
Constraint-Based Agents:

The ABC’s of CBA’s

Alan K. Mackworth

Laboratory for Computational Intelligence, Department of Computer Science
University of British Columbia, Vancouver, B.C. V6T 1Z4, Canada

mack@cs.ubc.ca

http://www.cs.ubc.ca/spider/mack

Abstract. The Constraint-Based Agent (CBA) framework is a set of
tools for designing, simulating, building, verifying, optimizing, learning
and debugging controllers for agents embedded in an active environment.
The agent and the environment are modelled symmetrically as, possibly
hybrid, dynamical systems in Constraint Nets, as developed by Zhang
and Mackworth. This paper is a tutorial overview of the development
and application of the CBA framework, emphasizing the important spe-
cial case where the agent is an online constraint-satisfying device. Here
it is often possible to verify complex agents as obeying real-time tem-
poral constraint specifications and, sometimes, to synthesize controllers
automatically. The CBA framework demonstrates the power of viewing
constraint programming as the creation of online constraint-solvers in
dynamic environments.

1 Introduction

Constraint programming has evolved several powerful frameworks for building
problem-solvers as constraint-satisfying devices. Primarily, these devices are off-
line problem-solvers. For example, the Constraint Satisfaction Problem (CSP)
paradigm has evolved and matured over the last twenty-five years. The algo-
rithms developed in the CSP paradigm were made more available and more
useful when they were incorporated into the Constraint Programming (CP) lan-
guage paradigms. Despite this success, however, a major challenge still facing
the constraint research community is to develop useful theoretical and practical
tools for the constraint-based design of embedded intelligent systems. Many ap-
plications require us to develop online constraint-satisfying systems that function
in a dynamic, coupled environment [6]. An archetypal example of an application
in this class is the design of controllers for sensory-based robots [13,10,7]. If we
examine this problem we see that almost all the tools developed to date in the
CSP and CP paradigms are inadequate for the task, despite the superficial at-
traction of the constraint-based approach. The fundamental difficulty is that, for
the most part, the CSP and CP paradigms still presume a disembodied, offline
model of computation.

R. Dechter (Ed.): CP 2000, LNCS 1894, pp. 1–10, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

2 Alan K. Mackworth

Consider an agent coupled to its active environment as shown in Figure 1.
Each is an open dynamic system in its own right, acting on, and reacting to, the
other. The coupled pair form a closed system that evolves over time.

AGENT

ENVIRONMENT

ActionsReactions

Fig. 1. An agent interacting with its environment

To deal with such embedded applications, we must radically shift our per-
spective on constraint satisfaction from the offline model in which a solution is
a function of pre-given static inputs to an online model where a solution is a
temporal trace of values, a transduction of the input trace over time. Values in
the input trace may depend on earlier values in the output trace. In fact, the
input trace for the agent is itself a mapping of its output trace, representing the
dynamics of the environment, as shown in Figure 1.

Intelligent systems embedded as controllers in real or virtual systems must
be designed in an online model based on various time structures: continuous, dis-
crete and event-based. The requisite online computations, or transductions, are
to be performed over various type structures including continuous and discrete
domains. These hybrid systems require new models of computation, constraint
satisfaction and constraint programming. To this end, we have defined constraint
satisfaction as a dynamic system process that approaches asymptotically the so-
lution set of the given, possibly time-varying, constraints [12]. Under this view,
constraint programming is the creation of a dynamic system with the required
property.

In this paper I present a tutorial overview of our approach, called Constraint-
Based Agents (CBA), the ABC’s of CBA’s, if you like. The CBA model consists,
at its simplest, of a symmetrical coupling of an agent and its active environment.
As we’ll see later, we say the agent is constraint-based if its behaviour satisfies
a specification in a constraint-based temporal logic.

2 Agents in the World

The most obvious artificial agents in the world are robots. But the CBA approach
applies equally to embedded devices, pure software agents and natural animate

Constraint-Based Agents: The ABC’s of CBA’s 3

agents. There are many ways of using a CBA model, including the embedded
mode, simulation mode, verification mode, optimization mode, learning mode
and design mode [8, p. 449]. The agent design problem is formidable, regardless
of whether the agent is designed or modified by a human, by nature (evolution),
by another agent (bootstrapping), or by itself (learning). An agent is, typically, a
hybrid intelligent system, consisting of a controller coupled to its body as shown
in Figure 2.

