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Abstract 

Soccer meets the requirements of the Situated Agent 
approach and as a task domain is suflciently rich to  
support research integrating many branches of robotics 
and AI. A robot is an integrated system, with a con- 
troller embedded in its plant. A robotic system is the 
coupling of a robot to its environment. Robotic systems 
are, in general, hybrid dynamic systems, consisting 
of continuous, discrete and event-driven components. 
Constraint Nets provide a semantic model for  model- 
ing hybrid dynamic systems. Controllers are embedded 
constraint solvers that solve constraints in real-time. 
A controller for  our new softbot soccer team, UBC 
Dynamo98, has been modeled in Constraint Nets, and 
implemented in Java, using the Java Beans architec- 
ture. The paper demonstrates that the formal Con- 
straint Net approach is a practical tool for designing 
and implementing controllers for  robots in multi-agent 
real-time environments. 

1 Background and Introduction 

The Good Old Fashioned Artificial Intelligence and 
Robotics (GOFAIR) 131 research paradigm has shaped 
the area of intelligent robotics since the time of the 
robot Shakey. Some of the typical fundamental as- 
sumptions made about the world were that there is 
only one agent, that the environment is static unless 
the agent changes it, that actions are discrete and are 
carried out sequentially and that the world the robot 
inhabits can be accurately and exhaustively modeled 
by the robot. These assumptions proved to be overly 
restrictive and ultimately sterile. In the usual dy- 
namic of the scientific dialectic, a new movement has 
emerged as a synthesis of GOFAIR and “Nouvelle AI”: 
the Situated Agent approach. A situated agent is 

a real physical system grounded and embedded in a 
real world, here and now, acting and reacting in real- 
time. Mackworth [3] proposed that playing soccer be a 
paradigmatic task domain since it breaks with nearly 
all of the restrictive assumptions on which GOFAIR 
is based and meets the requirements of the Situated 
Agent approach. The soccer domain has the following 
characteristics: 

1. Neutral, friendly, and hostile agents 

2. Inter-agent cooperation and communication 

3. Real-time interaction 

4. Dynamic environment 

5. Real and partially unpredictable world 

6. Objective performance criteria 

7. Repeatable experiments 

Soccer as a task domain is sufficiently rich to s u p  
port research integrating many branches of robotics 
and AI 141. 

To satisfy the need for a common environment, the 
Soccer Server was developed by Noda Itsuki [l] to 
make it possible to compare various algorithms for 
multi-agent systems. Because the physical abilities 
of the players are all identical in the server, individ- 
ual and team strategies are the focus of comparison. 
The Soccer Server is used by many researchers and has 
been chosen as the official simulator for the RoboCup 
Simulation League [2]. 

The Constraint Net framework (CN) is a formal 
model for robotic systems and behaviours [7]. CN 
provides a theoretical foundation for systems design 
and analysis. CN captures the most general struc- 
ture of dynamic systems so that systems with discrete 
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and continuous time, discrete and continuous vari- 
ables, and asynchronous as well as synchronous event 
structures can be modeled in a unitary framework [5]. 
A controller for our new softbot soccer team, UBC 
Dynamo98, has been developed using CN. 

The rest of the paper describes CN and how we use 
it to model and build the controller for our soccer- 
playing softbot UBC Dynamo98. Section 2 introduces 
Constraint Nets and the CN architecture of robotic 
systems. Section 3 introduces the CN model of the 
controller for our soccer-playing softbot. Section 4 
discusses constraint-based control and shows how the 
controller satisfies the constraints in the soccer do- 
main. Section 5 concludes the paper. 

CONTROUER nmmucNREs 

2 Modeling in Constraint Nets 

A robot is an integrated system, with a controller 
embedded in its plant. A robot controller (or control 
system) is a subsystem of a robot, designed to reg- 
ulate its behavior to meet certain requirements. A 
robotic system is the coupling of a robot to its envi- 
ronment. Robotic systems are, in general, hybrid dy- 
namic systems, consisting of continuous, discrete and 
event-driven components. The dynamic relationship 
of a robot and its environment is called the behavior 
of the robotic system. 

