
Spinoza: A Stereoscopic Visually Guided Mobile Robot

Vladimir Tucakov, Michael Sahota, Don Murray, Alan Mackworth,
Jim Little, Stewart Kingdon, Cullen Jennings, Rod Barman *

Laboratory for Computational Intelligence
Department of Computer Science

University of British Columbia
Vancouver, British Columbia, CANADA V6T 124
tucakov@cs.ubc.ca 604-822-6625 604-822-5485 FAX

Abstract

Our mobile robot, Spinoza, embodies a sophisticated
real-time vision system for control of a mobile robot
in a dynamic environment. The complexity of our
robot architecture arises f rom the wide variety of tasks
that need to be performed and the resulting chal-
lenge of coordinating multiple distributed, concurrent
processes on a diverse range of processor architec-
tures including Transputers, digital signal processors,
and a workstation host. The system handles sens-
ing, reasoning, and action components of a robot dis-
tributed over these architectures, and responds to un-
predictable events in an unknown dynamic environ-
ment. Spinoza relies heavily on its capability to per-
f o r m real-time vision processing in order to perform
task such as mapping, navigation, exploration, track-
ing, and simple manipulation.

1 Introduction
Our mobile robot, Spinoza, embodies a sophisti-

cated real-time vision system for control of a respon-
sive mobile robot. Balancing the real-time constraints
of a robot in a dynamic environment challenges the
limits of both technology and our scientific under-
standing of embedded systems. Dynamic environ-
ments are unpredictable, asynchronous, and require a
low latency in response, while visual information pro-
cessing require high data-rate communications and
significant computation.

*This research was supported by the Natural Sciences and
Engineering Research Council of Canada and the Networks of
Centres of Excellence Institute for Robotics and Intelligent Sys-
tems, Project IS-6.

Figure 1: Spinoza: the visually guided mobile robot

Spinoza, as seen in Figure 1, is a self-contained
robot, with host support. It consists of a Real World
Interface (RWI) B-12 base with an RGB (colour)
camera, mounted on a Directed Perception pan-tilt
platform, on top, and trinocular monochrome stereo
cameras in the body.

To provide a context for the design issues involved
in this system, we begin by describing previous work
in our lab on developing vision-based robotics systems
that are antecedents of Spinoza. Also we present our
research goals and a description the tasks Spinoza is
to perform. Section 2 describes how the functional
requirements of Spinoza and the development envi-
ronment shapes the the choice of computational ar-
chitecture and communication protocols. Section 3
describes the robot hardware. Section 4 describes in

1060-3425/97 $10.00 0 1997 IEEE 188

detail the workings of all the components of the robot
from the hardware to the software. We finally present
the experimental results and conclude with a discus-
sion about the future of mobile robotics.

1.1

Spinoza is being built as part of a long-term project
intended to develop a new approach to the specifica-
tion, design and implementation of robotic systems.
We will describe the elements of the system architec-
ture that appeared in several of these robotic systems.

The UBC Vision Engine[l3] is a general-purpose
vision system that consists of multiple architectures:
pipelined (a Datacube MaxVideo200) image proces-
sor and a MIMD multicomputer (20 T800 2MB
Transputers, connected via a crossbar). These are
connected by a bidirectional video-rate interface. The
Vision Engine has been used in a range of visually-
guide robots, such as an eye-head system: a pair of
cameras on a pointable platform[l5]. The eye-head
follows a moving object, with no knowledge of its
target, using dense optical flow input computed on
the MaxVideo200. The Transputer system processes
the flow data and controls the eye-head platform for
vergence, pan and tilt.