ENVIRONMENT

BODY

ActionsReactions

CONTROLLER

ConstraintsReports

AGENT

Fig. 2. The structure of a constraint-based agent system

The controller and the body both consist of discrete-time, continuous-time
or event-driven components operating over discrete or continuous domains. The
controller has perceptual subsystems that can (partially) observe, or infer, the
state of the body and, through it, the state of the environment.

Parenthetically, the ‘body’ of an agent is simply the direct interface of the
agent to its environment. The body executes actions in the environment, senses
the state of the environment, which may well cause state changes in the body,
and reports to the controller. In the case of a robotic agent the body consists
of one or more physical systems but in the case of an embedded software agent,
the body is simply the software module that directly interfaces to the virtual or
physical environment. Control theorists typically call the body the ‘plant’. Some
models do not differentiate between the body and the environment; we prefer to
make that differentiation, based on the distinction between what is directly, and
what is indirectly, controlled.

Agent design methodologies are evolving dialectically [4]. The symbolic meth-
ods of ‘Good Old Fashioned Artificial Intelligence and Robotics’ (GOFAIR) con-

4 Alan K. Mackworth

stitute the original thesis. The antithesis is reactive ‘Insect AI’ and control the-
ory. The emerging synthesis, Situated Agents, has promise, but needs formal
rigor and practical tools [9,3,2,4,13,7].

In 1992, I proposed robot soccer as a grand challenge problem [4] since it
has the task characteristics that force us to confront the fundamental issues of
agent design in a practical way for a perceptual, collaborative, real-time task
with clear performance criteria. At the same time, I described the first system
for playing robot soccer. Since then it has been a very productive testbed both
for our laboratory [1,10,5,16,18,17,20] and for many other groups around the
world, stimulating research toward the goal of building perceptual agents.

3 The Constraint Net Model

The Constraint Net (CN) model [14] was developed by Ying Zhang and Mack-
worth as a model for building hybrid intelligent systems as Situated Agents.
In CN, an agent system is modelled formally as a symmetrical coupling of an
agent with its environment. Even though an agent system is, typically, a hybrid
dynamic system, its CN model is unitary. Most other agent and robot design
methodologies use hybrid models of hybrid systems, awkwardly combining off-
line computational models of high-level perception, reasoning and planning with
online models of low-level sensing and control.

CN is a model for agent systems software implemented as modules with I/O
ports. A module performs a transduction from its input traces to its output
traces, subject to the principle of causality: an output value at any time can
depend only on the input values before, or at, that time. The model has a formal
semantics based on the least fixpoint of sets of equations [14]. In applying it to an
agent operating in a given environment, one separately specifies the behaviour
of the agent body, the agent control program, and the environment. The total
system can then be shown to have various properties, such as safety and liveness,
based on provable properties of its subsystems. This approach allows one to
specify and verify models of embedded control systems. Our goal is to develop it
as a practical tool for building real, complex, sensor-based agents. It can be seen
as a formal development of Brooks’ subsumption architecture [2] that enhances
its reliability, modularity and scalability while avoiding the limitations of the
augmented finite state machine approach, combining proactivity with reactivity.

An agent situated in an environment can be modelled as three machines:
the agent body, the agent controller and the environment, as shown above in
Figure 2. Each can be modelled separately as a dynamical system by specifying
a CN with input and output ports. The agent is modelled as a CN consisting
of a coupling of its body CN and its controller CN by identifying corresponding
input and output ports. Similarly the agent CN is coupled to the environment
CN to form a closed agent-environment CN, as shown above in Figure 1

The CN model is realized as an online dataflow-like distributed programming
language with a formal algebraic denotational semantics and a specification lan-
guage, a real-time temporal logic, that allows the designer to specify and prove

Constraint-Based Agents: The ABC’s of CBA’s 5

properties of the situated agent by proving them of the agent-environment CN.
We have shown how to specify, design, verify and implement systems for a robot
that can track other robots [11], a robot that can escape from mazes and a two-
handed robot that assembles objects [13], an elevator system [19] and a car-like
robot that can plan and execute paths under non-holonomic constraints [16].

Although CN can carry out traditional symbolic computation online, such as
solving Constraint Satisfaction Problems and path planning, notice that much
of the symbolic reasoning and theorem-proving may be outside the agent, in the
mind of the designer, for controller synthesis and verification. GOFAIR does not
make this distinction, assuming that such symbolic reasoning occurs explicitly
in, and only in, the mind of the agent.

