Island. (b) Lower mainland of Brit- 
ish Columbia. (c) Georgia Strait, British Columbia. (d) Fraser Valley, 
British Columbia. 

propagation techniques can provide a modular and effi- 
cient integration of graph construction and constraint sat- 
isfaction. Additionally, this methodology will be seen to 
provide a high level of both descriptive and procedural 
adequacy in a vision system. 

All programs discussed in the next three sections are 
part of the Mapsee project, a project in which we study 
and evaluate various schemes for representing visual 
knowledge. Different knowledge representation schemes 
have been implemented as sketch map interpretation pro- 
grams. We will describe three such programs: Mapsee-1, 
2, and 3. None of these programs, however, will be de- 
scribed in detail. A full description of Mapsee-l appeared 
in [ 191. No implementation-level description of Mapsee- 
2 exists, other than the one provided here. Some of Map- 
see-2’s design principles have been reported before [ 121, 

[13]. Some aspects of the Mapsee-3 program have also 
been reported elsewhere [29]-[32]. 

111. MAPSEE- 1 
Sketch maps are man made images whose semantics are 

rich and clean, and they can be codified and exploited. 
Sketch maps can be freehand sketches [Fig. l(a)], or, as 
is the case in the Figs. l(b)-(d), they can be created by 
tracing over an aerial photograph or cartographic map. 
The semantics of sketch maps are partially natural (e.g., 
the shape of rivers, roads, and coastlines) and partially 
conventional (e.g., bridges and mountains). An important 
property shared with real imagery is that image features 
are highly ambiguous in interpretation. Line segments, 
for instance, can be roads, rivers, shores, bridges, town, 
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and mountains, whereas the “empty” regions in between 
can be land or water. 

All Mapsee programs go through a more or less uni- 
form segmentation stage first. The objective of segmen- 
tation is the construction of primitives and features. The 
primitives are the elements in the image. They are con- 
sidered to represent a scene object or parts of it. The fea- 
tures are the image properties that constrain the possible 
interpretations for the primitives of which they are a part. 
Features also serve as cues for interpretations. Regions 
and line segments (called chains) are the primitives in 
Mapsee. Junctions, such as Tee, L, and Free-ends con- 
stitute the features. Each feature constrains the interpre- 
tation for each of the adjacent chains and regions. For 
instance, the stem of a Tee junction can be a river, the 
bar a shore, one of its regions sea, and the other two land. 
Another possibility is a mountain interpretation for both 
the stem and the bar, in which case all the regions must 
be land. 

The chains are given as input. The junctions are com- 
puted from the chains, either during segmentation (Map- 
see-1), or during interpretation when required by scene 
constraints (Mapsee-2 and -3). Regions are created by 
subdividing and connecting empty spaces by means of a 
quadtree representation. Their formation is guided by a 
conservative segmentation process. That is, subdivision 
of empty spaces stops well before any ‘‘leakage’’ through 
(nonintended) gaps between chains occur. 

The segmentation process cumulates in the formation 
of chains, regions, and cues. Mapsee-1 represents its 
scene models in the form of cue/model tables. A con- 
straint satisfaction algorithm, called network consistency 
( N C )  closely interacts with this table. This interaction 
takes the form of a cycle of perception [20]. The program 
goes through a sequence of stages during each pass: cue 
discovery, model invocation, model testing, and model 
elaboration. The cycle is entered at cue discovery which 
is the equivalent of segmentation. Model invocation em- 
bodies the construction of a scene constraint graph in 
which the the primitives (chains and regions) are the 
“variables, ” each with a domain of possible interpreta- 
tions, the arcs are instantiations of the cues found during 
segmentation. Model testing is the equivalent of node 
consistency described in the previous section, whereas 
model elaboration is an implementation of NC. 

Mapsee-1 closes the cycle. The results of model elab- 
oration are used to resegment the image, if necessary. The 
cycle of perception is a useful metaphor for describing 
and comparing control structures in computer vision pro- 
grams [20], [42]. 

NC is a generalization of AC-3. NC goes beyond AC- 
3’s binary constraints in that it can deal with arbitrary k- 
ary relations. Its manner of operation is similar to AC-3 
except that upon completion of the AC-3 part, NC will 
test whether each domain contains one label only. If this 
is the case then it terminates. If one domain contains more 
than one label (say b)  then NC returns b different scene 
constraint graph solutions. If more than one domain con- 

tains more than one label then one domain is split in ap- 
proximately equal halves and NC is invoked recursively 
for the two newly generated subproblems. 

NC tests the full range of relationships and is therefore 
a complete constraint satisfaction algorithm. However, 
NC’s operation may yield exponential complexity because 
of the recursive domain splitting. A surprising finding, 
however, was that for the small number of sketches tested, 
the domain splitting operation did not need to be invoked. 

A. Discussion 
Mapsee-1 was successful as a demonstration of the ap- 

plicability of constraint propagation algorithms outside the 
domain of polyhedral scenes. As well, it is an existence 
proof that cues and descriptive models can also be used 
outside the polyhedral world. On the negative side, Map- 
see-1 can be criticized both for descriptive and procedural 
inadequacies as follows [ 121, [ 131. 

Descriptive Inadequacies: 
1) The cue/model structure has one level only. 
2) A scene interpretation is a label in the domain of 

3) Many real world scene domain constraints are 
a variable. These labels have no internal structure. 

represented poorly, if at all. 
Procedural Inadequacies: 

1) The interpretation process is essentially data- 
driven. 

