
Proceedings of the 1998 IEEE/RSJ
Intl. Conference on Intelligent Robots and System

Victoria, B.C., Canada October 1998

A Constraint-based Controller for Soccer-playing Robots

Yu Zhang and Alan K. Mackworth

Department of Computer Science
University of British Columbia

Vancouver, B.C.
Canada, V6T 124

E-mail: yz hang ,mack@cs , u bc. ca

Abstract

Soccer meets the requirements of the Situated Agent
approach and as a task domain is suflciently rich to
support research integrating many branches of robotics
and AI. A robot is an integrated system, with a con-
troller embedded in its plant. A robotic system is the
coupling of a robot to its environment. Robotic systems
are, in general, hybrid dynamic systems, consisting
of continuous, discrete and event-driven components.
Constraint Nets provide a semantic model for model-
ing hybrid dynamic systems. Controllers are embedded
constraint solvers that solve constraints in real-time.
A controller for our new softbot soccer team, UBC
Dynamo98, has been modeled in Constraint Nets, and
implemented in Java, using the Java Beans architec-
ture. The paper demonstrates that the formal Con-
straint Net approach is a practical tool for designing
and implementing controllers for robots in multi-agent
real-time environments.

1 Background and Introduction

The Good Old Fashioned Artificial Intelligence and
Robotics (GOFAIR) 131 research paradigm has shaped
the area of intelligent robotics since the time of the
robot Shakey. Some of the typical fundamental as-
sumptions made about the world were that there is
only one agent, that the environment is static unless
the agent changes it, that actions are discrete and are
carried out sequentially and that the world the robot
inhabits can be accurately and exhaustively modeled
by the robot. These assumptions proved to be overly
restrictive and ultimately sterile. In the usual dy-
namic of the scientific dialectic, a new movement has
emerged as a synthesis of GOFAIR and “Nouvelle AI”:
the Situated Agent approach. A situated agent is

a real physical system grounded and embedded in a
real world, here and now, acting and reacting in real-
time. Mackworth [3] proposed that playing soccer be a
paradigmatic task domain since it breaks with nearly
all of the restrictive assumptions on which GOFAIR
is based and meets the requirements of the Situated
Agent approach. The soccer domain has the following
characteristics:

1. Neutral, friendly, and hostile agents

2. Inter-agent cooperation and communication

3. Real-time interaction

4. Dynamic environment

5. Real and partially unpredictable world

6. Objective performance criteria

7. Repeatable experiments

Soccer as a task domain is sufficiently rich to s u p
port research integrating many branches of robotics
and AI 141.

To satisfy the need for a common environment, the
Soccer Server was developed by Noda Itsuki [l] to
make it possible to compare various algorithms for
multi-agent systems. Because the physical abilities
of the players are all identical in the server, individ-
ual and team strategies are the focus of comparison.
The Soccer Server is used by many researchers and has
been chosen as the official simulator for the RoboCup
Simulation League [2].

The Constraint Net framework (CN) is a formal
model for robotic systems and behaviours [7]. CN
provides a theoretical foundation for systems design
and analysis. CN captures the most general struc-
ture of dynamic systems so that systems with discrete

0-7803-4465-0/98 $10.00 0 1998 IEEE 1290

and continuous time, discrete and continuous vari-
ables, and asynchronous as well as synchronous event
structures can be modeled in a unitary framework [5].
A controller for our new softbot soccer team, UBC
Dynamo98, has been developed using CN.

The rest of the paper describes CN and how we use
it to model and build the controller for our soccer-
playing softbot UBC Dynamo98. Section 2 introduces
Constraint Nets and the CN architecture of robotic
systems. Section 3 introduces the CN model of the
controller for our soccer-playing softbot. Section 4
discusses constraint-based control and shows how the
controller satisfies the constraints in the soccer do-
main. Section 5 concludes the paper.

CONTROUER nmmucNREs

2 Modeling in Constraint Nets

A robot is an integrated system, with a controller
embedded in its plant. A robot controller (or control
system) is a subsystem of a robot, designed to reg-
ulate its behavior to meet certain requirements. A
robotic system is the coupling of a robot to its envi-
ronment. Robotic systems are, in general, hybrid dy-
namic systems, consisting of continuous, discrete and
event-driven components. The dynamic relationship
of a robot and its environment is called the behavior
of the robotic system.

