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Abstract 

Rigorous analysis and evaluation of real imple- 
mented robotic systems for intelligent tasks are rarely 
performed. Such systems are often extremely compli- 
cated, dependang not only on ‘interesting’ theoretical 
parameters and models, but on many assumptions and 
constants which may be set almost arbitrarily. We 
view all task implementations as particular parame- 
terizations of the task goals they represent. Through 
fractional factorial experiments we establish the sta- 
tistically signaficant parameters and parameter inter- 
actions for a ‘sensorless ’ model-based push-orienting 
task. This type of analysis is a necessary step to un- 
derstanding integrated intelligent systems. It reveals 
aspects of system implementations which cannot eas- 
ily be predicted in advance, and gives a clear picture 
of the task requirements, given the strengths and weak- 
nesses of the observed system. 

1 Introduction 

For any task goal there are many potential robotic 
systems which could execute a plan to achieve it. 
These would employ a variety of actuators, informa- 
tion sources and computations. We would like to de- 
sign task solutions which are optimal, but in order to 
evaluate and compare systems which employ diverse 
components and methods, we need a framework and 
criteria by which to measure them. In the absence 
of clear and detailed specifications for multifaceted 
robotic tasks, the process of elucidating task require- 
ments will inevitably be experimental and cyclical. 
We therefore propose performance-based techniques 
for analysing the requirements of implemented robotic 
manipulation tasks. 

There are many ways to represent a robotic task 
and most do not take into account the complexity and 
variety of the hardware and software elements required 
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for actual implementation. The study of physical sys- 
tems typically cycles through phases of model build- 
ing, prediction, and experimental verification. View- 
ing robotic systems as parameterizations, with fea- 
tures, thresholds, constants, and constraints as  the 
task level parameters of interest, gives us a unifying 
representation common to such diverse fields as eco- 
nomics, statistics, control, and inverse theory. It al- 
lows the use of well established methods for analysis 
and comparison. 

Factorial experiments [a] are applied to systems 
where a number of parameters or factors may interact 
to affect system outcome. They are designed to give 
the researcher information on the effects and interac- 
tions of all factors simultaneously while limiting the 
number of experimental trials required. “Taguchi’s 
method” is a version of such designs advocated for 
improving manufacturing processes [7]. The theory of 
experimental design also gives us analysis of variance 
techniques which allow us to determine whether effects 
observed as a result of setting parameters to various 
levels are statistically significant. Thus for a system 
which we hypothesize to have k possibly interacting 
parameters, we can run specifically designed experi- 
ments and use statistical tools to determine whether 
each factor or interaction has a significant effect on 
outcome, We can then devote our resources to opti- 
mizing those system parameters with significant im- 
pact on task performance. 

2 The Part Orienting Task 
To demonstrate our ideas about task parameteriza- 

tion and experimental analysis we have chosen the 2D 
part orienting task. Although it is generally quite sim- 
ple (resolving only one degree of freedom of the part), 
it illustrates the variety in task performance that can 
be observed using empirical techniques. Push orient- 
ing was selected because, as a “sensorless” method, it 
simplifies some of the details involved in integrating 
sensor systems into robotic tasks. 
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Peshkin [6] describes a planning method for gener- 
ating sequences of manipulations to transform a part 
from an unknown initial orientation to a desired fi- 
nal orientation. His work is based on the design of 
fence feeders, but can equally well apply to a robot 
arm holding a fence and applying similar pushing op- 
erations. We have implemented a version of the lat- 
ter. The planner is based on a construct called the 
configuration map, a matrix which groups discretized 
initial orientations according to the final orientations 
which result after a push at a particular fence angle 
CY. Final orientations are determined by the corner of 
the part contacting, then rotating to align with the 
fence. Rotation direction is determined by the fric- 
tion between part and fence, and the centre of mass 
of the part [3]. For some discretization of the full 
range of fence angles, these maps are computed. Plan- 
ning is achieved by a search of the tree of all push se- 
quences with pruning. We have augmented this plan- 
ner slightly by allowing transitions to more than one 
outcome, when model uncertainty makes the exact 
transition point from clockwise to counterclockwise ro- 
tation uncertain. Very recently more direct methods 
for computing fence angles for fence feeders have been 
proposed [$I, but the system described here, although 
slower. is nonetheless effective. 