2) The complete scene constraint graph has to be 
constructed before any model can constrain another. 

3) Local control of recognition is not possible. 
4) Alternative scene interpretations are not explicitly 

available to guide the program. 
Mulder [28] has designed and implemented a program 

that interprets line sketches of houses. This program has 
a multilevel cue/model structure. As a result, more real 
world scene domain constraints can be represented. The 
multilevel cue/model structure allows for a distinction be- 
tween edge types, surface orientations, surface interpre- 
tations, and objects. The perceptual cycle in this program 
is not closed. Model elaboration at one level provides the 
cues for the next level up. The program is an interesting 
illustration of how cue/model hierarchies can be imple- 
mented, but at the same time it continues to suffer from 
some of the Mapsee- 1 maladies, in particular, the absence 
of a structure for describing the scene models and the pos- 
sible relations between them. An altogether different ap- 
proach for representing models was required. The result 
was Mapsee-2. 

Iv .  MAPSEE-2 
Mapsee-2 explores schemata [3] as a remedy for the 

descriptive and procedural inadequacies mentioned above. 
Schemata and related representations [5], [ 1 11, [27], [34], 
[37], [38] have received considerable theoretical interest 
in artificial intelligence. Schema-based representations can 
be formalized. Havens [14] described a schema labeling 
theory in which a schema represents a class by specifying 
its membership as a small number of subclasses that sat- 
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isfy a set of constraints. The constraints are based on two 
orthogonal relationships in knowledge organization: com- 
position and specialization. Complex objects have inter- 
nal structure which can be represented as composition 
constraints among their parts. Likewise, specialization 
constraints segment classes into subclasses by type. The 
Mapsee-2 knowledge base is a partial implementation of 
this theory. 

Mapsee-2 is but one example of the use of schema- 
based representations in model-based vision. Other ex- 
amples are: Visions [ lo], [44], Acronym [7], Alven 1411, 
Sigma [26], Goldie [16], and systems designed by Levine 
[ 171 and Ballard et al. [ 11. 

Mapsee-2’s knowledge base is a collection of schema 
models. Each model, usually called a class represents a 
set of semantically related scene objects, either concrete 
physical objects or abstract configurations of other ob- 
jects. The class provides a generic description for each of 
its members by specifying the legitimate relationships of 
the class with the other schemata in the knowledge base. 

Each Mapsee-2 schema class has the following prop- 
erties: 

A unique class name which is globally known in the 
knowledge base. 

A static label set for the class. Each label in the label 
set provides a symbolic name for a particular role that the 
schema can play in a global scene interpretation. The la- 
bel set must be discrete, finite, and its labels known a 
priori for the class. 

A set of other schema classes from the knowledge 
base which constitute components and supercomponents 
for the class. 

A set of constraints defined over component classes. 
Each constraint is a k-ary relation over the label set of the 
class and the label sets of some of its components. The 
constraints restrict the role of a class as a function of the 
possible roles of its components. 

A set of procedures called methods. This property is 
optional. By means of a method a schema can assume 
local control of the search for an instance of a constraint 
among its component classes. Methods implement pro- 
cedural attachment [45]. 

Fig. 2 shows the properties of a geosystem, a generic 
interpretation for regions. A geosystem can be either a 
landmass, waterbody, lake, ocean, mainland, or island. 
Component constraints are represented by a set of tuples. 
The first element in the tuple is a component of geosys- 
tem, the second element is the label to which geosystem 
is constrained by this component. A geosystem with a 
coastline or lakeshore as component will take on different 
interpretations, depending on whether the coastline or 
lakeshore surrounds the geosystem (outer-shore con- 
straint), or forms a closed chain inside (inner-shore con- 
straint). No methods are shown for this schema class. 

A .  Composition 
Schema representations exploit composition to repre- 

sent complex objects and their configurations. Primitive 

N a m  gecsys1em 

Labelsrt ( geosyst-m, land-, waterbody, rsland. 

mainland. lake, ocean ) 

( road~systrm, wer~system. mountamrange, shore ] Components 

Fuper~componentr. { world ) 

Component conslrimls (( mountamrange landmass)( mountan-range mamland) 

(mountamrange island)(road-sysGem landmssr)(raad-system mainland) 

(road-system lsiand)(rwer~system land-)(rtver-system mainland) 

(river-system ~sland)) 

((shore geosystem)(coastlme walerhcdy)(coasllme lake) 

(roasthe  ocean)(lakeshore landmaas)(lakeeshore mainland) 

(lakeshore eland)) 

((shore geosyslem)(coasllme aland)(lskeshore lake)) 

lnnerwhor- constraints 

Outer shore constiamts 

Fig. 2 .  Properties of the schema class geosystem. 

image objects (chains and regions) depict low-level scene 
objects. Complex scene objects are represented as com- 
positions of simpler schemata. The resulting hiearchical 
structure forms a composition hierarchy. The recognition 
of a complex scene object is achieved by recursively 
recognizing its component parts so that the internal con- 
straints of its schema remain satisfied. Fig. 3 shows the 
Mapsee-2 composition hierarchy and the depiction rela- 
tions which form the link between image and scene ob- 
jects. Note, that a shore is always part of two different 
geosystems, the one it surrounds, and the one it is sur- 
rounded by. 