History of the Dynamo project

Figure 2: Dynamites: soccer playing robots

Another predecessor to Spinoza was the Dyna-
mite testbed, shown in Figure 2. The Dynamite
testbed is a collection of independently controlled
mobile robot vehicles that play soccer 13, 161. It
has been used to explore novel reactive strategies for
control[l9] as well as for ideas on control, specifica-
tion, and reasoning about real-time systems[20]. The
system demonstrates offboard vision processing and
distributed computation. The vision component was
originally prototyped on the MaxVideoQOO in the Vi-
sion Engine with the control programs running on
the Transputers. Currently the system is realized as
simple custom hardware to process RGB signals, fol-
lowed by run-length encoding and centroid calcula-
tion on Transputers. A single ofhoard camera sen-
sor communicates its signals to the centralized sensor

processor. The sensor processor provides positional
information to the control processes for each compet-
ing soccer player at 60Hz (once per image field) with
a lag of at most 5 ms after the end of field. The struc-
ture of the full system is shown in Fig. 3. Four robots
can be controlled concurrently.

nul Clunery
(Sitlgk CCD)

I

Figure 3: Dynamite Architecture

The “remote brain” idea, offboard visual process-
ing, was used for soccer players because of sizelweight
limitations, and for our initial work with Spinoza:
ROLL, (Real-time Onboard Localization with Land-
marks) identifies its position in real-time, using pas-
sive visual localization of a single landmark[l4].
ROLL used a set of TI C40 DSPs and transmitters
to support offboard visual processing.

1.2 Project Goals
The scientific goals of the project include determining
the power of vision as a sensing mode for a robot, how
to integrate ongoing sensing, and how much knowl-
edge and reasoning is needed for planning actions. In
general, we seek to delve into the interaction between
processing, perception, and action in a dynamic en-
vironment.

Other goals include learning about capabilities of
situatedlembedded vision, integration of technology,
and exploration of dynamic environments. We wish
to develop a flexible computing environment that can
handle multiple visual tasks, processing modes, and
cameras to support a visually guided robot that can
operate outdoors.

1.3 Robot Tasks
At the highest level, we would like to build a robot
that can, either under program control, or full or lim-
ited teleoperation, to act as a remote physical agent,
to perform a range of tasks, including finding lab
members, identifying whether equipment is busy, to
check the status of the lab, to guide tours, to find
things. More concretely, the robot’s functions that

189

have been completed to date include mapping, nav-
igation, exploration, tracking, and simple manipula-
tion. The requirements include fast vision processing,
flexible controllers, high bandwidth communication,
and support for high-level processes.The types of vi-
sual tasks required are as follows:

0

0

b

0

e

b

2

blob detection-isolation of coloured objects for
recognition and tracking
stereo-passive distance estimation
pointable camera-for tracking
optical flow-computing perceived motion for
segmentation, recognition, and obstacle detec-
tion
tracking-visual servoing
integration of multiple modes-cooperation
among sensing systems (cameras) and vision pro-
cesses

Models
In our research we are interested in developing for-
mal theories that can provide systematic design and
analysis methodology for perceptual robotic systems.

2.1 Robot Models

We need practical and formal design methods for
building integrated perceptual robots. A robot is,
typically, a hybrid intelligent system, consisting of a
controller coupled to its plant. The controller and the
plant each consist of discrete-time, continuous-time or
event-driven components operating over discrete or
continuous domains. The controller has perceptual
subsystems that can (partially) observe the state of
the environment and the state of the plant. Vision as
a passive sensing system is cheap, reliable and biolog-
ically validated, so we are pushing the use of vision
for mobile robots as far as we can.

The structure of the robot follows standard models
[l, 221 that decompose the robot into sensing, rea-
soning, and action subsystems, each realized at a hi-
erarchy of scales. The finest scale handles control
loops with a 100 Hz rate and a lOms time horizon,
and operates synchronously. Each coarser scale re-
duces the rate by a factor of 10 and increases the
time horizon by a factor of 10. At the highest level,
the time horizon is on the order of 10s of seconds, and
the system operates asynchronously. In practice the
data flows up and down the time and space hierar-
chy are implemented a s streams of messages passing
asynchronously through the system.

~

190

Robots are a typical class of hybrid systems. One of
the most important challenges facing us is to develop
theoretical and practical tools for designing hybrid
embedded intelligent systems.

The hierarchical spatial and temporal structure of
the levels in the standard robotic (such as Albus’s
NASREM architecture) map onto a set of software
levels. The reasoning component dominates at the
highest asynchronous level, while the lower levels,
with control loops, are concerned with sensing (vision
and robot base) and action (actuation and movement
of the robot base.