Constraint Nets (CN), a semantic model for hybrid
dynamic systems, can be used to develop a robotic sys-
tem, analyze its behavior and understand its underly-
ing physics. Using this model, we can characterize the
components of a system and derive the behavior of the
overall system. CN is an abstraction and generaliza-
tion of dataflow networks. Any (causal) system with
discrete/continuous time, discrete/continuous (state)
variables, and asynchronous/synchronous event struc-
tures can be modeled. Furthermore, a system can
be modeled hierarchically using aggregation operators;
the dynamics of the environment as well as the dy-
namics of the plant and the controller can be modeled
individually and then integrated [5].

A constraint net consists of a finite set of loca-
tions, a finite set of transductions and a finite set
of connections. Formally, a constmint net is a triple
CN = (Lc , Td, Cn) , where Lc is a finite set of loca-
tions, Td is a finite set of labels of tmnsductions, each
with an output port and a set of input ports, C n is a
set of connections between locations. A location can
be regarded as a wire, a channel, a variable, or a mem-
ory cell. Each transduction is a causal mapping from
inputs to outputs over time, operating according to a
certain reference time or activated by external events.

Figure 1: Abstraction hierarchy

Semantically, a constraint net represents a set of
equations, with locations as variables and transduc-
tions as functions. The semantics of the constraint
net, with each location denoting a trace, is the least
solution of the set of equations. For trace and some
other basic concepts of dynamic systems, the reader is
referred to [SI.

Given C N , a constraint net model of a dynamic
system, the abstract behavior of the system is the
semantics of C N , denoted [CN] , i.e., the set of in-
put/output traces satisfying the model.

A complex system is generally composed of multiple
components. A module is a constraint net with a set
of locations as its interface. A constraint net can be
composed hierarchically using modular and aggrega-
tion operators on modules. The semantics of a system
can be obtained hierarchically from the semantics of
its subsystems and their connections.

A constraint net is depicted by a bipartite graph
where locations are depicted by circles, transductions
by boxes and connections by arcs. A module is de-
picted by a box with rounded corners.

A control system is modeled as a module that may
be further decomposed into a hierarchy of interactive
modules (Fig. 1). The higher levels are typically com-
posed of event-driven transductions and the lower lev-
els are typically analog control components. The bot-
tom level sends control signals to various effectors, and
at the same time, senses the state of effectors. Con-
trol signals flow down and the sensing signals flow

1291

CONTROLLER R

L I

Figure 2: A robotic system

up. Sensing signals from the environment are dis-
tributed over levels. Each level is a black box that
represents the causal relationship between the inputs
and the outputs. The inputs consist of the control
signals from the higher level, the sensing signals from
the environment and the current states from the lower
level. The outputs consist of the control signals to the
lower level and the current states to the higher level.
Usually, the bottom level is implemented by analog
circuits that function with continuous dynamics and
the higher levels are realized by distributed computing
networks.

Furthermore, the environment of the robot can be
modeled as a module as well. A robotic system can be
modeled as an integration of a plant, a controller and
an environment (Fig. 2). A plant is a set of entities
which must be controlled to achieve certain require-
ments, for example, a car with throttle and steering.
A controller is a set of sensors and actuators, which,
together with softwarelhardware computational sys-
tems, (partially) senses the states of the plant (X)
and the environment (Y) , and computes the desired
control inputs (U) to actuate the plant. An environ-
ment is a set of entities beyond the (direct) control
of the controller, with which the plant may interact.
For example, obstacles to be avoided and objects to
be reached can be considered as the environment of a
robotic system.