B. Specialization 
For any schema label set that has more than one label 

there is a strict hierarchical organization which is used by 
a hierarchical network consistency algorithm to be dis- 
cussed later. A label in such a hierarchy intensionally rep- 
resents the labels that descend from it. In Mapsee-2 two 
schema classes have nontrivial label hierarchies: geosys- 
tem and shore. Fig. 4 illustrates these hierarchies. Hence, 
the shore label implicitly represents the fact that the cur- 
rent interpretation is either a coastline or lakeshore. 

The motivation for a hierarchical label organization is 
to curb the size of the label set of each schema. For in- 
stance, the label geosystem can represent the complete set 
of labels that descend from it. Several well known vision 
systems such as Alven [41], Acronym [7], and Visions 
[lo], [44] have used composition and specialization hier- 
archies for similar reasons. In Mapsee-2 composition and 
specialization hierarchies are limited to the scene domain. 
A hierarchical organization of models can also be useful 
in the image domain, for example, solving problems of 
spatial scale [39]. Other researchers have used hierarchi- 
cal model organizations that cross the image/scene 
boundary, e.g., [2], [33]. 

C. Instantiation 
When a schema is used to represent a particular scene 

object which is known or hypothesized to exist in the 
scene, then the class is used to generate a schema in- 
stance. For example, Fig. 5 shows an instance of the class 
geosystem. The instance, named geosystem-2, represents 
the island part of the Gambier Island sketch (Fig. 6) .  This 
island is an enlargement of one of the islands in Howe 
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tutes the domain (shown in the brackets in Fig. 9), and 
the edges represent the binary composition constraints. 

0 region 0 chain - = composition 
_____-  - = depiction 

Fig. 3. Mapsee-2 composition hierarchy and depiction relations. 

gcosystcm A 
__c = speclnllzatlon 

Fig. 4. Mapsee-2 specialization hierarchies 

ClaSS geosystem 

Same- geos).stern-2 

Labcl set { island ) 

Soprr-components [ world-l ] 

Components { mountain-range-I. d m n - 1  ] 

Component constraints: {(mountaln-range-l ge05)5t1~1-I)] 

Outer-shore constraints. {(shore-l geosystcm~l)] 

Fig. 5. A geosystem instance 

Fig. 6 .  Gambier Island. 

Sound [Fig. l(b)]. Upon creation, a schema instance in- 
herits the attributes of its parent class. Like their parent 
classes, schema instances are embedded in a composition 
hierarchy as well, with depiction relations to the image 
primitives that depict them. Fig. 9 shows the network 
for the schema instances created for the Gambier Island 
sketch. This network constitutes the scene constraint 
graph for the particular image. The variables (nodes) are 
the schema instances, the label set of the instance consti- 

D. Hypothesis Trees 
Fig. 9 shows the final scene constraint graph (SCG).  

Each instance has one label only, and thus one interpre- 
tation. At the start of the interpretation process, however, 
the situation is quite different. Because of the ambiguity 
in many image cues, different schemata compete with each 
other in interpreting a particular primitive. Hence, instan- 
tiations of competing schemata have to be maintained as 
hypotheses. One has to be able to answer the question 
about competition between different hypotheses. Higher 
level schemata are faced with the problem that some of 
their instances are hypothetical and some are not. Each 
schema instance is therefore organized as a hypothesis 
tree, which is defined as follows. 

Each node in this tree represents the same schema in- 
stance under different constraints. The root node repre- 
sents the instance under its nonhypothetical constraints. 
Each of its descendants represents the instance under ad- 
ditional hypothetical constraints. The hypothesis tree is 
an explicit representation of the competition between dif- 
ferent components. Each path from the root to a leaf in 
the tree represents a set of incremental and compatible 
constraints on the instance. Every time a schema instance 
obtains a new component, a successor node is created in 
the tree for each node in the hypothesis tree which is not 
in competition with the new component. If the new com- 
ponent is nonhypothetical, then it is linked directly to the 
source node. Any hypothetical components that are com- 
peting with a nonhypothetical component are subse- 
quently removed from the tree. 

Examples of hypothesis trees for the Gambier Island 
sketch are shown in Figs. 7 and 8.  In all figures contain- 
ing scene constraint graphs arcs have been replaced by 
edges. Each edge hereby represents two arcs, one in each 
direction. The situation in Fig. 7 exists after chain-1 has 
been interpreted. Chain-] is a closed line segment inter- 
pretable as a shore only. This interpretation is ambiguous 
but not hypothetical. (That is, it must be a shoreline but 
the water could be inside or outside while the land is either 
outside or inside.) The instance shore-l is therefore con- 
strained at the root node only. At a higher level chain-1 
is represented by geosystem-1 and geosystem-2 represent- 
ing the outer and inner region respectively. In accordance 
with the Mapsee-2 composition hierarchy (Fig. 3) both 
geosystems are part of the world. Chain-2 is a mountain 
shaped chain. Such a feature allows for several hypothet- 
ical interpretations, two of which (mountain and road) 
are shown in Fig. 8. Hypothetical interpretations cannot 
be represented at the root node of an instance. Both road- 
1 and mountain-1 therefore create a new node (1-1 ) which 
represents the hypothetical constraint. These interpreta- 
tions are represented in a similar way at the next level up 
by a road-system and mountain-range instance. Both hy- 
pothetical interpretations are a component of the geosys- 
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0 regton-l 0 chain-1 0 chain-2 0 chaw-3 0 wgwn-? 
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_ _ _ _ _ _ _ _ _ -  = depiction 

Fig. 7 .  Gambier Island scene constraint graph after interpretation of 
chain- 1 .  