We are working toward an implementation that will
specify the controller for the robot using the termi-
nology of Constraint Nets [21], but at present we use
the layered approach to distribute the computation
in a set of software modules that match the elements
of the layers.

Much of the complexity of our robot architecture
arises from the nature of the tasks and the challenge
of coordinating multiple distributed, concurrent pro-
cesses on a wide range of architectures. A robot en-
gages in multiple asynchronous activities.

The finest level is also responsible for reaction to
stimuli such as looming objects, our “knee-jerk” re-
flex, which avoids approaching objects, in a dynamic
environment, where transport of information to high
levels would delay response unacceptably.

2.2 Programming Models

2.3 Development Environment

Spinoza has evolved, with new communication, com-
putation, and sensing capabilities added over time.
We have pursued an incremental strategy, extending
its abilities to handle new tasks. To limit the degree
of low-level programming, as well as to reduce the
impact of changing hardware, a stable software inter-
face to robot services was required. The actual robot
hardware is varied, and cannot easily be mastered,
thus a certain level of abstraction from the actual
implementation was necessary.

The separation between abstraction and implemen-
tation, argued for by these considerations, leads to a
model where the robot is isolated from the program
development system by an interface. Controllers can
be designed and tested in isolation from the actual
robot; for example the development of controllers for
the robot soccer players was facilitated by realistic
simulation of the soccer players and their environ-
ment. This dovetails nicely with our desire to include

teleoperation, the human intelligence and decision-
making capability, in the robotic system.

Hardware Task
C40S Blob Detection

Stereo Vision
Transputers Robot Control
Host Teleoperation

Mapping
Planning

2.4 Model/Hardware map

Comm. Scale
synch > 10 Hz
synch > 1 Hz
synch > 10 Hz
asynch < 1 Hz
asynch < 2Hz
asynch < 0.5 Hz

Figure 4 illustrates how the hierarchy of robot tasks is
mapped to actual hardware. Low-level synchronous
high-speed control loops are run on specialized on-
board hardware for performance. Higher level task
such are reasoning and mapping are run on the host
asynchronously in an event-based manner.

3 Hardware Architecture
How do we realize a system that meets our constraints
and has the capabilities we need? One method of
specifying robotic systems has been the “reactive” sit-
uated approach that exploits regularities of the task
and environment of the robot[9, 21. Typically these
systems have simplified the sensing capabilities of the
robot so as to meet the physical and cost limitations,
suited to the task and environment. Horswill[lO] has
implemented a more general, but inexpensive proces-
sor, with limited capabilities. Others[6] move much
of the signal and image processing offboard.

We chose to build a large amount of our comput-
ing requirements onboard our mobile robot. Figure 6
shows the computing system. A VME card cage, vis-
ible in Figure 5, holds four INMOS Transputer pro-
cessors plus two Texas Instruments TMS320C40 digi-
tal signal processors. Our experience with the Vision
Engine[l3] showed that Transputers are suitable for
implementing real-time controllers because they have
low-latency communication capabilities and built-in
lightweight scheduling and context switching. How-
ever, they lack the computational power and com-
munication bandwidth for vision processing. For this
reason we use C40 DSP processors, which support 25
MFlops computation plus 20MB/s communications,
for the image acquisition and processing functions on-
board the robot.

Figure 5: View of Spinoza’s Hardware

Spinoza’s C40 vision system is composed of an
RGB video frame grabber and a specialized image
processing module. The frame grabber can simulta-
neously grab from either the pan-tilt mounted colour
camera or the three greyscale stereo cameras. The
image processing module is a VIPTIM from Traquair
Data Systems. The VIPTIM contains a cascaded pair
of INMOS All0 convolvers that perform a 6x7 con-
volution at 10 Mpixels per second. Since the bulk of
our early vision computation is filtering and match-
ing, the hardware convolver greatly accelerates the
overall processing speed of the vision system.

ou

/ - - F t l f

U l l n) 4-1.
-9

II [-w
IU r- -

c1 c2

Figure 6: Spinoza Hardware

The Transputers are the heart of Spinoza’s onboard
computing system. They communicate with the C40
vision system, the workstation host and, through a
serial Transputer module, the B12 base and pan-tilt
unit controllers.

