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A. OVERVIEW

yrEr VISION is the science and technology of obtaining models,
ings, and control information from visual data. Inputs of a computer
jon system typically are scanner outputs (usually in the form of digital
: finder outputs, or images reconstructed by medical imag-
_Vision science and technology have grown more and more
d in recent years. The range of applications has been widening, and
cludes many uses in manufacturing, medicine, and remote sensing.
~ As with artificial intelligence in general, work in vision falls mainly
nto two camps. The first kind of work seeks a coherent theory of visual
perception and understanding (this approach is called computational
sion), and researchers in this group often develop computational models

“of biological vision processes. The second camp does research and devel-

“opment directed toward useful applications (this is gsometimes called

“Smachine vision). Their emphasis is on working, economical solutions to

¥ industrial, medical, and military problems rather than on the discovery
! of new theories or knowledge about human perception.

" Perhaps the most significant development of the last five years in

J;!?0111131.11:ational vision has been the emergence of regularization theory as

. ameans for making mathematically ill-posed surface-inference problems

well posed. This technique has applications in many kinds of vision

‘E_li_‘!‘oblems, including reconstructing intensity maps from a limited set of

'” ?Bﬁmpleg, analyzing stereo pairs of images, and computing optical flow in

. ‘dynamic imagery.

. During the same period, the applications side of the field has seen

¢ important advances in three-dimensional modeling and model construc-

- ‘tion, experience with methods like those of “nathematical morphology,”

. (resulting in better methodologies for applying such techniques), and

i eXciting improvements in parallel computer architectures tailored to

.~ Vision applications.

There has also been an interplay between computational vision and
machine vision. The stereo algorithms, developed largely within the
computational vision camp, have moved out into the realm of industrial
application. Computer architectures, developed with industrial vision in
mind, are influencing studies in computational vision, for example, in
the development of parallel algorithms for solving reconstruction prob-

lems on meshes.
Because of the large amount of activity in these two areas of com-
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puter vision, and because of page limitations here, the scope of thig
chapter is necessarily limited. The major advances in low-level vision
computational vision, and vision architectures are emphasized. Rela:
tively little is said about specific software implementations (this ig

in
contrast to the vision coverage in Chapter XIII of the Handbook).




B. LOW-LEVEL VISION

NG some approaches to computational vision and to machine
ve basic tasks of breaking up an image into component regions.
sntation problem must be tackled before determining 3-D sur-
racteristics or recognizing objects in the scene. A large variety
ods have been invented and studied for this initial analysis task.
«t subsection gives an overview of this subfield, expanding upon
eription of region analysis in Article XIILC5 in Volume I1L

Bl. Segmentation Techniques

DITIONAL APPROACHES to computer vision, the pixels of an image
grouped into regions in a process called segmentation, and this is
e prior to any attempt to interpret the regions as objects in the scene.
eived advantage of computing a segmentation i that one could,
ively easily, achieve 2 relatively concise representation of the
_ so's essential pictorial aspects, and that this would permit the seman-
phase of the analysis to be accomplished painlessly. Except in certain
cial environments, segmentation has proven to be difficult in itself,
it seems that semantic considerations are often needed at the seg-
ntation level. Nonetheless, various segmentation methods make up
portant part of the arsenal of techniques that can be employed in
; F!Pl}ter vision, and they provide a good starting point for a tutorial
i TYiew of developments in vision.
____What should a good image gegmentation be? Although this depends
?’_3“'13’ on the application, it can be answered in an application—indepen-
nt way to a certain extent. Let us attempt to do so.
W), Regions of an image gegmentation should be homogeneOUS-uniform
With respect to some characteristic such as gray tone or texture. Region
.ceietrlor§ shoulnd usually be simple and withqut many smalll holes. Adja-
Mthregmns of a segmentation should have significantly different values
I'_‘-.n' : respect to the ch aracteristic on which they are uniform. Boundaries
B o ach segment should be simple, not ragged, and must be spatially
Urate,
4 - “nifAChieving all these desired properties ia difficult because strietly
§ orm and homogeneous regions are typically full of small holes and
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have ragged boundaries. Insisting that adjacent regions have large gjf.
ferences in values can cause regions tha‘_c ought to be kept separateq to
merge and thus the intervening boundaries to be lost.

Just as there is no generally accepted theory of clustering in statjs.
tics, there is no well-accepted theory of image segmentation. Image seg-
mentation techniques tend to be ad hoc. They differ in the ways in whjey,
they emphasize one or more of the desired properties and in the wayg i,
which they balance and compromise one desired property againg
another.