The question “Will the agent do the right thing?” [13] is answered positively
if we can:

1. model the coupled agent system at a suitable level of abstraction,
2. specify the required global properties of the system’s evolution, and
3. verify that the model satisfies the specification.

In CN the modelling language and the specification language are totally dis-
tinct since they have very different requirements. The modelling language is a
generalized dynamical system language. Two versions of the specification lan-
guage, Timed Linear Temporal Logic [16] and Timed ∀-automata [12], have been
developed with appropriate theorem-proving and model-checking techniques for
verifying systems. In [8, Chapter 12] we describe how to build a situated robot
controller using CN as realized in a logic program.

4 Constraint-Satisfying Agents

Many agents can be designed as online constraint-satisfying devices [12,15,16].
A robot in this restricted scheme can be verified more easily. Moreover, given a
constraint-based specification and a model of the body and the environment, au-
tomatic synthesis of a correct constraint-satisfying controller sometimes becomes
feasible, as shown for a simple goal-scoring robot in [16].

As a simple example, in Figure 2 suppose the CONTROLLER is a thermo-
stat turning on or off a furnace, the BODY, that is heating the ENVIRON-
MENT. The goal of the system is to make the temperature of of the ENVI-
RONMENT, TE, equal to a desired temperature, TD. In other words the CON-
TROLLER of the AGENT is trying to solve the constraint TE(t) = TD(t). One
version of CONTROLLER correctness is established if we can prove that the
(thermal) dynamics of the coupled AGENT-ENVIRONMENT system satisfy
the temporal logic formula ✸✷|TE − TD| < ε where ✸ can be read as ‘eventu-
ally’ and ✷ can be read as ‘always’. In other words, the system will, no matter
how it is disturbed, eventually enter, and remain within, an ε-neighborhood of
the solution manifold of the constraint. A less restrictive form of correctness
corresponds to the specification ✷✸|TE − TD| < ε which is to say that the sys-
tem will always return, asymptotically, to the constraint solution manifold if it
should happen to leave it.

6 Alan K. Mackworth

A constraint is simply a relation on the phase space of the agent system, which
is the product of the controller, body and environment spaces. A controller is
defined to be constraint-satisfying if it, repeatedly, eventually drives the system
into an ε-neighborhood of the constraint using a constraint satisfaction method
such as gradient descent or a symbolic technique.

ENVIRONMENT

BODY

ActionsReactions

AGENT

CONTROLLER-1

CONTROLLER-2

CONTROLLER-n

Fig. 3. A hierarchical agent controller

A constraint-satisfying controller may be hierarchical with several layers of
controller above the body, as shown in Figure 3. In this case, each layer must
satisfy the constraints, defined on its state variables, appropriate to the layer,
as, typically, set by the layer above. The layers below each layer present to that
layer as a virtual agent body, in a suitably abstract state space [16,17]. The
lower layers are, typically, reactive and synchronous (or in continuous time) on
continuous state spaces; the upper layers are more deliberative and asynchronous
(or event-triggered) in symbolic, discrete spaces.

A typical layer in a hierarchical controller is shown in Figure 4.
Each layer has two external inputs: the trace of constraint requests coming

from above ConstraintsIn (CI) and the reports coming from below ReportsIn
(RI). Its two outputs are its reports to the level above ReportsOut (RO) and
its constraint requests to the level below ConstraintsOut (CO). These traces
arise from causal transductions of the external inputs:

Constraint-Based Agents: The ABC’s of CBA’s 7

EMBEDDED
CONSTRAINT

SOLVER

ConstraintsOutReportsIn

ConstraintsInReportsOut RO

RI

CI

CO

Fig. 4. A layer in a constraint-based controller

CO = Ct(CI, RI) (1)
RO = Rt(CI, RI) (2)

If the constraint-solver can be represented as a state-based solver then the
layer may be represented as shown in Figure 5.