3 Fractional Factorial Experiments 
Like other statistical experiments, factorial exper- 

iments apply treatments in a structured manner to 
extract as much information about the effects and in- 
teractions of factors as possible. In the general case, 
for a complete factorial design we select some number 
of levels Zi for each of IC factors and test all possible 
combinations of all levels of the various factors. Such 
an arrangement is called an 11 x /2 x ... x [ I ,  factorial 
design. If all 11 = 12 = ... = l k  = I then the design is 
referred to as an lk symmetrical factorial experiment. 
Commonly 2k experiments are used, where each of k 
factors are tested at two levels; we shall describe these 
in what follows. 

We are interested in testing the effect of each fac- 
tor individually, or its main effect, and the interactions 
among factors, or interaction effects. The main effect 
of a factor is computed from the set of responses ob- 
served under each treatment combination as follows, 

Main Effect = ( while factor) - ( while factor) 

In other words an observation has coefficient 1 where 
the factor is high, or coefficient -1 if the factor is low. 

avg effect avg effect 

is high is low 

Coefficients for computing interaction effects can be 
generated by elementwise multiplication of the coef- 
ficients for the main effects of the factors involved in 
the interaction [l]. Treatrnent combinations are gen- 
erally distinguished from computed effects by the use 
of lower case versus upper case factor labels. 

The general formulation for such experiments for p 
treatments is 

Yi= ,u+r i+e; , i= l ,2  ,... p .  (1) 

In other words the observation Y;: is composed of its 
underlying mean 1.1 plus the treatment effects r; plus 
a normally distributed random error ei. The null hy- 
pothesis for such experiments is that all r; are zero, 
implying that the mean for all treatment populations 
is the same. We can then use analysis of variance 
(ANOVA) techniques to accept or reject these hy- 
potheses. Thus we begin with the null hypothesis 
that the various factors and interactions between them 
have no effect on observed responses. Referring to 
equation (1), the treatments rj are the various treat- 
ments proscribed by the factor levels, for example A h ;  

versus Al, is one partition of the observed samples. 
The sums of squares for the contrasts used to esti- 
mate effects, have a x2 distribution with 1 dof for the 
2k case, we can therefore construct an ANOVA ta- 
ble for our factorial designs. Every ‘effect’ described 
above is actually the difference between average obser- 
vations for two treatment levels spanning the entire 
set of experimental observations [7]. Using ANOVA 
we can apply the F test to determine whether our ex- 
periments provide sufficient evidence to reject the null 
hypothesis. 

Fractional factorial experiments take advantage of 
the redundancy available in the set of observations to 
allow the experimenter to make fewer runs in the ini- 
tial stages of his investigation. This is particularly 
important when the number of factors tested is large 
and hence the number of trials required by a com- 
plete design is huge. In this technique a subset of the 
factor/level combinations is used. Generally the se- 
lection of the subset is done such that higher order 
interactions are confounded or aliased to main effects 
or low order interactions, under the assumption that 
interactions among many factors are less likely to be 
significant [l]. In other words if you eliminate some of 
the treatment outcomes on which effect computations 
are based, some effects will inevitably become indistin- 
guishable. The subset of observations is chosen based 
on an identity set of high order effects, which become 
completely confounded. For any choice of the identity 
relationship we can generate the resulting confound- 
ing relationships with all other effects via computing 



generalized interactions with the identity [a]. 