Image segmentation techniques can be classified into one of the
following groups:

. Measurement-space—guided spatial clustering

. Single-linkage region-growing schemes

1

2

3. Hybrid-linkage region-growing schemes
4. Centroid-linkage region-growing schemes
5

. Spatial clustering schemes
6. Split-and-merge schemes

As this brief typology suggests, image segmentation can be viewed asa
clustering process. The difference between image segmentation and clus-
tering is in grouping. In clustering, the grouping is done in measurement
space (e.g., the space of gray values rather than the space of pixel coors
dinate pairs). In image segmentation, the grouping is done 'on the gpatial
domain of the image, and there is an interplay in the clustering between
the (possibly overlapping) groups in measurement space and
mutually exclusive groups of the image segmentation.

The single-linkage region-growing schemes are the simplest a
most prone to the unwanted region-merge errors. The hybrid-1
and centroid-linkage region-growing schemes are better in this ;
The split-and-merge technique is not as subject to the unwanted regions
merge error. However, it suffers from large memory usage and €x
sively blocky region boundaries. The ‘measurement-space—guided spall
clustering tends to avoid both the region-merge errors and the b]
boundary problems because of its primary reliance on measu
space. But the regions produced are not gmoothly bounded, an
often have holes, giving the effect of salt-and-pepper noise. Th
clustering schemes may be better in this regard, but they have 1o
tested well enough. The hybrid-linkage schemes appear to offer ©
compromise between having smooth boundaries and few un\
region merges. 2

The remainder of this section describes the main ideas beh
major image segmentation techniques. Additional image segmens

i
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surveys can be found in Zucker (1976), Riseman and Arbib (1977), Kan-

L1 ade (1980), and Fu and Mui (1981), and Haralick and Shapiro (1985).

" Measurement-space-Guided Spatial Clustering

This technique for image segmentation uses the measurement-space

clustering process to define a partition in measurement space (e.g., the

space of pixel gray values of the image). Then each pixel is assigned the
label of the cell in the measurement-space partition to which it belongs.

'\ The image segments are defined as the connected components of the

pixels having the same label.

The accuracy of image segmentation using the measurement-space
clustering process depends directly on how well the objects of interest on
the image separate into distinct measurement-space clusters. Typically
the process works well in situations where there are a few kinds of

' distinct objects having widely different gray-tone intensities (or gray-

tone intensity vectors, for multiband images) and these objects appear
on a nearly uniform background.

Clustering procedures that use the pixel as a unit and compare each
pixel value with every other pixel value can require excessively large
etomputation times because of the large number of pixels in an image.
Iterative partition-rearrangement schemes such as ISODATA have to go
through the image data set many times and if done without sampling
¢an also take excessive computation time. Histogram-mode seeking,
because it, requires only one pass through the data, probably involves
t}}e least computation time of the measurement-space clustering tech-
niques, and it is the one we discuss here.
~ Histogram-mode seeking is a measurement-space clustering process
in which it is assumed that homogeneous objects on the image manifest
!‘-hemse]ves as the clusters in measurement space. Image segmentation
s accomplished by mapping the clusters back to the image domain where
the maximal connected components of the mapped back clusters consti-
Wte the image segments. For single-band images, calculation of this
hlstogl'am in an array is direct. The measurement-space clustering can
Pe accomplished by determining the valleys in this histogram and declar-

. Ing the clusters to be the interval of values between valleys. A pixel

Khose value is in the ith interval is labeled with index i and the segment
. bemngs to is one of the connected components of all pixels whose label

RIS

He k?hl.ander ot al. (1975) refines the clustering idea in a rgcuraive way.
N eging by defining a mask selecting all pixels on the image. Given
sp;’ mask, a histogram of the masked image is computed. Ms_zasurement—
: mrf)e clustering enables the separation of one mode of the histogram set

M another mode. Pixels on the image are then identified with the
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cluster to which they belong. If there is only one measurement-spgce
cluster, the mask is terminated. If multiple clusters are present, the
process is repeated for each connected component (region) associated with,
each cluster. Note that one cluster may produce more than one connecteq
component. During successive iterations, the next mask in the stack
selects pixels in the histogram-computation process. Clustering ig
repeated for each new mask until the stack is empty. The process ig |
illustrated in Figure B-1. |

Single-linkage Region Growing

Single-linkage region growing schemes regard each pixel as a node
in a graph. Neighboring pixels whose properties are “similar enough”
are joined by an arc. The image segments are maximal sets of pixels a]]
belonging to the same connected component. Single-linkage image-
segmentation schemes are attractive for their simplicity. They do, how-
ever, have a problem with chaining, because it takes only one arc leaking
from one region to a neighboring one to cause the regions to merge.