The host workstation is a Sun Ultra 1 connected to
the robot through a Transputer link interface on its
parallel port. The host can reset, boot and commu-

19 1

nicate with the robot at a speed of 20Mb/s bidirec-
tionally.

The original version of Spinoza was tethered: the
limitations of battery capacity and the large power
demands of the onboard computers meant that power
had to be supplied via a cable during extended use
(longer than half an hour). The goals of the robot,
however, include activity throughout the research
labs and the entire building, hence we needed un-
tethered operation. We added an additional battery
pack so the robot is now capable of over two hours of
untethered operation.

Untethered communication to the host workstation
is through a spread spectrum radio modem with a
bandwidth of 1.6 Mb/s. This raw bandwidth is re-
duced by the necessary layers above the raw trans-
mission layer that provide reliable handling of pack-
ets. Currently the system gets 80KB/s across the
radio modems. The transition to the wireless opera-
tion required the down scaling of diagnostic report-
ing, which often includes images. We are currently
developing the ability to switch between tethered and
radio modem operation “on-the-fly.” This will allow
high-speed communication for system development.

4 Software Architecture
The robot software was implemented on a variety of
hardware architectures described in the previous sec-
tion. The design of the software was challenging due
to constraints posed by robot tasks as well as hard-
ware limitations. Issues such as amount of available
computational power and the communication band-
width were closely examined.

Figure 7 presents the software architecture of the
robot. The dashed line in the figure represents the
physical separation between the robot and the host.

Software implemented on the robot is in charge
of sensing and robot controls. The software imple-
mented on the host does data integration, reasoning,
and interacts with a human operator.

4.1 Vision Services
There are four cameras on board Spinoza: a colour
camera (“top”) on the pan-tilt unit (PTU) provides
a pointable colour input useful for tracking; three
monochrome cameras (“left”, “right” , and “upper”)
in a static “L” configuration are used for stereo rang-
ing. The first DSP, called the grabber, grabs colour
(RGB) images and stereo camera information from
the three monochrome cameras. The stereo informa-
tion is passed on to the second DSP for processing

Workstation -g=
Pm Tilt Unii RWI Conliolla

Figure 7: Spinoza Software Architecture

while the color information is used to find coloured
blobs. Timely delivery of blob information is as-
sured by having the VIP TIM probe the Grabber for
blob information during stereo computation, which
takes much longer than blob detection. The inter-
connections between these and the robot controller
are shown in Figure 8.

The grabber regularly switches between two three-
input camera systems. In one the three inputs are the
left, right, and upper cameras, the trinocular inputs.
In the other, the top RGB camera sends three signals
containing Red, Green, and Blue separations.

Colour blob tracking is performed by first segment-
ing a colour image to a binary map. The centroid of
all “on” pixels is the centroid of the target; speed re-
quirement necessitate this simplification. While the
blob is being detected, the DSP concurrently passes
on the stereo images to the VIP TIM which performs
trinocular stereo.

The reliability of stereo data is paramount in obsta-
cle avoidance-stereo is computed in trinocular for-
mat, requiring slightly more computing, but with a
useful increase in reliability [SI. Dense stereo citeBul-
LitPog89a,OkuKan93a permits obstacle avoidance
without segmentation or interpretation a s would be
required by line-based stereo [18]. ?kinocular stereo
compares image patches along a fixed range of dis-
parities, among .three cameras roughly aligned in an
“L” shape. Horizontal scene structures may be am-
biguous from the left-right comparison, but will be
separated by the upper-right comparison. Both com-
parisons create combined measure of support for a
particular depth.

192

j, ryueso

Robot Conuoller

I
I
I h l o h image r y u c w I

The VIP TIM DSP corrects for warping of images
due to lens distortion and aligns the geometry so that
the epipolar lines are alighted to the z and y axis.
Cameras are calibrated [12] and the images correction
mapping is computed off line, using Matlab. Images
are first smoothed, then down sampled and corrected
via a large table. This implements a “soft” calibration
that can be redone on demand.