Constraint Nets (CN), a semantic model for hybrid 
dynamic systems, can be used to develop a robotic sys- 
tem, analyze its behavior and understand its underly- 
ing physics. Using this model, we can characterize the 
components of a system and derive the behavior of the 
overall system. CN is an abstraction and generaliza- 
tion of dataflow networks. Any (causal) system with 
discrete/continuous time, discrete/continuous (state) 
variables, and asynchronous/synchronous event struc- 
tures can be modeled. Furthermore, a system can 
be modeled hierarchically using aggregation operators; 
the dynamics of the environment as well as the dy- 
namics of the plant and the controller can be modeled 
individually and then integrated [5]. 

A constraint net consists of a finite set of loca- 
tions, a finite set of transductions and a finite set 
of connections. Formally, a constmint net is a triple 
CN = (Lc ,  Td, Cn) ,  where Lc is a finite set of loca- 
tions, Td is a finite set of labels of tmnsductions, each 
with an output port and a set of input ports, C n  is a 
set of connections between locations. A location can 
be regarded as a wire, a channel, a variable, or a mem- 
ory cell. Each transduction is a causal mapping from 
inputs to outputs over time, operating according to a 
certain reference time or activated by external events. 

Figure 1: Abstraction hierarchy 

Semantically, a constraint net represents a set of 
equations, with locations as variables and transduc- 
tions as functions. The semantics of the constraint 
net, with each location denoting a trace, is the least 
solution of the set of equations. For trace and some 
other basic concepts of dynamic systems, the reader is 
referred to [SI. 

Given C N ,  a constraint net model of a dynamic 
system, the abstract behavior of the system is the 
semantics of C N ,  denoted [CN] ,  i.e., the set of in- 
put/output traces satisfying the model. 

A complex system is generally composed of multiple 
components. A module is a constraint net with a set 
of locations as its interface. A constraint net can be 
composed hierarchically using modular and aggrega- 
tion operators on modules. The semantics of a system 
can be obtained hierarchically from the semantics of 
its subsystems and their connections. 

A constraint net is depicted by a bipartite graph 
where locations are depicted by circles, transductions 
by boxes and connections by arcs. A module is de- 
picted by a box with rounded corners. 

A control system is modeled as a module that may 
be further decomposed into a hierarchy of interactive 
modules (Fig. 1). The higher levels are typically com- 
posed of event-driven transductions and the lower lev- 
els are typically analog control components. The bot- 
tom level sends control signals to various effectors, and 
at the same time, senses the state of effectors. Con- 
trol signals flow down and the sensing signals flow 
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Figure 2: A robotic system 

up. Sensing signals from the environment are dis- 
tributed over levels. Each level is a black box that 
represents the causal relationship between the inputs 
and the outputs. The inputs consist of the control 
signals from the higher level, the sensing signals from 
the environment and the current states from the lower 
level. The outputs consist of the control signals to the 
lower level and the current states to the higher level. 
Usually, the bottom level is implemented by analog 
circuits that function with continuous dynamics and 
the higher levels are realized by distributed computing 
networks. 

Furthermore, the environment of the robot can be 
modeled as a module as well. A robotic system can be 
modeled as an integration of a plant, a controller and 
an environment (Fig. 2).  A plant is a set of entities 
which must be controlled to achieve certain require- 
ments, for example, a car with throttle and steering. 
A controller is a set of sensors and actuators, which, 
together with softwarelhardware computational sys- 
tems, (partially) senses the states of the plant ( X )  
and the environment ( Y ) ,  and computes the desired 
control inputs ( U )  to actuate the plant. An environ- 
ment is a set of entities beyond the (direct) control 
of the controller, with which the plant may interact. 
For example, obstacles to be avoided and objects to 
be reached can be considered as the environment of a 
robotic system. 