The simplest single-linkage scheme defines “similar enough” by pixel
difference. Two neighboring pixels are similar enough if the absolute
value of the difference between their gray-tone intensity values is small
enough. Bryant (1979) defines “similar enough” by normalizing the dif-
ference by the quantity V2 times the root-mean-square value of neigh-:
boring pixel differences taken over the entire image. (el

For pixels having vector values, the obvious generalization is to use
a vector norm of the pixel-difference vector. Instead of using a Euclidean =
distance, Asano and Yokoya (1981) suggest that two pixels be joined =
together if the absolute value of their difference is small enough eoms 7
pared to the average absolute value of the center pixel minus neighbor ==

pixel for each of the neighborhoods to which the pixels belong. The ease =
with which unwanted region chaining can occur with this techniqg
limits its potential on complex or noisy data. '

Hybrid-linkage Region Growing

single-linkage technique. The hybrid techniques seek to assign ap
erty vector to each pixel where the property vector depends on the
borhood of the pixel. Pixels that are similar are so because
neighborhoods in some special sense are similar. Similarity is thus:
lished as a function of neighboring pixel values, and this make
technique better behaved on noisy data.
One hybrid single-linkage scheme relies on an edge operator L
lish whether two pixels are joined with an arc. Here an edge Opei&
applied to the image, labeling each pixel as edge or nonedge. Neighb
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| Lixels, neither of which are edges, are joined by an arc. The initial

ijgégments are the connected components of the nonedge labeled pixels.
. The edge pixels can either be left as edges and be considered as hack-
b ground or they can be assigned to the spatially nearest region having a

N
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Figure B-2. Image of a bulkhead of an F-15 aircraft.

label. Successful use of this technique may require closing edge gaps
before performing the region growing.

Figure B-2 illustrates an image of a section of an F-15 aircraft
bulkhead. Figure B-3 illustrates a second directional derivative zero-
crossing operator applied to the image of Figure B-2. Figure B—4 shows
the segmentation that results from connecting the non-edge pixels. The
method is thus a hybrid-linkage region-growing scheme in which any
pair of neighboring pixels, neither of which are edge pixels, can link
together. The resulting segmentation consists of the connected compo-
nents of the nonedge pixels and where each edge pixel is assigned to its
nearest connected component.

Centroid-linkage Region Growing d

In centroid-linking region growing, in contrast with single-linkage
region growing, pairs of neighboring pixels are not compared for simi-
larity. Rather, the image is scanned in some predetermined manner such
as left to right or top to bottom. A pixel’s value is compared to the mean
of an already existing but not necessarily completed neighboring seg-
ment. If its value and the segment’s mean value are close enough, the
pixel is added to the segment and the segment’s mean is updated. If more
than one region is close enough, it is added to the closest region. However,
if the means of the two competing regions are close enough, the two
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Figure B-3. Directional derivative zero-crossing operator
applied to the F-15 image.

regions are merged and the pixel is added to the merged region. If no
neighboring region has its mean close enough, a new segment is estab-
lished having the given pixel’s value as its first member. The scan geom-
etry for the centroid-linkage region-growing scheme is shown in Figure
B-5.

Keeping track of the means and scatters for all region as they are
being determined does not require large amounts of memory space. There
cannot be more regions active at one time than the number of pixels in
a row of the image. Hence a hash table mechanism with the space of a
small multiple of the number of pixels in a row can work well.

One way of performing the region growing is by the use of the T-
test. Let R be a segment of N pixels neighboring a pixel with gray-tone
intensity y. Define the mean X and scatter S by

X=% S 10,0 )

N (r.c0)eR

and

$2= 3 dre) - X)P 2)

(r,0)eR
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Figure B—4. Segmentation of the F-15 image.

Under the assumption that all the pixels in R and the test pixel y
are independent and identically distributed normals, the statistic

T [(N— N

2 21/2
(N—‘FF@_X)/S:I 3)

has a Tv-1 distribution. If T is small enough, y is added to region R and
the mean and scatter are updated using y. The new mean and scatter
are given by

)_(new <~ (NXold + y)/(N + 1) (4)
and
Srzlew = Sgld + 0’ - )_()2 + N()_(new - _old)z (5)

If T is too high, the value y is not likely to have arisen from the
population of pixels in R. If y is different from all of its neighboring
regions, it begins its own region. A slightly stricter linking criterion can
require that not only must y be close enough to the mean of the neigh-
boring regions, but also that a neighboring pixel in that region must
have a close enough value to y. This combines a centroid linkage and
single linkage criterion.