Fig. 9. Final scene constraint graph for Gambier Island 

I ,  1 ,  
6 _- - -______-___ J I 

I I 
I I 

I , , #  

I I I :  
I I I '  I L...!...-; I I I I 

0 region-l 0 chorn-I 0 chon-2  0 rhorn 3 0 r c q w v ?  

___ = composition 
- - - = hypothsis tree _ _ _ _ _ _ _ _ _  = depiction 

Fig. 8 .  Gambier Island scene constraint graph after interpretation of chain- 
1 and chain-2. 

tem which represents the inner-region. The two interpre- 
tations are incompatible. Geosystem-2 must therefore 
absorb these constraints in two different branches, be- 
cause every path from root to leaf must contain compati- 
ble constraints. 

The SCG at this point is an exact representation of com- 
patible interpretations. There are two global interpreta- 
tions represented as world-1-1 and world-1-2. One global 
interpretation contains a shore and a road, the other a shore 
and a mountain. 

The hypothesis trees collapse when chain-3 is inter- 
preted. The Mapsee-2 semantics state that two adjacent 
mountain shaped chains can be mountains only. This 
causes the mountain-1 constraint to become nonhypo- 
thetical. Accordingly the constraint moves up to the root 
node of the instance. The same happens at its super-com- 
ponents mountain-range-1 , geosystem-2, and world-1 . 

This structural change causes a disturbance in the integ- 
rity constraints of the trees with the result, that world-l- 
1 and, recursively, all of its components are removed. 
This leads to the final situation illustrated in Fig. 9. 

E. Hierarchical Arc Consistency 
Mapsee-2 differs from Mapsee-1 in that the domain of 

each variable in the SCG has a hierarchical organization. 
All labels are embedded in a specialization hierarchy (Fig. 
4). The label geosystem, for instance, now implicitly rep- 
resents the fact that any of its descendants (mainland, is- 
land, ocean, lake) could be a consistent label. AC-3 can- 
not handle such a situation. A new algorithm hierarchical 
arc consistency (HAC) was therefore designed. The dis- 
cussion of HAC provided here is very abbreviated and in- 
formal. For a formal extensive treatment see [23]. 

HAC and AC-3 are analogous except for one key dif- 
ference: the predicate P, ( k ,  m ) has been replaced by two 
new predicates Pand, ( k ,  m ) and Por, ( k ,  m ). Pand, ( k ,  
m )  on the labels k and m in D, and DJ is a hierarchical 
version of P,(k, m ) .  Pand,j(k, m )  is true, if all of k's 
descendants in the specialization hierarchy are consistent 
with at least one of m's descendants. If k is not consistent, 
then it is replaced by its descendants and the consistency 
test is repeated for the descendants. If k is inconsistent 
and has no descendants either, then it is removed alto- 
gether. 

Por, ( k ,  m ) ,  on the other hand, is true if at least one of 
k's descendants is consistent with at least one of m's des- 
cendants. The Por predicate serves to increase the effi- 
ciency of the algorithm, because it allows for the elimi- 
nation of subtrees of inconsistent labels without having to 
search through these subtrees. 

Yet, the time complexity of HAC is still 0 ( ea3).  Better 
behavior, however, can be expected because the hierar- 
chical domain organization causes the domain size of each 
variable to shrink. As well, if the label hierarchy forms a 
binary tree and if it is the case that the domain of each 
variable can always be covered by a single node of the 
tree, then HAC is O ( ( e  + 3n/2) log a ) ,  a remarkable 
improvement [23]. 
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An example of the operation of HAC can also be found 
in the Gambier Island example in Figs. 7-9. Upon crea- 
tion each schema instance inherits the label set of its par- 
ent class. Thus, in Fig. 7 shore-1 inherits the shore label 
(shown in parentheses), whereas both geosystem in- 
stances inherit the geosystem label. Very little can be con- 
cluded after interpreting chain-1 . As mentioned before, 
constraints are k-ary relations over the label set of a class 
and the label set of some subsets of its components. As 
one example, the constraints of a geosystem class with 
label geosystem were illustrated in Fig. 2. From the geo- 
system constraints one can infer that a geosystem with la- 
bel set geosystem and an inner or outer-shore with label 
shore is constrained to be a geosystem. This situation 
changes after considering chain-2. In Mapsee-2, a geo- 
system with label set geosystem and a road-system, or 
mountain-range as a component must be a landmass. 
However, if the same geosystem instance (now with label 
set landmass) is also surrounded by a shore, then it must 
be an island. For this reason geosystem-2-1 and geosys- 
tem-2-2 have island as label after interpreting chain-2. 
Once all incorrect hypotheses have been rejected during 
the interpretation of chain-3, geosystem-2 also receives 
the island label (Fig. 9). For geosystems surrounding a 
shore the following constraints hold. If the shore is a 
coastline then the geosystem becomes a waterbody. If the 
shore is a lakeshore then the geosystem is constrained to 
be a landmass. On the other hand, a shore whose inner- 
geosystem is a landmass, or island, or whose outer-geo- 
system is a waterbody, lake, or ocean, is constrained to 
be a coastline. If the inner-geosystem is a waterbody or 
lake, or the outer-geosystem a landmass, mainland, or is- 
land, then the shore is constrained to be a lakeshore. 