4 Experiments and Parameterizations 

The premise of this investigation is that any robotic 
system which performs a task, implements an underly- 
ing physical ‘computation’. We view such systems as 
parameterizations of this computation. Anyone who 
builds systems knows that they contain many param- 
eters and thresholds which must be chosen by the de- 
signer: sometimes based on theory, sometimes via in- 
tilition and limited testing. All of these design choices 
affect the performance of the system. Below we enu- 
merate one possible parameterization of the part ori- 
enting task represented by the push planner. 

Eleven parameters or factors were selected as rep- 
resentative for the push planning system. These are 
described in brief with their assigned values in Table 1. 
The parameters F ,  C and V indicate the accuracy of 
the measured values of the friction coefficient, centre of 
mass and vertices respectively. D is the discretization 
factor for the fence angles and hence the branching 
factor for the push planner’s tree search. In our coor- 
dinate system fence angles near 0 or ?r are essentially 
end-on to the part and are too steep to allow viable 
pushes. We therefore set a limit L on the set of fence 
angles, searching only from (0 + L )  to ( ?r - L )  . 

Our experience with executing push plans has 
shown that steeper fence angles are less reliable be- 
cause, with limited fence length and push distance, 
parts tend to “fall off  the end of the fence or wind 
up under the fence because they were left out of its 
range by the preceding fence angle. As a result we 
have added a constraint S to the push planner which 
prefers plans with shallower (closer to 5) fence angles. 
We chose to evaluate the presence and absence of this 
constraint to determine its usefulness and its effects 
on other aspects of the planner. 

Peshkin 153 describes methods for bounding the re- 
quired push distance to align a part with a fence, based 
on the slowest possible centre of rotation. We have 
used his formulation to compute a bound on maxi- 
mum push distance for each push in a plan. Minimiz- 
ing push distance is another constraint P ,  we added 
because of the real physical limits of an implemented 
push planner. Plans with the shortest total push dis- 
tance or shortest maximum push are preferred. 

In terms of costs for an active push orienter, each 
additional push is expensive because it requires a mo- 
tion sequence. We have therefore added a constraint 
N which prefers plans with fewer pushes. 

Finally factors A ,  B ,  and K indicate whether the 
uncertainty compensation described in Section 2 is 

Figure 1: On the left is an image of the Triangular 
part, on the right its model. 

Figure 2: On the left is an image of the L-shaped 
part, on the right its model. 

Figure 3: On the left is an image of the G-shaped 
part, on the right its 20 vertex model. 

turned on for friction, centre of mass and vertex un- 
certainty respectively. 

The experiments described in this paper were per- 
formed on the parts pictured in Figures 1, 2 and 3. For 
the push planner, these parts span a range of complex- 
ity. The triangle (T) has three stable sides. The “L” 
has two short sides which tend not to act as stable 
resting positions and the “G” has been modelled by a 
polygon with 20 vertices rather than a true curve. 

4.1 The Fractional Factorial Design 

Clearly we cannot run 211 trials for the 11 pa- 
rameters we have selected for the push planner. We 
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Measured Centre of Mass 
Measured Vertex Position 
Discretization Factor 
Fence Angle Limits 
Fence Steepness Limit 
Push Distance Limit 
Plan Length Limit 
Friction Uncert. Compensation 
C of M Uncert. Compensation 
Vertex Uncert. Compensation 

I I L 1\1(0.30,0.03) I 0.30 
G N(0.23,0.015) 0.23 

c n / ( C o f M ,  0.25cm) Measured Value CofM 
V N (  K ,  0.  lcm) Measured Position K 
D 60 30 
L 
S TRUE FALSE 
P TRUE FALSE 
N TRUE FALSE 
A TRUE FALSE 
B TRUE FALSE 
A’ TRUE FALSE 

[5, (180 - 5)] deg [30, (180 - 30)] deg 

Table 1: Parameter values for push planner. Qualitative factor values are denoted 
TRUE and FALSE indicating whether the property is active. N ( p ,  CT) repre- 
sents a value drawn from a normal distribution with the indicated parameters. 

will therefore use a $ fractional factorial experi- 
ment with % = 2’ treatments tested. The iden- 
tity relation used to generate the fraction of treat- 
ments for the push planner is I = CVDLSP = 
FVDLNA = F C S P N A  = FCDLBK = 
FVSPBK = C V N A B K  = DLSPNABK.  The gen- 
erated fractional factorial experiment requires 256 tri- 
als, but provides information on the main effects and 
all two-factor interactions, confounded with only three 
or higher order interactions. 