In most cases, desired goals, safety requirements 
and physical restrictions of a robotic system can be 
specified by a set of constraints on variables Uu X U Y .  
The controller is then synthesized to regulate the sys- 
tem to satisfy the set of constraints. The semantics (or 
behavior) of the system is the solution of the following 
equations: 

X = P L A N T ( U , Y ) ,  (1) 

I ENVIRONMENT ] 
i SOCCERSERVER 

Figure 3: The soccer-playing softbot system 

U = C O N T R O L L E R ( X , Y ) ,  (2) 
Y = E N V I R O N M E N T ( X ) .  (3) 

Note that P L A N T ,  CONTROLLER 
and E N V I R O N M E N T  are transductions mapping 
input traces to output traces (not simple functions), 
and the solution gives X ,  Y and U as tuples of traces 
(not values), 

3 The CN Architecture of the Con- 
troller for a Soccer-playing Softbot 

The soccer-playing softbot system is modeled as 
an integration of the soccer server and the controller 
(Fig. 3). The soccer server provides 22 soccer-playing 
softbots’ plants and the ball. Each softbot can be 
controlled by setting its throttle and steering. When 
the softbot is near the ball (within 2 meters), it can 
use the kick command to control the ball’s movement. 
For the controller for one of the soccer-playing soft- 
bots, the rest of the players on the field and the ball 
are considered as its environment. The sensor of the 
controller determines the state of the plant (position 
and direction) by inference from a set of landmarks 
it ‘sees’. The rest of the controller computes the de- 
sired control inputs (throttle and steering) and sends 
them to the soccer server to actuate the plant to move 
around on the field or kick or dribble the ball. 

For the soccer-playing softbot, we have designed 
a three-level controller. The lowest level is the Ef- 
fector&Sensor. It receives ASCII sensor information 
from the soccer server then translates it into the World 
model. It also passes commands from the upper level 
down to the soccer server. The middle level is the Ex- 
ecutor. It tries to translate the action (goal) which 
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Figure 4: The soccer-playing controller hierarchy 

comes from the upper level into a sequence of com- 
mands and sends them to the lowest level. The Ex- 
ecutor also evaluates the situation and sends it to the 
top layer (Planner). The highest level is the Planner. 
It decides which action (goal) to take based on the cur- 
rent situation and it may also consider the next action 
assuming the current action will be correctly finished 
on schedule. 

The controller is composed of four CN modules. 
The Effector module combines with the Sensor mod- 
ule to form the lowest level Effector&Sensor. The Ex- 
ecutor module forms the middle level and the Planner 
module forms the highest level (Fig. 4). 

The CN controller is written in Java because it 
is object-oriented, provides features like easy thread 
programming and an effective event mechanism. The 
Java Beans component architecture is used here to im- 
plement the CN modules. 

Events are one of the core features of the Java Beans 
architecture. Conceptually, events are a mechanism 
for propagating state notifications between a source 
object and one or more target listener objects. Under 
the new AWT event model, an event listener object 
can be registered with an event source. When the 
event source detects that something interesting has 
happened it calls an appropriate method in the event 

listener object. 
CN model is a data-flow model; each CN module 

can be run concurrently on different processors to im- 
prove the speed of the controller. Since these modules 
are event-driven and fixed,sample-time-driven, they 
are best implemented as Jatva threads to improve effi- 
ciency on a single CPU too. If no event arrives, they 
go to sleep so the CPU can ideal with other softbots. In 
such a multi-threaded environment where several dif- 
ferent threads may be simultaneously delivering events 
and/or calling methods and/or processing event ob- 
jects and/or setting properties, special considerations 
are needed to make sure these beans properly coordi- 
nate their behaviour, using waitlnotify and synchre 
nization mechanisms. 

The Sensor module wakles up when new information 
arrives. It then processes the ASCII information from 
soccer server, updates the world model, and sends an 
event to the Executor. The Sensor goes to sleep when 
there is no information waiting on its socket. 