The stereo is then computed a multi-baseline cor-
relation method[l7]. This is implemented using the
All0 convolver to do the stereo correlation.

This replaces stereo previously implemented on the
Datacube system which could operate at 15Hz, but
the Datacube does not fit into an embedded sys-
tem [13]. Optical flow [4] can be implemented in sim-
ilar fashion to the stereo on the VIP TIM, to support
obstacle avoidance based on flow [5].

,

Sample Image Stereo Depth Image

Figure 9: Results of the stereo algorithm

Figure 9 presents an example of the results ob-
tained by the stereo algorithm. The brighter shades
of grey represent points in the scene that are closer
to the robot. Likewise the darker shades of grey rep-
resent the points further away. The black areas of
the image represent points for which distance can
not be determined accurately. The system processes
128x128 pixel images at 20 disparities at 2 Hz.

The robot controller receives requests from the com-
munications server. The controller coordinates the
outputs sent to the robot actuators, suppresses re-
dundant commands and repeat commands that have
not been fully executed.

The robot controller regularly requests vision ser-
vices such as blobs and stereo range data, at varying
rates, depending on the task. The data is passed
back to the host and distributed to the task mod-
ules. By initiating regular requests for stereo data,
recent data is always available to service host requests
without the otherwise unacceptable delay. Similarly,
the robot controller regularly updates all other robot
state information.

The robot controller communicates directly to the
RWI controller, which controls the RWI base. The
unit transformations and the communication through
the serial port on the serial Tram are transparent.
The serial Tram connected to the robot controller
points the pan/tilt unit during tracking and pushing.

The stereo vision data sent from the vision ser-
vices to the Robot controller may contain depth val-
ues that indicate that an object is “too close”. The
robot controller recognizes this situation, and acts to
stop the forward progress of the robot. This tight
loop between the RWI controller and the vision ser-
vices must be implemented on the robot to minimize
delay in reaction.

Paths come down from the path plan generator
on the host as waypoints in the robot’s coordinate
system. To direct the motion of the robot along a
smooth trajectory, the trajectory controller divides
such a path into a sequence of tightly monitored com-
mands that smoothly combine rotation and forward
movement. Likewise a tight control loop is necessary
to control the robot’s movement while pushing ob-
jects along a specified trajectory. These capabilities:
obstacle avoidance using stereo data, smooth trajec-
tory execution, and obstacle pushing are all examples
of the tight synchronous control loops required at the
lowest level of software in our robot model.

4.3 Host Communication Server

The communication module provides message and
data passing capabilities both robot H host and host
interprocess communication (IPC) . Several issues had
to be considered in the design to meet various com-
peting requirements.

The first problem, is that the robot-host band-
width is a scarce resource, much in demand. If every
time a host process requires robot state information a

193

4.2 Robot controller

request is sent to the robot, the system would quickly
bog down. To eleviate this, we had to design a system
that would limit robot queries and reuse the results
as much as possible.

Another difficulty was the number of host pro-
cesses. There are many processes, which often require
to communicate with several others. If each process
had to create a separate connection to all other pro-
cesses, the number of links would increase quadrati-
cally and communication management would quickly
become unwieldy. Also, to minimize the impact of fu-
ture changes in hardware and software architecture,
we want to minimize the direct knowledge of system
configuration required by each process.

The solution was to use a central data blackboard
process we dubbed the “mailer”. This process pro-
vides IPC through the mechanism of Unix message
queues. This provides each process its only avenue
to data and state information. Any process can re-
quest data by sending a request to the mailer via the
mailer’s message queue. It then performs a hanging
read on its message queue until the requested data is
available. Request take 3 forms:

New item the requested data or item must be
queried from the robot. This request is restricted
as much as possible.

Next item the process wishes to be provided with
this data when it is next submitted (as new) to
the blackboard

Last item the most recent data of this type is re-
quested and provided without delay.