F. Constructing a Scene Constraint Graph 
HAC propagates constraints over the scene constraint 

graph, but the algorithm does not construct this graph. 
The graph is constructed by the processes of completion 
and assembly, which operate according to the control flow 
diagram in Fig. 10. This control cycle is entered after the 
image has been completely segmented. 

As is the case in Mapsee- 1, Mapsee-2 uses primitive 
cues. These cues are simple shape features of the input 
chains such as free-ends, acute angles, closed chains and 
blobs. These features are used to create instances of 
schema classes which are leaves of the composition hi- 
erarchy (Fig. 3). Blobs, for instance, form a unique cue 
for a town, whereas a mountain-shaped chain can be either 
a road or mountain (Fig. 8). 

The composition hierarchy represents mandatory rela- 
tionships between schemata. Thus, any instance of a 
mountain schema must also be a component of a moun- 
tain-range instance, every river instance must be part of a 
river-system instance and so forth. It is the task of the 
completion process to ensure that these constraints are sat- 
isfied, thereby constructing a SCG. If the mountain in- 
stance, for example, has not yet been completed to a 

- Complrtion - HAC - Assembly HAC A 

I succeSS 

Fig. 10. Control cycle for Mapsee-2 and Mapsee-3. 

mountain-range instance, then the completion process will 
search for a suitable one. If one or more instances already 
exist, then the mountain will be completed to the instance 
that contains a mountain with which it forms a T-junction. 
If no such a mountain-range can be found, then the com- 
pletion process will create a new mountain-range instance 
to which the mountain is connected. 

Although completion searches for a suitable super-com- 
ponent, it will not actually establish links between the 
completing component and a potential supercomponent. 
First, a label compatibility test is required between the 
label of the component and the labels of the supercom- 
ponent. HAC is used here. It will test label compatibility 
and, if necessary, specialize the labels of the component. 
Once label compatibility is established, then the instances 
are linked by means of a component and part-of link. This 
is done by the assembly process. 

If two schema instances are consistent over a part-of 
relation, then they are also consistent over the (reverse) 
composition relation. During the first pass HAC tests con- 
sistency over the part-of relation only. If this test fails, 
then Mapsee-2 halts without affecting the labels of the 
supercomponents. The supercomponent’s labels are ad- 
justed during the second invocation of HAC which takes 
place after assembly (Fig. 10). After this, the interpreter 
moves to another instance and starts completion again. 

The interpretation process is cyclic. Each cycle consists 
of the completion of a single schema instance to an in- 
stance of its superclass in the composition hierarchy. Es- 
sentially we are using the composition hierarchy as a cue/ 
model hierarchy. 

Another effect of the cycle is an incremental construc- 
tion of the SCG. Every time a new instance (node) is 
added to the graph, its labels are made consistent with the 
existing structure. In this way we allow modular interac- 
tion between the schema-based construction process and 
the HAC-based constraint propagation. Construction 
composes a scene interpretation while propagation spe- 
cializes the interpretation. 

Mapsee-2 operates in both a data-driven and model- 
driven manner. It takes one chain at a time and completes 
its interpretation all the way up to the world level (Fig. 
3) before starting on the next chain. Once more, taking 
Fig. 6 as an example, we first interpret chain-1 which is 
ambiguously interpreted as a shore. Because it is the only 
interpretation possible, it is nonhypothetical. The shore 
becomes a component of two geosystems (depicted by re- 
gions 1 and 2), both of which are part-of the world. Next, 
chain-2 is pursued, causing the creation of two hypothet- 
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ical interpretations (Fig. 8). These interpretations remain 
hypothetical until chain-3 is interpreted, at which point 
the road interpretation is eliminated, leaving only one 
interpretation for each primitive (Fig. 9). 

The model-driven aspect of the program resides in a 
schema’s methods. These schema owned procedures are 
invoked during completion. Each method searches for 
particular constraints among its components. The moun- 
tain-range schema, for instance, can investigate whether 
a completing (hypothetical) mountain instance makes a 
Tee junction with another previously found mountain. As 
mentioned before, if this method succeeds then the moun- 
tain interpretation becomes nonhypothetical and all hy- 
pothesis trees involved are collapsed (Fig. 9). 

G. Discussion 
Mapsee-2 has successfully interpreted eleven sketch 

maps. Seven out of eleven examples were traced over to- 
pographic maps. Mapsee-2 overcomes some of the inad- 
equacies of Mapsee- 1. 

Descriptive Adequacy: 
1) The cue/model structure has many levels. The 

composition hierarchy serves as cue/model hierarchy. In 
this way we overcome the problem of relying on low level 
image features to invoke high-level object models directly 
as discussed in [2]. 

2) Scene interpretations are represented as schema 
instances with internal structure. For propagation pur- 
poses, on the other hand, each instance can still be treated 
as a label. 

3) Real world scene domain constraints are im- 
proved. Scene constraints are distributed over schemata 
represented at multiple levels of composition and special- 
ization. 

Procedural Adequacy: 
1) The interpretation process combines a data-driven 

with a model-driven approach. 
2) The SCG is constructed incrementally. Upon each 

addition of a new instance the graph is made consistent. 
3) The schema’s methods provide local control for 

guiding the recognition process. 
4) Alternative scene interpretations are maintained 

by means of hypothesis trees. 
Despite these improvements, Mapsee-2 has introduced 

new forms of descriptive and procedural inadequacy. 
1) Scene objects are represented in a nonuniform way. 