EMBEDDED
CONSTRAINT

SOLVER

ConstraintsOutReportsIn

ConstraintsInReportsOut RO

RI

CI

CO

SOSI
StateOutStateIn

Fig. 5. A layer with state in a constraint-based controller

Here, for simplicity, a discrete-time state-based layer is shown. It produces an
extra output StateOut (SO) that is consumed as an extra input StateIn (SI)
after a unit delay (∆). In this case the behaviour of the layer may be represented
by computing the values of the three outputs as transliterations (functions) of
the current values of the three inputs:

co(t) = cf (ci(t), ri(t), si(t)) (3)
ro(t) = rf (ci(t), ri(t), si(t)) (4)
so(t) = sf (ci(t), ri(t), si(t)) (5)

si(t+ 1) = so(t) (6)

8 Alan K. Mackworth

5 Robot Soccer Players

The CBA framework has also been motivated, developed and tested by ap-
plication to the challenge of designing, building and verifying controllers with
perceptual systems for robot soccer players with both off-board and on-board
vision systems.

In the Dynamo (Dynamics and Mobile Robots) project in our laboratory, we
have experimented, since 1991, with multiple mobile robots under visual con-
trol. The Dynamite testbed consists of a fleet of radio-controlled vehicles that
receive commands from a remote computer. Using our custom hardware and a
distributed MIMD environment, vision programs are able to monitor the po-
sition and orientation of each robot at 60 Hz; planning and control programs
generate and send motor commands at the same rate. This approach allows
umbilical-free behaviour and very rapid, lightweight fully autonomous robots.
Using this testbed we have demonstrated various robot tasks [1], including play-
ing soccer [10] using a 2-layer deliberative/reactive controller architecture.

One of the Dynamo robots, Spinoza, is a self-contained robot consisting of
an RWI base with an RGB camera on a pan-tilt platform mounted as its head
and a trinocular stereo camera in its base. As a illustration of these ideas, con-
sider the task for Spinoza of repeatedly finding, tracking, chasing and kicking a
soccer ball, using the pan-tilt camera. After locating the moving ball Spinoza is
required to track it, move to within striking distance of the ball and strike it.
The available motor commands control the orientation of the base, the forward
movement of the base, and the pan and tilt angles of the camera. The parameters
can be controlled in various relative/absolute position modes or rate mode. The
available rate of pan substantially exceeds the rate of base rotation. A hierar-
chical constraint-based active-vision controller, using prioritized constraints and
constraint arbiters, can be specified for Spinoza that will, repeatedly, achieve
and maintain (or re-achieve) the desired goal subject to safety conditions such
as staying inside the soccer field, avoiding obstacles and not accelerating too
quickly. If the dynamics of Spinoza and the ball are adequately modelled by the
designer then this constraint-based vision system will be guaranteed to achieve
its specification.

Yu Zhang and Mackworth have extended these ideas to build three-layer
constraint-satisfying controllers for a complete soccer team [20]. The controllers
for our softbot soccer team, UBC Dynamo98, are modelled in CN and imple-
mented in Java, using the Java Beans architecture [17]. They control the soccer
players’ bodies in the Soccer Server developed by Noda Itsuki for RoboCup.
These experiments provide evidence that the constraint-based CN approach is a
clean and practical design framework for perceptual robots.

6 Conclusions

The Constraint-Based Agent approach is a framework for the specification, de-
sign, analysis, implementation and validation of artificial and natural agent sys-

Constraint-Based Agents: The ABC’s of CBA’s 9

tems. It requires a new model of online and embedded computation for Con-
straint Programming, Constraint Nets.

Acknowledgments

I am most grateful to Ying Zhang and Yu Zhang for our collaborations. I
also thank Rod Barman, Cullen Jennings, Stewart Kingdon, Jim Little, Valerie
McRae, Don Murray, Dinesh Pai, David Poole, Michael Sahota, and Vlad Tu-
cakov for help with this. This work is supported, in part, by the Natural Sciences
and Engineering Research Council of Canada and the Institute for Robotics and
Intelligent Systems Network of Centres of Excellence.

References

1. R. A. Barman, S. J. Kingdon, J. J. Little, A. K. Mackworth, D. K. Pai, M. Sahota,
H. Wilkinson, and Y. Zhang. Dynamo: Real-time experiments with multiple mobile
robots. In Intelligent Vehicles Symposium, pages 261–266, Tokyo, July 1993. 4, 8

2. R. A. Brooks. Intelligence without reason. In IJCAI-91, pages 569–595, Sydney,
Australia, Aug. 1991. 4

3. J. Lavignon and Y. Shoham. Temporal automata. Technical Report STAN-CS-
90-1325, Stanford University, Stanford, CA, 1990. 4

4. A. K. Mackworth. On seeing robots. In A. Basu and X. Li, editors, Computer
Vision: Systems, Theory, and Applications, pages 1–13. World Scientific Press,
Singapore, 1993. 3, 4