In addition to requests, a process may provide an
updated data product for the blackboard. Host pro-
cesses generally follow a L L p r ~ d u ~ e r - ~ ~ n ~ ~ m e r ~ 7 model.
That is, the process waits for the next issue (or pro-
duction) of its input data, performs its task, then
produces a resultant item for other processes to con-
sume.

This design has many advantages. One is that it is
host CPU friendly. Each time a process is complete,
rather than polling communications or repeating op-
erations on already processed data, it will suspend
until new data arrives. This conserves system re-
sources. The system provides message passing that
can work both as events in an event-driven system,
or as a synchronization method between essentially
asynchronous processes.

It also means it is easy to test and debug software,
even if the robot is not available. It is easy to simulate
robot state messages, and the mailer can run on any
workstation. It also has the advantage that modules
have no other point of contact that the mailer, and

thus require no knowledge of system configuration,
other than the address of the mailer message queue.
New processes can be added at anytime and will au-
tomatically have access to information available.

For example, when a user requests the robot to
move to a new location by clicking on the displayed
map, the user interface produces a “goal update”.
This unblocks the path planner which has posted a
request for the “next goal”. The path planner makes
the path, and posts a “path update”. The path execu-
tor is in turn waiting for the “next path”. It receives
the new path and issues robot commands appropri-
ately, again through the mailer.

~

194

4.4 Mapper

As described in Section 4.1, dense depth images are
regularly constructed by the trinocular stereo vision
service on-board the robot. These depth images can
be reduced to represent the nearest obstacles by pro-
jecting all sensed points down through a vertical col-
umn to the plane of the floor. The depth image is
reduced to a single row of disparities representing
the closest obstacle as seen from a top-view perspec-
tive. This 2-D map has high angular resolution; how-
ever, range uncertainty varies proportionally with the
depth. This representation is much smaller than full
depth images and are much cheaper to send to the
host.

In the host, the radial depth maps are routed by
the mailer to the mapper module. The mapper appli-
cation integrates these directional range maps into a
2-D map represented by an occupancy grid [7]. Such
a map is represented by a tessellation of the mapped
space into a grid. The value of each grid is related
to the probability that this space is occupied by any
part of an obstacle. The “mapper” initializes the map
to contain only values at 50% probability, indicating
that the entire space is unknown. As new range maps
arrive, the mapper updates the occupancy grid so
that each cell contains an updated probability that
the cell is occupied by an object. Every point be-
tween the current position of the robot and the near-
est obstacle in a given direction is marked clear. The
probability of the cell at the given range is updated,
combining its previous value with the uncertainty of
the range estimate. Cells beyond the object detected
are unaffected.

In a sense, the mapper acts as a smart memory,
that integrates the information over time into a coher-
ent whole, and buffers data between the vision service
and the client.

4.5 Path planner
As its name suggests, the path planner produces
paths for the robot to follow. As such, it is used
by those processes that move the robot from one po-
sition to another. The path planner takes as input
a map of the environment produced by the mapper,
a goal position, and an initial position (specified as
triples of X, Y, and theta values). It returns a se-
quence of x, Y, theta triples that denote significant
waypoints along the path generated by the planner.

Paths are generated in the following manner. A
simple wavefront expansion[ll] algorithm is used to
generate a unimodal, potential field between the goal
and initial position. Then, an initial path is gener-
ated by following the gradient of this field. Waypoints
along the path are generated by starting at the ini-
tial position and selecting the last point on the path
for which there exists an unobstructed, straight line
path from the initial state to the goal. This point
is marked as a waypoint and the process is repeated
from the new waypoint until the goal position can be
seen.

4.6 Task module
The task module is the end-user programming envi-
ronment that allows the use of all lower-level func-
tionalities. Programming at this level is sequential,
ie. get an image, move, get an image, turn right
etc. While high level programming is sequential, the
servers communicating information from other mod-
ules run in parallel. The purpose of the task module
is to shelters the developer from changes in the under-
lying hardware of the robot. Ideally the code written
in this module would need only recompiling, when a
change in the hardware is made.