Scene objects embedded in a composition hierarchy are 
all represented as schemata; however, most objects in a 
specialization hierarchy are not. Only the objects at the 
roots of the specialization hierarchy are schemata. All 
other nodes occur as labels in the schema at the root of 
the hierarchy. As one result HAC had to be implemented 
in a procedural form, because the constraints of labels in 
the specialization hierarchy are not explicitly represented 
in the composition hierarchy. What is desirable is to rep- 
resent all scene objects as schemata. 

2) Spatial relationships are not represented in the SCG. 

Methods search for spatial relations, and affect the com- 
pletion process. The particular composition structure rep- 
resented in the SCG is the result of the discovery of spa- 
tial relations. 

3) Although hypothesis trees are a good way of repre- 
senting hypothetical interpretations and competitiveness, 
their size can grow explosively. In an underconstrained 
situation, the addition of a single hypothetical component 
to the hypothesis tree of a supercomponent can double the 
tree size of the latter. Thus, the number of nodes in the 
SCG is exponential in the number of primitives in the 
worst case. What is needed is a representation by means 
of which we can control the explosive effect of hypothet- 
ical interpretations. 

These problems can be remedied; some solutions are 
provided in the Mapsee-3 system. 

v. MAPSEE-3 
Mapsee-3, like Mapsee-2, is a schema-based program, 

but there are two essential differences between them. 
1) All scene objects are represented as schemata in 

Mapsee-3. In addition, all relations between scene objects 
are represented as schemata. 

2) Mapsee-3 uses discrimination graphs instead of hy- 
pothesis trees. In combination with HAC discrimination 
graphs allow us to represent hypotheses as alternate labels 
in the domain of a variable, thereby eliminating the need 
for a separate representation for hypotheses. 

A .  Uniform Representation of Objects and Relations 
All scene objects and relations in Mapsee-3 are repre- 

sented as schemata. This allows us to use the internal 
structure of schemata to trace the composition hierarchy. 
Objects and relations are also treated as labels, when we 
are propagating constraints. Apart from providing uni- 
formity of representation, the knowledge base has a more 
declarative structure compared to that of Mapsee-2. Sche- 
mata at all levels of specialization are now embedded in 
a composition hierarchy. Fig. 11 shows the Mapsee-3 
composition hierarchy. We will call this the “natural” 
composition hierarchy for reasons to be clarified later. 
Fig. 11 does not show any relation schemata. 

As in Mapsee-2, spatial relations are created by a sche- 
ma’s methods. The explicit presence of spatial relations 
in both the composition hierarchy of schema classes and 
the SCG provides more descriptive adequacy. Addition- 
ally, spatial relations have positive effects for implemen- 
tation of HAC. In Mapsee-2, the absence of schemata for 
objects in the specialization hierarchy and schemata for 
spatial relations forced a procedural implementation. With 
all objects and relations explicitly represented in the SCG, 
this is no longer necessary. The Mapsee-3 implementa- 
tion is an exact implementation of the HAC algorithm. 

B. Discrimination Graphs 
The problem of the potential explosion of hypothetical 

interpretations has largely been ignored in computational 
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Fig. 1 1 .  Mapsee-3 composition hierarchy 

vision. Yet, the problem is a serious one, even in the do- 
main of sketch maps. Specialization hierarchies can 
somewhat alleviate the problem, because they allow us to 
replace some elementary labels in the domain of a varia- 
ble by a smaller number of abstract labels. In Mapsee-2, 
for instance, a region can be either a lake, ocean, island, 
or mainland (Fig. 4). The presence of the specialization 
hierarchy allows us to replace these labels by one abstract 
label: geosystem. Although we can somewhat reduce the 
label set in this manner it does not really solve the prob- 
lem. In many “real world” situations there is no special- 
ization hierarchy that can cover the complete label set. 
For instance, a set of green pixels could be farmland, a 
golf course, a roof, a forest, or even astroturf in a sta- 
dium. There is no natural specialization hierarchy to cover 
these labels. Discrimination graphs offer a solution. 

Informally, discrimination graphs (DG’s) can be under- 
stood as an extension of specialization hierarchies. Fig. 
12 shows an example. In Mapsee-3, a closed line segment 
depicts a road, coastline, or lakeshore. Coastline and lake- 
shore can be naturally combined to be a shore, but that is 
where the natural abstraction capabilities stop. By means 
of DG’s we extend the abstraction capability to represent 
closed line segments by one label only: roadlshore. If a 
line segment is not closed, it can, among other things, be 
a road or river. A second extension from road and river 
creates the roadlriver label. 

More formally, the idea of DG’s is based on the as- 
sumption that we can classify image features in one or 
more dimensions (e.g., shape, texture) the result of which 
is a finite number of categories for each dimension. As 
well, we assume that there are only a finite number of 
scene objects whose image appearance falls in a particular 
category. DG’s are based on a categorization of object 
classes that belong to a particular image feature category. 
A DG is a directed acyclic graph. A root node of the graph 
is an abstract object class that intensionally represents all 

= disrrinunatmn 

Fig. 12. An example of a discrimination graph. 

the elementary object classes that belong to a particular 
image feature category. The leaves of the graph are ele- 
mentary object classes. Intermediate nodes represent sub- 
sets of the set represented by their ancestors. Elementary 
object classes can belong to more than one image feature 
category, as the road object in Fig. 12 illustrates. A DG 
can therefore become a lattice with “subset” as partial 
ordering relation. 