Although we have a working system to execute push 
plans, we used a simple simulator (tested extensively 
against the real system’s performance) because of time 
limitations and the sheer number of trials required. 
The simulator takes the part model and the selected 
plan (with associated maximum push distances) and 
outputs a success or fail based on the same cw or ccw 
rotation decisions used by the push planner. In addi- 
tion, however, the simulator approximates the part’s 
speed of alignment with the fence which means plans 
can fail because the part never becomes fully aligned. 
The part’s slide along the fence after alignment is sim- 
ulated and may cause it to “fall off’ the limited extent 
of our fence. If some inaccuracies are assumed in the 
part features, a normally distributed perturbation is 
added to the appropriate vectors potentially causing 
“bad” rotations. Outcome proportions of success are 
based on simulating 1000 plan executions with uni- 
formly distributed random initial part orientations. 

5 Observed Outcomes 
Tables 2 through 4 contain the analysis of vari- 

ance computations for the proportion of success for 

11 
the three parts under consideration. All main effect 
values are indicated but two factor interactions with 
F value less than Fa = 2.71 for a = 0.1, have been 
pooled. 

5.1 Triangle Outcomes 

ANOVA - Success Rate for Triangle 
Source dof SS Mean Sqrs F 

F 1 0.018 0.018 0.110 
C 1 0.531 0.531 3.249 
V 1 0.008 0.008 0.047 
D 1 0.203 0.202 1.239 
L 1 1.616 1.616 9.889 
s 1 0.479 0.479 2.931 
P 1 0.007 0.007 0.046 
N 1 0.218 0.212 1.295 
A 1 0.034 0.034 0.206 
B 1 0.017 0.017 0.102 
K 1 0.019 0.019 0.114 

DL 1 0.777 0.777 4.755 
LS 1 0.702 0.702 4.299 
LP 1 0.484 0.484 2.960 

1.223 7.486 SK 1 1.223 
Error E 176 28.762 0.163 1.000 
Total T 255 35.091 214.729 1.000 

Table 2: Analysis of Variance summary for propor- 
tion of success for triangle part. 

For the triangle, Table 2 tells us that the significant 
effects are C ,  L ,  S ,  DL,  LS ,  LP and SIC. The most 
significant effect is the negative effect for angle limit 
L.  In other words, the rate of success when L is low 
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is greater than that when it is high. S also exhibits 
significant positive effect. Clearly our efforts to limit 
steep fence angles are successful for the triangle part. 
Given that uncertainty in centre of mass C signifi- 
cantly degrades results, we see that plans are sensitive 
to inaccuracy in this measured feature. Uncertainties 
in friction and vertex location show less significant ef- 
fects, probably because variation in centre of mass is 
very much like perturbing all vertices simultaneously, 
thus resulting in greater impact on outcome. 

The most significant interaction effect is SI< which 
is negative. In this case vertex compensation I< has 
a large negative effect when steepness minimization 
S is used and a strong positive effect when S is not 
used. We see significant interactions for L with D,  P 
and S .  For LP and LS the effects are positive. In 
the case of DL we see a negative effect supported by 
the negative effect of L and the insignificant, but also 
negative effect of D. 