4.7 Visual User Interface
This module, the Visual User Interface (VUI), is an
example of a user level application. VU1 provides a
graphical user interface to some of the task modules
and well as to the interface to the robot abstraction.
The interface can access the state of the robot includ-
ing its battery charge, odometry, images as currently
seen. The VU1 can display the map of the environ-
ment. By pointing and clicking user can specify a
new goal location for the robot.

5 Results
Spinoza has demonstrated a number of tasks it can
accomplish. These tasks include, chasing a brightly

coloured ball, avoiding collisions with dynamic ob-
jects, pushing a box along a specified path and ex-
ploring and mapping a static environment.

5.1 Ball Chasing

The ball chasing demonstration was designed to show
that all levels of onboard architecture can work co-
herently. The task of the robot was to find a brightly
coloured ball and keep it in the field of view. The
body of the robot moved slower than the pan-tilt
camera. The robot took advantage of the pan-tilt
camera when the body of the robot was not pointing
towards the ball. When the body of the robot was
pointing towards the all, the robot would move until
it reached a specified distance from the ball (about
30cm). Ro.bots task at that point was complete. If
the ball was moved the robot would chase it again.
The challenge of this robot task was in synchronizing
the communication between control modules as well
as doing fast vision processing.

5.2 Obstacle avoidance

While colour camera was used for detecting dynamic
objects in the environment, three cameras in the
robot body were used for stereo vision. The results
from these cameras produced a depth map of the en-
vironment. The performance of the stereo algorithm
was first tested by letting the robot move forward in
its environment. If an obstacle was encountered the
robot would choose to move left or right depending
on where the obstacle was. Obstacles were defined
as any object that is closer than a specified distance
(about 30cm). The robot was able to avoid static ob-
jects in the environment as well as dynamic objects
such as people walking in front of the robot.

-

-

5.3 Box Pushing

The robot can interact with its environment by push-
ing objects. To demonstrate this the robot was pro-
grammed to push a box along a specified path. The
challenge of this task was in locating the position of
the box relative to the robot and controlling the mo-
tion of the box. The pan-tilt camera was used to
locate the position of the box and the bump panels
were used to push the box. The robot was able to
push the box along a specified triangular path. The
box was kept at all times within 5 cm of the specified
path.

195

as well as robot control.

References

Figure 10: Occupancy Grid Map

5.4 Mapping

An example of a map built autonomously by Spinoza
is shown in Figure 10. The grey regions of the map
represent areas unseen by the robot. The white re-
gions are areas where it is known that no obstacles
exist, and the black regions are locations of known
obstacles. This map was made on a 500 x 500 grid,
each grid representing a 2 x 2 cm square. The robot
was able to autonomously explore and map out this
region in less than 10 minutes.

6 Conclusion

Spinoza demonstrates a sophisticated real-time vision
system for control of a responsive mobile robot, op-
erating in dynamic environments. It is a complex
system, coordinating multiple distributed, concurrent
processes on a wide range of architectures, and per-
forming a range of asynchronous activities. Its de-
sign represents the resolution of conflicting design
requirements: high processing capability and teler-
obotic guidance, under the limitations of a mobile
robot: power, heat, space, and communication band-
width.

The performance gap between specialized digital
signal processors and standard personal computers is
rapidly shrinking. Therefore the tradeoffs of using
embedded hardware versus conventional computer
hardware need to be closely examined. Our experi-
ence suggests that the costs, in terms of development
time and debugging time, are restrictively high using
C40s and Transputers. In the future we plan to ex-
periment with Intel based CPUs for vision processing

111 James Albus. Brians, behauiour, and robotics.

[2] R. L. Anderson.

BYTE Publications, 1981.

A Robot Ping-Pong Player:
Experiment in Real- Time Intelligent Control.
MIT Press, Cambridge, MA, 1988.

[3] R. Barman, S. Kingdon, J.J. Little, A.K. Mack-
worth, D.K. Pai, M. Sahota, H. Wilkinson, and
Y. Zhang. DYNAMO: real-time experiments
with multiple mobile robots. In Intelligent Vehi-
cles Symposium, Tokyo, July 1993.