DG’s have not been employed in other model-based vi- 
sion systems. Alven [41] uses similarity links, but these 
links are used to replace rejected hypotheses rather’ than 
to prevent hypotheses from occurring as is the case with 
DG’s. 

All chains in Mapsee-3 are classified with respect to 
shape. Table I illustrates the shape categories used and 
the interpretations possible. A chain which closes upon 
itself is visibly closed. It is potentially closed when it runs 
off the frame at both ends. A chain which does not fit any 
of the other shape categories is classified as residual. 
These shape categories are mutually exclusive. 

Mapsee-3 uses a composition hierarchy and different 
DG’s. Each scene object is represented at five different 
levels of composition (Fig. 11). The DG’s are constructed 
orthogonally to the composition hierarchy. Fig. 13 shows 
the DG at the composition leaf level. At this level there 
is a unique (abstract) scene object for each shape cate- 
gory. For instance, the object roadlshore intensionally 
represents all the objects depicted by the visible closure 
category. DG’s such as the one shown in Fig. 13 can be 
automatically constructed [29], [32]. 

With a unique classification for each chain we can rep- 
resent this chain by means of the abstract object that 
uniquely represents this classification. Thus, at the start 
of the interpretation process each visibly closed chain will 
be interpreted as a roadlshore, an interpretation which is 
ambiguous, but not hypothetical. Like all of its natural 
descendants, abstract objects such as roadlshore are also 
embedded in an abstract composition hierarchy. Thus each 
abstract object is also represented at each level of com- 
position. At each level of composition a DG exists that 
connects the abstract object with its natural descendants. 
Abstract composition hierarchies can also be automati- 
cally constructed [29]. 

Both natural and abstract scene objects are represented 
as schemata. In the Mapsee-3 SCG, each variable contin- 
ues to represent a schema instance. The current interpre- 
tation of the instance is represented by means of one or 
more abstract labels in the variable’s domain. The edges 
in the SCG now represent composition or spatial con- 
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Road Road 
River Coastline 

TABLE I 
SHAPE CLASSIFICATION FOR LINE SEGMENTS 

Coastline 
Lakeahore 

Lakeahore 
Bridgeside 

Mountain I Coastline I Lakeshore 

4 
Mountain 

Road 
River 

8 
Road 
River 

Coastline 
Lakeshore 

1 = potential closure and mountain shape 
2 = potential closure and bridgeside shape 
3 = visible closure 
4 = mountain shape 
5 = bridge-side shape 
6 = blob shape 
7 = residual 
8 = potential closure 

bridge-side 0 

0 town 0 road 0 coastline 0 mountain 

- = discrimination 

Fig. 13. Discrimination graph at the composition leaf level. 

straints. Returning to the roadlshore example, each closed 
chain is depicted by an instance of the roadlshore schema. 
Upon instantiation this instance obtains its own name as 
label. At any time this label can be replaced by one of its 
descendants in the DG. For instance, once the region sur- 
rounded by the chain is constrained to be a waterbody, 
then the roadlshore label must be refined to be a lake- 
shore. This is the case because a road must have land on 
both sides and a coastline must have water on the outside. 

C. Constructing a Scene Constraint Graph 
DG's eliminate the need for hypothesis trees. Compet- 

ing interpretations are now represented by one or more 
labels in the domain of a single variable. Other than that 
the interpretation process in Mapsee-3 is similar to that of 
Mapsee-2. The control cycle (Fig. 10) is the same. Its 
implementation, however, is simpler, more modular, and 
declarative. The composition process, for one thing, no 
longer needs to deal with hypothesis trees. This results in 
a much simpler SCG. For example, Fig. 14 shows the 

I I I I 
I I I I 

0 region-1 0 ehmn-1 0 chorn-2 0 chow-9 0 region-2 

~ = composition ----_----- = depiction 

Fig. 14. Mapsee-3 scene constraint graph after interpretation of chain-I 
and chain-2. 

Mapsee-3 SCG for the same situation as the Mapsee-2 
SCG for the Gambier island example (Fig. 8).  

Increasing modularity is achieved because completion 
and HAC each control their own dimension. Completion 
controls the incremental construction of the SCG. HAC, 
on the other hand, controls the propagation of labels in 
the domain of each variable. Thus, elimination of com- 
peting hypotheses has now become a pure constraint sat- 
isfaction process. The replacement and elimination of 
competing labels rarely affect the structure of the SCG. 
In Mapsee-2 the structure of the SCG is always affected 
by changes in structure of hypothesis trees as a result of 
label propagation. 

The HAC implementation is also more declarative than 
it could ever be in Mapsee-2. Most constraints are now 
explicitly represented in the combined abstract and natu- 
ral composition hierarchy. 

D. Discussion 
Mapsee-3 solves the problem of explosive growth of 

the hypothesis trees. Each chain is represented by one 
schema instance (variable) at the composition leaf level. 
The total number of variables created for each chain in 
the SCG has a fixed upper limit which largely depends on 
the local structure of the composition hierarchy. For ex- 
ample, a blob-shaped chain becomes a town instance at 
the composition leaf level. Town has a fixed number of 
super-components in its composition hierarchy (Fig. 1 1). 
The number of variables representing objects cannot ex- 
ceed that limit. In addition, each scene object can be con- 
strained by other objects through relations also repre- 
sented in the SCG. However, two primitives in the image 
are generally tied together by at most one spatial relation. 
The number of nodes in the SCG is therefore linear in the 
number of image primitives [29]. 