The Executor module receives the event from the 
Sensor, then it processes tihe world model and updates 
situation states. These silaation states tell the Plan- 
ner if it can kick the ball, if the ball is in its sight, if it 
is the nearest player to the ball, if there are obstacles 
on its way, the action from the Planner has finished 
or not, and so on. Any change of situation creates an 
event and triggers the higher level Planner module. 
This part of the Executor runs in the same thread as 
the Sensor module. 

The main part of the Executor executes actions 
passed down from the F’lanner. It wakes up when 
it receives an action event from the Planner mod- 
ule. It produces a seqpence of commands which 
are supposed to achieve goals (actions) when they 
are performed. Commands such as kick, dash, and 
turn are sent to the Effector’s Movement-command 
buffer. Other commandis are sent to the Effector’s 
Sensing-command buffers: the Say-message buffer, 
the Change-view buffer, and the Sense-body buffer. 
The Executor goes to sleep when there is no action 
waiting for its processing. 

The Planner module wakes up when triggered by 
a situation-changed event from the Executor. It then 
produces actions and pushes them into Executor’s ac- 
tion buffer and sends an event to trigger the Executor 
to execute actions. Then it goes to sleep until a new 
event arrives. 

The Effector module is a fixed-sample-time-driven 
module. Every looms, it gets one command from each 
non-empty buffer and sends them to the soccer server. 

This is a hybrid control system because it has both 
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event-driven and fixed-sample-time-driven modules. 

4 Constraint-Based Control for 
Soccer-playing Softbot 

Constraints are considered to be relations on a set 
of state variables; the solution set of the constraints 
consists of the state variable tuples that satisfy all 
the constraints. The behavior of a dynamic system is 
constraint-based if the system is asymptotically sta- 
ble at  the solution set of the given constraints, i.e., 
whenever the system diverges because of some distur- 
bance, it will eventually return to the set satisfying 
the constraints. Most robotic systems are constraint- 
based, where the constraints may include physical lim- 
itations, environmental restrictions, and safety and 
goal requirements. Most learning and adaptive dy- 
namic systems exhibit some forms of constraint-based 
behaviors as well [6]. 

A controller is an embedded constmint solver if the 
controller, together with the plant and the environ- 
ment, satisfies the given constraint-based specifica- 
tion. 

In the framework for control synthesis, constraints 
are specified at different levels on different domains, 
with the higher levels more abstract and the lower lev- 
els more plant-dependent. A control system can also 
be synthesized as a hierarchy of interactive embedded 
constraint solvers. Each abstraction level solves con- 
straints on its state space and produces the input to 
the lower level. Typically the higher levels are com- 
posed of digital/symbolic event-driven control derived 
from discrete constraint methods and the lower levels 
embody analog control based on continuous constraint 
methods [5]. 

The Executor module can be seen as an embedded 
constraint solver on its world state space. It solves 
the constraint-based requirements passed down from 
the higher layer Planner module. For example, if the 
action from the Planner is to go to (zd, yd) and the 
position state variables of the robot soccer player are 
(x,y), the set of constraints are 2: = x d , Y  = Y d .  

If the action from the Planner is to intercept the 
ball at ( 2 6 ,  y b ,  V.rb,  v y b ) ,  and the state variables of 
the robot soccer player are (xp, yp, vzp, vyp), the set 
of constraints are xp + vxp  * t = %b + 21x6 * t and 

The Planner module can be seen as an embedded 
constraint solver on its situation state space. The ul- 
timate constraint here is: the number of goals scored 
should be more than its opponent’s. To satisfy this 

yp + vyp * t = yb + vyb * t .  

ultimate constraint, the robot has to satisfy a series of 
other constraints first. 

These constraints have their priorities. The con- 
straints with higher priority must be solved earlier. 
The constraint of knowing its position and the ball’s 
should be solved first. Then the robot will try to solve 
the constraints of collision and offside. In order to win, 
the robot will consider some other constraints, such as, 
its own team’s time in possession of the ball should be 
greater than its opponent’s team, the ball should be 
near enough to the opponent’s goal, the ball should 
be as far away as possible from its own goal, and the 
ball should be kicked into opponent’s goal instead of 
its own goal. 