In most cases, desired goals, safety requirements
and physical restrictions of a robotic system can be
specified by a set of constraints on variables Uu X U Y .
The controller is then synthesized to regulate the sys-
tem to satisfy the set of constraints. The semantics (or
behavior) of the system is the solution of the following
equations:

X = P L A N T (U , Y) , (1)

I ENVIRONMENT]
i SOCCERSERVER

Figure 3: The soccer-playing softbot system

U = C O N T R O L L E R (X , Y) , (2)
Y = E N V I R O N M E N T (X) . (3)

Note that P L A N T , CONTROLLER
and E N V I R O N M E N T are transductions mapping
input traces to output traces (not simple functions),
and the solution gives X , Y and U as tuples of traces
(not values),

3 The CN Architecture of the Con-
troller for a Soccer-playing Softbot

The soccer-playing softbot system is modeled as
an integration of the soccer server and the controller
(Fig. 3). The soccer server provides 22 soccer-playing
softbots’ plants and the ball. Each softbot can be
controlled by setting its throttle and steering. When
the softbot is near the ball (within 2 meters), it can
use the kick command to control the ball’s movement.
For the controller for one of the soccer-playing soft-
bots, the rest of the players on the field and the ball
are considered as its environment. The sensor of the
controller determines the state of the plant (position
and direction) by inference from a set of landmarks
it ‘sees’. The rest of the controller computes the de-
sired control inputs (throttle and steering) and sends
them to the soccer server to actuate the plant to move
around on the field or kick or dribble the ball.

For the soccer-playing softbot, we have designed
a three-level controller. The lowest level is the Ef-
fector&Sensor. It receives ASCII sensor information
from the soccer server then translates it into the World
model. It also passes commands from the upper level
down to the soccer server. The middle level is the Ex-
ecutor. It tries to translate the action (goal) which

1292

Figure 4: The soccer-playing controller hierarchy

comes from the upper level into a sequence of com-
mands and sends them to the lowest level. The Ex-
ecutor also evaluates the situation and sends it to the
top layer (Planner). The highest level is the Planner.
It decides which action (goal) to take based on the cur-
rent situation and it may also consider the next action
assuming the current action will be correctly finished
on schedule.

The controller is composed of four CN modules.
The Effector module combines with the Sensor mod-
ule to form the lowest level Effector&Sensor. The Ex-
ecutor module forms the middle level and the Planner
module forms the highest level (Fig. 4).

The CN controller is written in Java because it
is object-oriented, provides features like easy thread
programming and an effective event mechanism. The
Java Beans component architecture is used here to im-
plement the CN modules.

Events are one of the core features of the Java Beans
architecture. Conceptually, events are a mechanism
for propagating state notifications between a source
object and one or more target listener objects. Under
the new AWT event model, an event listener object
can be registered with an event source. When the
event source detects that something interesting has
happened it calls an appropriate method in the event

listener object.
CN model is a data-flow model; each CN module

can be run concurrently on different processors to im-
prove the speed of the controller. Since these modules
are event-driven and fixed,sample-time-driven, they
are best implemented as Jatva threads to improve effi-
ciency on a single CPU too. If no event arrives, they
go to sleep so the CPU can ideal with other softbots. In
such a multi-threaded environment where several dif-
ferent threads may be simultaneously delivering events
and/or calling methods and/or processing event ob-
jects and/or setting properties, special considerations
are needed to make sure these beans properly coordi-
nate their behaviour, using waitlnotify and synchre
nization mechanisms.

The Sensor module wakles up when new information
arrives. It then processes the ASCII information from
soccer server, updates the world model, and sends an
event to the Executor. The Sensor goes to sleep when
there is no information waiting on its socket.

The Executor module receives the event from the
Sensor, then it processes tihe world model and updates
situation states. These silaation states tell the Plan-
ner if it can kick the ball, if the ball is in its sight, if it
is the nearest player to the ball, if there are obstacles
on its way, the action from the Planner has finished
or not, and so on. Any change of situation creates an
event and triggers the higher level Planner module.
This part of the Executor runs in the same thread as
the Sensor module.

The main part of the Executor executes actions
passed down from the F’lanner. It wakes up when
it receives an action event from the Planner mod-
ule. It produces a seqpence of commands which
are supposed to achieve goals (actions) when they
are performed. Commands such as kick, dash, and
turn are sent to the Effector’s Movement-command
buffer. Other commandis are sent to the Effector’s
Sensing-command buffers: the Say-message buffer,
the Change-view buffer, and the Sense-body buffer.
The Executor goes to sleep when there is no action
waiting for its processing.