Theoretically, the number of predicate tests in HAC is 
of O ( e a 3 )  in the worst case [23]. Experiments with Map- 
see-3 show results better than that [29], [31]. DG's tend 
to keep the domain size ( a )  of each variable very small. 
For this reason we can take a as a constant. Thus, HAC 
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becomes linear in the number of edges. For planar graphs, 
HAC is also linear in the number of nodes in the graph 
[22]. For most cases the SCG in Mapsee-3 turns out to be 
planar. With an established linear relationship between 
image primitives and nodes in the SCG, it follows that 
there is also a linear (or, at worst quadratic) relationship 
between the number of predicate tests in HAC and the 
number of image primitives. This result, however, is spe- 
cific to the sketch map domain and may not generalize to 
other domains. 

The model which underlies the Mapsee-3 design inter- 
prets image primitives by means of schema classes whose 
interpretation is at first extremely generic and relatively 
domain-independent. As more and more constraints are 
discovered in the image, this interpretation becomes more 
specific and domain-dependent. Because of this continu- 
ing process of interpretation refinement along a discrimi- 
nation graph, this approach has been referred to as dis- 
crimination vision [291, [3 1 I. 

Mapsee-3 solves the particular inadequacies of Map- 
see-2 identified earlier: 

1) All scene objects are represented as schemata. 
2) Spatial relations are also represented as schemata 

and accordingly appear as variables in the SCG. 
3) The number of nodes in the SCG is linear in the 

number of image primitives. In Mapsee-2 this relation- 
ship was exponential. 

The representation of knowledge continues to be a key 
to progress in computational vision (and artificial intelli- 
gence, in general). A schema-based knowledge represen- 
tation allows us to structure the knowledge base along dif- 
ferent dimensions such as composition and specialization. 
A general-purpose vision system needs the capability to 
describe an image at different levels of details and speci- 
ficity. Composition and specialization hierarchies provide 
this capability. In addition, a schema-based knowledge 
representation allows us to treat objects as an atomic ent- 
ity. This is necessary for constraint satisfaction purposes. 

An expansion of specialization hierarchies into discrim- 
ination graphs, combined with a utilization of hierarchical 
arc consistency provides an approach to the representation 
and identification of visual knowledge which is modular, 
efficient, and effective. Modularity exists in both repre- 
sentation and control. Discrimination graphs can be con- 
structed orthogonally to the composition hierarchy. The 
completion process operates in the composition dimen- 
sion only, whereas hierarchical arc consistency operates 
in the discrimination dimension. Similarly, completion 
and assembly construct the scene constraint graph, 
whereas hierarchical arc consistency propagates con- 
straints over this graph. 

This approach is also efficient. The relationship be- 
tween the number of image primitives and the number of 
nodes in the scene constraint graph is linear. HAC is cubic 
in the domain size for the worst case. However, experi- 
ments with the Mapsee-3 program have shown much bet- 
ter results than predicted by the worst case analysis. 

Discrimination graphs in combination with hierarchical 
arc consistency provide a new approach to image inter- 
pretation. The discrimination vision approach embodies 
an interpretation process in which the image is interpreted 
using local to global strategy, whereas image primitives 
depict interpretations which are at first abstract and un- 
specific. As interpretation progresses, these interpreta- 
tions are gradually refined until they are concrete and do- 
main-specific. A general-purpose vision system must be 
capable of transforming an image description in terms of 
significant features into a domain-specific description cor- 
rectly, quickly, and flexibly. The combination of discrim- 
ination graphs with hierarchical arc consistency provides 
such a capability. 

Discrimination graphs also offer some promise for 
bridging the gap between early vision and model-based 
vision. In the root nodes, discrimination graphs can rep- 
resent knowledge that is relatively domain-independent 
and valid for a wide variety of scenes. At the leaves, on 
the other hand, the graphs represent knowledge that is 
highly domain-dependent . 

By no means do the previous comments imply a level 
of descriptive and procedural adequacy for Mapsee-3 suf- 
ficient for a general-purpose vision system. The Mapsee 
project has focussed on the model-based aspect of visual 
knowledge representation, and has paid little attention to 
early vision. The line segments, for instance, are pro- 
vided in the input and need not be searched for, as would 
be the case if the input were a raster image. Thus, the 
Mapsee project has not seriously addressed the handling 
of ambiguity in the extraction of features and primitives 
and its effect on the interpretation process. The problem 
of finding the most likely interpretation in the light of un- 
certain features remains an outstanding issue. Several 
techniques for decision making in the light of uncertain 
information have been developed in the recent past. 
Among these are relaxation labeling processes [ 151, and 
the Dempster-Shafer formalism [36]. Recent work in 
neural nets [35] has also indicated some promise towards 
the solution of this problem. Nevertheless, the success in 
integrating a schema-based knowledge representation with 
constraint satisfaction techniques has indicated its utility 
and the desirability of further explorations of this method. 

VI. CONCLUSION 

This paper has explored the utility of integrating a 
schema-based representation for visual knowledge with 
constraint satisfaction techniques. This integration has 
been studied in a progression of three sketch map inter- 
pretation programs. These programs have been evaluated 
by means of the criteria of descriptive and procedural ad- 
equacy. The evaluation indicates that a schema-based rep- 
resentation in combination with a hierarchical arc con- 
sistency algorithm constitutes a modular, efficient, and 
effective scheme for representing visual knowledge. 
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