It chooses actions to satisfy the constraints at this 
level. When robot loses its own position or the ball’s 
position for a certain amount of time, it sends f i n d m e  
or find-ball actions down to the Executor. When the 
robot senses that it will collide with other players, it 
sends avoid-collision action down to the Executor. It 
also sends down avoid-of f s ide  down to the Executor 
if it finds itself is at offside position. The robot tries 
to intercept the ball if it senses that it is nearer to the 
ball than its teammates, if not, it goes to a suitable 
position to assist its teammate’s interception. 

If the robot gets the ball, it has to choose where 
to kick. The best action should optimally satisfy the 
constraints above. Here we have two problems. First, 
the robot can’t be certain that an action will satisfy a 
constraint because the soccer server provides a noisy, 
dynamic world. For example, it’s impossible for the 
robot to choose a kick direction which makes sure that 
its teammates will get the ball first. We can only 
say that if the robot chooses to kick in this direction, 
the probability of teammates getting the ball first is 
high. Second, the robot can’t find a kick direction 
that can maximize all the probabilities of satisfying 
all the constraints. For example, if the robot chooses 
the kick direction which makes the probability of its 
teammates getting the ball very high, the ball might 
be kicked away from its opponent’s goal and near its 
own goal. 

We solve this by setting weights for these con- 
straints and combine these constraints into a utalaty 
function , which assigns a single number to express 
the desirability of an action. The Planner chooses the 
action with the highest utility. 

U ( a )  = ki * Pi(.) 
i 

U ( a )  is the action a’s utility. Pi(.) is the proba- 
bility of satisfying the constraint i when taking the 
action a. ki is the weight for the constraint i .  
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These weights can be set by hand. They can also 
be tuned by learning methods, such as reinforcement 
learning. We have designed a coach program using 
an evolutionary algorithm to adjust these weights and 
other parameters in the controller. 

Also the utility function U ( a )  need not be linear, it 
might be obtained by using neural networks learning. 

A series of soccer-playing experiments were per- 
formed for evaluating the constraint-based controller. 
In one experiment three different versions of the con- 
troller were compared to find out which constraint is 
more important. The controller for team 1 considers 
all the constraints. The controller for team 2 only 
considers the constraint of kicking the ball into the 
opponent's goal. The controller for team 3 only con- 
siders the constraint of letting its teammates get the 
ball first. Table 1 shows the scores for all the matches. 

vs 
Team 1 
Team 2 
Team 3 

Team 1 Team 2 Team3 
2: 1 6: 1 

1:2 5:O 
1:6 0:5 

From this experiment, we learn that the constraint 
of shooting at  goal is more important than the con- 
straint of passing the ball to its teammates and the 
more constraints are considered, the better the per- 
formance. 

5 Summary and Conclusions 

Constraint Nets (CN), a semantic model for hybrid 
dynamic systems, can be used to develop a robotic 
system, analyze its behavior and understand its un- 
derlying physics. 

The soccer-playing softbot system is modeled as 
an integration of the soccer server and the controller. 
The three-level controller is composed of four mod- 
ules. The Effector module combines with the Sensor 
module to form the lowest level Effector&Sensor. The 
Executor module forms the middle level and the Plan- 
ner module forms the highest level. The controller is 
written in Java. The Java Beans component archi- 
tecture is used here to implement the CN modules 
and we use the Java event mechanism to implement 
communication among these CN modules. They are 
implemented in Java threads to improve efficiency. 

The controller for soccer-playing softbot is synthe- 
sized as a hierarchy of interactive embedded constraint 
solvers. Each level solveis constraints on its state space 
and produces the input to the lower level. 

In short, we have demonstrated that the CN model 
is a formal and practical tool for designing and im- 
plementing, in Java, constraint-based controllers for 
robots in multi-agent, real-time environments. 
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