The Planner module wakes up when triggered by
a situation-changed event from the Executor. It then
produces actions and pushes them into Executor’s ac-
tion buffer and sends an event to trigger the Executor
to execute actions. Then it goes to sleep until a new
event arrives.

The Effector module is a fixed-sample-time-driven
module. Every looms, it gets one command from each
non-empty buffer and sends them to the soccer server.

This is a hybrid control system because it has both

1293

event-driven and fixed-sample-time-driven modules.

4 Constraint-Based Control for
Soccer-playing Softbot

Constraints are considered to be relations on a set
of state variables; the solution set of the constraints
consists of the state variable tuples that satisfy all
the constraints. The behavior of a dynamic system is
constraint-based if the system is asymptotically sta-
ble at the solution set of the given constraints, i.e.,
whenever the system diverges because of some distur-
bance, it will eventually return to the set satisfying
the constraints. Most robotic systems are constraint-
based, where the constraints may include physical lim-
itations, environmental restrictions, and safety and
goal requirements. Most learning and adaptive dy-
namic systems exhibit some forms of constraint-based
behaviors as well [6].

A controller is an embedded constmint solver if the
controller, together with the plant and the environ-
ment, satisfies the given constraint-based specifica-
tion.

In the framework for control synthesis, constraints
are specified at different levels on different domains,
with the higher levels more abstract and the lower lev-
els more plant-dependent. A control system can also
be synthesized as a hierarchy of interactive embedded
constraint solvers. Each abstraction level solves con-
straints on its state space and produces the input to
the lower level. Typically the higher levels are com-
posed of digital/symbolic event-driven control derived
from discrete constraint methods and the lower levels
embody analog control based on continuous constraint
methods [5].

The Executor module can be seen as an embedded
constraint solver on its world state space. It solves
the constraint-based requirements passed down from
the higher layer Planner module. For example, if the
action from the Planner is to go to (zd, yd) and the
position state variables of the robot soccer player are
(x,y), the set of constraints are 2: = x d , Y = Y d .

If the action from the Planner is to intercept the
ball at (2 6 , y b , V.rb, v y b) , and the state variables of
the robot soccer player are (xp, yp, vzp, vyp), the set
of constraints are xp + vxp * t = %b + 21x6 * t and

The Planner module can be seen as an embedded
constraint solver on its situation state space. The ul-
timate constraint here is: the number of goals scored
should be more than its opponent’s. To satisfy this

yp + vyp * t = yb + vyb * t .

ultimate constraint, the robot has to satisfy a series of
other constraints first.

These constraints have their priorities. The con-
straints with higher priority must be solved earlier.
The constraint of knowing its position and the ball’s
should be solved first. Then the robot will try to solve
the constraints of collision and offside. In order to win,
the robot will consider some other constraints, such as,
its own team’s time in possession of the ball should be
greater than its opponent’s team, the ball should be
near enough to the opponent’s goal, the ball should
be as far away as possible from its own goal, and the
ball should be kicked into opponent’s goal instead of
its own goal.

It chooses actions to satisfy the constraints at this
level. When robot loses its own position or the ball’s
position for a certain amount of time, it sends f i n d m e
or find-ball actions down to the Executor. When the
robot senses that it will collide with other players, it
sends avoid-collision action down to the Executor. It
also sends down avoid-of f s ide down to the Executor
if it finds itself is at offside position. The robot tries
to intercept the ball if it senses that it is nearer to the
ball than its teammates, if not, it goes to a suitable
position to assist its teammate’s interception.

If the robot gets the ball, it has to choose where
to kick. The best action should optimally satisfy the
constraints above. Here we have two problems. First,
the robot can’t be certain that an action will satisfy a
constraint because the soccer server provides a noisy,
dynamic world. For example, it’s impossible for the
robot to choose a kick direction which makes sure that
its teammates will get the ball first. We can only
say that if the robot chooses to kick in this direction,
the probability of teammates getting the ball first is
high. Second, the robot can’t find a kick direction
that can maximize all the probabilities of satisfying
all the constraints. For example, if the robot chooses
the kick direction which makes the probability of its
teammates getting the ball very high, the ball might
be kicked away from its opponent’s goal and near its
own goal.