5. A. K. Mackworth. Quick and clean: Constraint-based vision for situated robots.
In IEEE Int’l. Conf. on Image Processing, pages 789–792, Lausanne, Switzerland,
Sept. 1996. 4

6. A. K. Mackworth. Constraint-based design of embedded intelligent systems. Con-
straints, 2(1):83–86, 1997. 1

7. A. K. Mackworth. The dynamics of intelligence: Constraint-satisfying hybrid sys-
tems for perceptual agents. In Hybrid Systems and AI: Modeling, Analysis and
Control of Discrete and Continuous Systems, number SS-99-05 in AAAI, Spring
Symposium Series, pages 210–214, Stanford, CA, Mar. 1999. 1, 4

8. D. L. Poole, A. K. Mackworth, and R. G. Goebel. Computational Intelligence: A
Logical Approach. Oxford University Press, New York, 1998. 3, 5

9. S. J. Rosenschein and L. P. Kaelbling. The synthesis of machines with provable
epistemic properties. In Joseph Halpern, editor, Proc. Conf. on Theoretical Aspects
of Reasoning about Knowledge, pages 83–98. Morgan Kaufmann, Los Altos, CA,
1986. 4

10. M. Sahota and A. K. Mackworth. Can situated robots play soccer? In Proc.
Artificial Intelligence 94, pages 249 – 254, Banff, Alberta, May 1994. 1, 4, 8

11. Y. Zhang and A. K. Mackworth. Modeling behavioral dynamics in discrete robotic
systems with logical concurrent objects. In S. G. Tzafestas and J. C. Gentina, edi-
tors, Robotics and Flexible Manufacturing Systems, pages 187–196. Elsevier Science
Publishers B. V., 1992. 5

12. Y. Zhang and A. K. Mackworth. Specification and verification of constraint-based
dynamic systems. In A. Borning, editor, Principles and Practice of Constraint
Programming, number 874 in Lecture Notes in Computer Science, pages 229 – 242.
Springer-Verlag, 1994. 2, 5

10 Alan K. Mackworth

13. Y. Zhang and A. K. Mackworth. Will the robot do the right thing? In Proc.
Artificial Intelligence 94, pages 255 – 262, Banff, Alberta, May 1994. 1, 4, 5

14. Y. Zhang and A. K. Mackworth. Constraint Nets: A semantic model for hybrid
dynamic systems. Theoretical Computer Science, 138:211 – 239, 1995. 4

15. Y. Zhang and A. K. Mackworth. Constraint programming in Constraint Nets. In
V. Saraswat and P. Van Hentenryck, editor, Principles and Practice of Constraint
Programming, chapter 3, pages 49–68. The MIT Press, Cambridge, MA, 1995. 5

16. Y. Zhang and A. K. Mackworth. Synthesis of hybrid constraint-based controllers.
In P. Antsaklis, W. Kohn, A. Nerode, and S. Sastry, editors, Hybrid Systems II,
Lecture Notes in Computer Science 999, pages 552 – 567. Springer Verlag, 1995.
4, 5, 6

17. Y. Zhang and A. K. Mackworth. A constraint-based controller for soccer-playing
robots. In Proceedings of IROS ’98, pages 1290 – 1295, Victoria, BC, Canada, Oct.
1998. 4, 6, 8

18. Y. Zhang and A. K. Mackworth. Using reactive deliberation for real-time control
of soccer-playing robots. In H. Kitano, editor, RoboCup-97: Robot Soccer World
Cup 1, pages 508–512. Springer-Verlag, Aug. 1998. 4

19. Y. Zhang and A. K. Mackworth. Modelling and analysis of hybrid systems: An
elevator case study. In H. Levesque and F. Pirri, editors, Logical Foundations for
Cognitive Agents, pages 370–396. Springer, Berlin, 1999. 5

20. Y. Zhang and A. K. Mackworth. A multi-level constraint-based controller for
the Dynamo98 robot soccer team. In Minoru Asada and Hiroaki Kitano, editor,
RoboCup-98: Robot Soccer World Cup II, pages 402–409. Springer, 1999. 4, 8

	Constraint-Based Agents: The ABC's of CBA's
	Introduction
	Agents in the World
	The Constraint Net Model
	Constraint-Satisfying Agents
	Robot Soccer Players
	Conclusions