5.2 “L” Outcomes 

ANOVA - Success Rate for “L” 
Source dof SS Mean Sqr F 

F 1  
C l  
v 1  
D 1  
L 1  
s 1  
P 1  
N 1  
A 1  
B 1  
K 1  

DL 1 
LS 1 
LP 1 
SP 1 
SK 1 

0.167 
0.445 
0.075 
1.011 
2.455 
0.271 
0.030 
0.442 
0.058 
0.039 
0.002 
0.493 
1.231 
0.500 
0.609 
1.211 

0.167 
0.445 
0.075 
1.011 
2.455 
0.271 
0.030 
0.443 
0.058 
0.039 
0.002 
0.493 
1.231 
0.500 
0.609 
1.211 

1.081 
2.886 
0.488 
6.551 

15.909 
1.756 
0.194 
2.868 
0.377 
0.252 
0.010 
3.194 
7.980 
3.240 
3.950 
7.846 

Error E 175 27.002 0.154 1.000 
Total T 255 36.041 233.584 1.000 

Table 3: Analysis of Variance for success for “L” 

part. 

Again we examine our tabulated ANOVA (Table 3) 
to determine the significant effects for the “L” part. 
The effect L is again the largest effect and is negative. 
The D effect has increased to a significant negative 
effect and the interaction of the two, DL, is negative. 

Other significant effects include the negative effect 
of noise in the centre of mass, and the negative effect 
of N ,  minimizing the number of pushes in a plan. LS 

is a positive effect; the effect of P with L low was neg- 
ative. Examining the negative effect for SK suggests 
a strong negative effect of It‘ when S is high. 
5.3 “G” Outcomes 

ANOVA - Success Rate for “G” 
Source dof SS Mean Sqrs F 

F 1 0.286 0.286 4.244 
C 1 0.936 0.936 13.902 
V 1 4.855 4.855 72.102 
D 1 0.337 0.337 5.002 
L 1 0.153 0.153 2.277 
S 1 1.960 1.960 29.104 
P 1 0.010 0.010 0.152 
N 1 0.000 0.000 0.002 
A 1 0.003 0.003 0.045 
B 1 0.012 0.012 0.180 
K 1 0.034 0.034 0.511 

FV 1 0.216 0.216 3.203 
CV 1 0.985 0.985 14.635 
VL 1 0.184 0.184 2.728 
VS 1 1.029 1.029 15.278 
LS 1 0.403 0.403 5.981 
F P  1 0.285 0.285 4.226 
DK 1 0.233 0.233 3.454 
SK 1 0.378 0.378 5.612 
NK 1 0.196 0.196 2.912 

Error E 171 11.514 0.067 1.000 
Total T 255 24.008 356.551 1.000 

Table 4: Analysis of Variance summary for propor- 
tion of success for “G” part. 

The most noticeable difference between the “G” 
and the other parts is the extreme sensitivity to noise 
in part features (Table 4). All of the noise factors 
F ,  C and V have significant negative effects and they 
interact with each other and with other factors in sig- 
nificant ways. The oddest effect is perhaps that noise 
in the friction measurement is aggravated by minimiz- 
ing push distance (interaction F P ) .  Perhaps shorter 
push distances imply steeper fence angles and these 
are more likely to depend critically on friction vectors. 

The strongest non-noise effect is steepness mini- 
mization S which is positive. D again is a significant 
negative effect and L ,  while not above the significance 
test, is also negative. The positive interaction V L  
merely tells us that L has a negative effect for the 
low noise condition. The negative effect of V S  indi- 
cates S’s positive effect at low noise. For LS,  detailed 
examination shows that the effect of S is positive for 
both high and low levels of L.  Although It‘ has a small 
positive effect a t  low N and D settings, it imposes a 
negative effect for the more significant high S .  
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5.4 Observations 
For the three parts studied (the triangle, “G” and 

“L”) the push orienting system demonstrated different 
behaviours and different optimal parameter settings. 
This is true even for this very basic manipulation oper- 
ation of orienting a part. Most of the information rel- 
evant to orienting the triangle appears to be contained 
in parameters S ,  L and V .  For the “L” part the most 
significant parameters are centre of mass variation C,  
fence angle discretization D ,  the limit on steep angles 
L and minimization of plan length N .  The “G” fared 
badly under push orienting with extreme sensitivity io 
the noise parameters F ,  C ,  and V .  The relevant infor- 
mation for this part and orienting method is captured 
by F ,  C, V ,  D and S. 