[4] H. Bulthoff, J. J..Little, and T. Poggio. A paral-
lel algorithm for real-time computation of optical
flow. Nature, 337:549-553, February 1989.

[5] David Coombs, Martin Herman, Tsai Hong, and
Marilyn Nashman. Real-time obstacle avoidance
using central flow divergence and peripheral flow.
In Proc. 5th International Conference on Com-
puter Vision, pages 276-283, June 1995.

161 Gregory Dudek, Paul Freedman, and Ioannis M.
Rekleitis. Just-in-time sensing: efficiently com-
bining sonar and laser range data for explor-
ing unknown worlds. In Proc. IEEE Conf. on
Robotics and Automation, 1996, pages 667-672,
April 1996.

171 A. Elfes. Using occupancy grids for mobile robot
perception and navigation. IEEE Computer,
22(6):46-67, June 1989.

[8] C. Hansen, N. Ayache, and F. Lustman. Towards
real-time trinocular stereo. In Proc. 2nd Inter-
national Conference on Computer Vision, 1988.

[9] I. D. Horswill and R. A. Brooks. Situated vision
in a dynamic world: Chasing objects. In AAAI-
88, pages 796-800, St. Paul, MN, 1988.

[lo] Ian Horswill and Masaki Yamamoto. A $1000
active stereo vision system. In Proc. Workshop
on Visual Behaviors, pages 107-111, 1994.

[ll] Jean-Claude Latombe. Robot Motion Planning.
Kluwer, 1991.

Techniques for
calibration of the scale factor and image center
for high accuracy 3-d machine vision metrology.
IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 10:713-720, 1988.

[12] R. K. Lenz and R. Y. Tsai.

196

[13] J. J. Little, R. A. Barman, S. J. Kingdon, and
J. Lu. Computational architectures for respon-
sive vision: the vision engine. In Proceedings of
CAMP-91, Computer Architectures for Machine
Perception, pages 233-240, December 1991.

[14] James J. Little. Vision servers and their clients.
In Proc. 12th International Conference on Pat-
tern Recognition, pages 295-299, October 1994.

[15] James J. Little and Johnny Kam. A smart buffer
for tracking using motion data. In Proc. Work-
shop on Computer Architectures for Machine
Perception, pages 257-266, December 1993.

I161 Rod A. Barman Michael K. Sahota, Alan
K. Mackworth and Stewart J. Kingdon. Real-
time control of soccer-playing robots using off-
board vision: the dynamite testbed. In IEEE
International Conference o n Systems, Man, and
Cybernetics, pages 3690-3663, 1995.

[17] M. Okutomi and T. Kanade. A multiple-baseline
stereo. IEEE Transactions o n Pattern Analysis
and Machine Intelligence, 15(4):353-363,1993.

[18] S. B. Pollard, J. Porrill, J. E. W. Mayhew, and
J. P. fiisby. Matching geometrical descriptions
in three-space. Image and Vision Computing,
5~73-78, 1987.

[19] Michael K. Sahota. Reactive deliberation:
An architecture for real-time intelligent con-
trol in dynamic environments. In Proc. 12th
National Conference o n Artificial Intelligence,
pages 1303-1308,1994.

[20] Y. Zhang and A. K. Mackworth. Modeling be-
havioral dynamics in discrete robotic systems
with logical concurrent objects. In S. G. Tzafes-
tas and J. C. Gentina, editors, Robotics and Flex-
ible Manufacturing Systems, pages 187-196. El-
sevier Science Publishers B.V., 1992.

[21] Y. Zhang and A. K. Mackworth. Constraint nets:
A semantic model for real-time embedded sys-
tems. Theoretical Computer Science, 138:211-
239,1995.

[22] Y. Zhang and A. K. Mackworth. Synthesis of hy-
brid constraint-based controllers. In P. Antsak-
lis, W. Kohn, A. Nerode, and S. Sastry, edi-
tors, Hybrid Systems II, Lecture Notes in Com-
puter Science 999, pages 552-567. Springer Ver-
lag, 1995.

197