We solve this by setting weights for these con-
straints and combine these constraints into a utalaty
function , which assigns a single number to express
the desirability of an action. The Planner chooses the
action with the highest utility.

U (a) = ki * Pi(.)
i

U (a) is the action a’s utility. Pi(.) is the proba-
bility of satisfying the constraint i when taking the
action a. ki is the weight for the constraint i .

1294

These weights can be set by hand. They can also
be tuned by learning methods, such as reinforcement
learning. We have designed a coach program using
an evolutionary algorithm to adjust these weights and
other parameters in the controller.

Also the utility function U (a) need not be linear, it
might be obtained by using neural networks learning.

A series of soccer-playing experiments were per-
formed for evaluating the constraint-based controller.
In one experiment three different versions of the con-
troller were compared to find out which constraint is
more important. The controller for team 1 considers
all the constraints. The controller for team 2 only
considers the constraint of kicking the ball into the
opponent's goal. The controller for team 3 only con-
siders the constraint of letting its teammates get the
ball first. Table 1 shows the scores for all the matches.

vs
Team 1
Team 2
Team 3

Team 1 Team 2 Team3
2: 1 6: 1

1:2 5:O
1:6 0:5

From this experiment, we learn that the constraint
of shooting at goal is more important than the con-
straint of passing the ball to its teammates and the
more constraints are considered, the better the per-
formance.

5 Summary and Conclusions

Constraint Nets (CN), a semantic model for hybrid
dynamic systems, can be used to develop a robotic
system, analyze its behavior and understand its un-
derlying physics.

The soccer-playing softbot system is modeled as
an integration of the soccer server and the controller.
The three-level controller is composed of four mod-
ules. The Effector module combines with the Sensor
module to form the lowest level Effector&Sensor. The
Executor module forms the middle level and the Plan-
ner module forms the highest level. The controller is
written in Java. The Java Beans component archi-
tecture is used here to implement the CN modules
and we use the Java event mechanism to implement
communication among these CN modules. They are
implemented in Java threads to improve efficiency.

The controller for soccer-playing softbot is synthe-
sized as a hierarchy of interactive embedded constraint
solvers. Each level solveis constraints on its state space
and produces the input to the lower level.

In short, we have demonstrated that the CN model
is a formal and practical tool for designing and im-
plementing, in Java, constraint-based controllers for
robots in multi-agent, real-time environments.

Acknowledgments

We wish to thank Ying Zhang for valuable discus-
sions and suggestions.

References

[l] Noda Itsuki. Soccer Server System. Available at
ht tp: //ci .et1 .go.j p/ noda/soccer/server . html.

[2] Hiroaki Kitano. Itobocup. Available at http:
//www.robocup.org,lFbboCup/New/index.html.

[3] A. K. Mackworth. On seeing robots. In A. Basu
and X. Li, editors, Computer Vzsion: Systems,
Theory, and Applicoftions, pages 1-13. World Sci-
entific Press, Singapore, 1993.

141 M. Sahota and A. I<. Mackworth. Can situated
robots play soccer? [n Proc. Artificial Intelligence
94, pages 249 - 254, Banff, Alberta, May 1994.

151 Ying Zhang and A. K . Mackworth. Synthesis of
hybrid constraint-based controllers. In P. Antsak-
lis, W. Kohn, A. Nerode, and S. Sastry, editors,
Hybrid Systems ZZ, Llecture Notes in Computer Sci-
ence 999, pages 552 - 567. Springer Verlag, 1995.

Constraint
Programming in Coinstraint Nets. Principles and
Practice of Constraint Programming, MIT Press,

[6] Ying Zhang and A. K . Mackworth.

1995, p.49-68.

[7] Ying Zhang and A. K . Mackworth. Constraint
Nets: A Semantic Model for Hybrid Dynamic Sys-
tems. Journal of Theoretical Computer Science,
Vol. 138, No. 1, 1995, p.211-239, Special Issue on
Hybrid Systems.

[8] Ying Zhang. A foundation for the design and anal-
ysis of robotic systems and behaviors. Technical
Report 94-26, Department of Computer Science,
University of British Columbia, 1994. Ph.D. the-
sis.

1295