For the push planner this analysis clearly indicates 
the increasing complexity of the parts with respect 
to push orienting. Although, for example, the tri- 
angle and the “L” would appear very similar under 
the model used, analysis demonstrates that the perfor- 
mance of the system for each part and the parameters 
which exhibit significance are quite different. Clearly 
the individual part information and its inherent com- 
plexity play a major role in task definition. 

6 Summary and Conclusions 
In this paper we have advocated treating task im- 

plementations as task parameterizations which can 
be explored experimentally. We have described a 
performance-based experimental method for analysing 
robotic task implementations. We demonstrated the 
usefulness of treating robotic systems as complex pa- 
rameterizations of tasks, then employing factorial ex- 
periments to identify significant parameters and in- 
teractions among parameters for each of 3 parts (a 
triangle, an “L” shape and a “G” shape) for a push 
orienting task. Perhaps the most surprising results 
were the differences between the sets of parameters 
which proved most significant for each part. 

The most significant lesson learned from this anal- 
ysis is that extensive analysis of actual robotic imple- 
mentations is a necessary step to understanding such 
systems and the tasks they perform. This type of anal- 
ysis reveals aspects of the implementation which can- 
not be predicted a priori. It also clearly defines what 
information is necessary for a particular task imple- 
mentation, and what the strengths and weaknesses of 
these implementations are. 

In many ways the sensorless push orienting system 
examined here is one of the simplest we could choose. 
We have also applied these methods to more compli- 
cated sensing-action systems, including an integrated 

vision and manipulation system, as part of a larger 
methodology for analysis and comparison of robot ma- 
nipulation tasks [4]. 

Experimental systems in vision and robotics have 
rarely been rigorously tested and documented. An 
important conclusion of this work is that it is vacuous 
to propose a robot solution without a clear analysis of 
its system parameters and how they interact with each 
other, and with task success. This is especially true as 
the task becomes more complicated. In our analysis 
we have clearly demonstrated that determining key 
task parameters and their effect on performance, is 
critical to providing and understanding robust task 
solutions. These results point the way toward a theory 
of practical and economic application of robotics in 
manufacturing and other industries. 

References 
Aloke Dey. Orthogonal Fractional Factorial De- 
signs. Halsted Press, John Wiley and Sons, New 
York, NY, 1985. 

Oscar Kempthorne. The Design and Analysis of 
Experiments. John Wiley and Sons, New York, 
N.Y. , 1952. 

Matthew T .  Mason. Mechanics and Planning of 
Manipulator Pushing Operations. International 
Journal of Robotics Research, 5(3):52-71, 1986. 

Jane Mulligan. Empirical Evaluation of Informa- 
tion for Robotic Manipulation Tasks. Computer 
science, University of British Columbia, Vancou- 
ver, B.C., August 1996. 

Michael A. Peshkin and Arthur C. Sanderson. The 
motion of a pushed, sliding workpiece. IEEE 
Journal of Robotics and Automation, 4(6):569- 
598, 1988. 

Michael A. Peshkin and Arthur C. Sanderson. 
Planning robotic manipulation strategies for work- 
pieces that slide. IEEE Journal of Robotics and 
Automation, 4(5):524-531, 1988. 

Ranjit K. Roy. A Primer on the Taguchz Method. 
Competitive Manufacturing Series. Van Nostrand 
Reinhold, New York, NY, 1990. 

Jeff Wiegley, Ken Goldberg, Mike Peshkin, and 
Mike Brokowski. A complete algorithm for design- 
ing passive fences to orient parts. In ICRA ’96, vol- 
ume 2, pages 1133-1139, Minneapolis, Minnesota, 
April 1996. 

3353 