The Levine and Shaheen scheme (1981) is similar. The difference is
that Levine and Shaheen attempt to keep regions more homogeneous




B Low-level Vision 531
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Figure B-5. Region-growing geometry for the one-pass scan,
left-right, top-bottom region growing.

and try to keep the region scatter from getting too high. They do this by
requiring the differences to be more significant before a merge takes
place if the region scatter is high. For a user-specified value 6, they

define a test statistic 7' where
T = |y — Xnew = (1 = S/Xnew)0 (6)

If T < 0 for the neighboring region R in which ly — X| is the smallest, y
is added to R. If T > 0 for the neighboring region in which |y — X] is the
smallest, y begins a new region.

Figure B-6 illustrates the application of the centroid-linkage region-
growing technique to the bulkhead image. This application uses two
successive scans of the image. The first is a left-right top-down scan, and
the second is a right-left bottom-top scan.

Hybrid-linkage Combination Techniques

The centroid-linkage and the hybrid-linkage methods can be com-
bined in a way that takes advantage of their relative strengths. The
strength of the single-linkage method is that boundaries are placed in a
spatially accurate way. Its weakness is that edge gaps result in excessive
merging. The strength of the centroid-linkage method is its ability to
place boundaries in weak-gradient areas. It can do this because it does
not depend on a large difference between the pixel and its neighbor to
declare a boundary. It depends instead on a large difference between the
pixel and the mean of the neighboring region to declare a boundary.
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Figure B-6. The two-pass top-down centroid segmentation of
the bulkhead image.

The combined centroid-hybrid linkage technique does the obvious
thing. Centroid linkage is only done for nonedge pixels; that is, region
growing is not permitted across edge pixels. Saying it another way, edge
pixels are not permitted to be assigned to any region and cannot link to
any region. Thus, if the parameters of centroid linkage were set so that
any difference, however large, between pixel value and region mean was
considered small enough to permit merging, the two-pass hybrid com-
bination technique would produce a connected components of the nonedge
pixels. As the difference criterion is made more strict, the centroid link-
age produces boundaries in addition to those produced by the edges.
Figure B-7 illustrates the application of the hybrid-linkage technique
to the bulkhead image.

Split-and-Merge

The split-and-merge method for segmentation begins with the entire
image as the initial segment. Then it successively splits each of its
current segments into quarters if the segment is not homogeneous
enough. Homogeneity can be easily established by determining if the
difference between the largest and smallest gray-tone intensities is small
enough. Algorithms of this type were first suggested by Robertson (1973)
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/| Figure B-7. Segmentation using the one-pass combined
centroid and hybrid linkage method.

. and Klinger (1973). Kettig and Landgrebe (1975) try to split all nonuni-

Iﬂ! form 2x2 neighborhoods before beginning the region merging. Fukada
i (1980) suggests successively splitting a region into quarters until the
" sample variance is small enough. The efficiency of the split-and-merge
. method can be increased by arbitrarily partitioning the image into
| Square regions of a user-selected size and then splitting these further if I
! : they are not homogeneous. i+
' ' -~ Because segments are successively divided into quarters, the bound-
¥ aries produced by the split technique tend to be squarish and slightly
.r. artificial. Sometimes adjacent quarters coming from adjacent split seg-
ments need to be joined rather than remain separate, Horowitz and
| Pavlidis (1976) suggest a gplit-and-merge strategy to take care of this
! " problem. Muerle and Allen (1968) suggest merging a pair of adjacent
i regions if their gray-tone intensity distributions are similar enough.
S They recommend the Kolmogorov-Smirnov test.
by ~ Chen and Pavlidis (1980) suggest using statistical tests for uniform-
i ity rather than a simple examination of the difference between the
: 1aljgest and smallest gray-tone intensities in the region under consider-
- ation for splitting. The uniformity test requires that there be no signif-
o icant difference between the mean of the region and each of its quarters.
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The Chen and Pavlidis tests assume that the variances are equal anq
known.

Let each quarter have K pixels, X;; be the jth pixel in the ith region
X; be the mean of the ith quarter, and X.. be the grand mean of al] thé
pixels in the four quarters. Then, for a region to be considered homoge.
neous, Chen and Pavlidis require that

IXz " X| = €, i=1,23,4 )

We give here the F-test for testing the hypothesis that the mean ang
variances of the quarters are identical. The value of variance is not
assumed known. If we assume that the regions are independent ang
identically distributed normals, the optimal test is given by the statistic 1
F, which is defined by

K SiaX. - X.)%38
St 3K (X — Xo)*MK — 1)

Jila= (8)
It has a Fs 4x-1) distribution. If F' is too high, the region is declared not i
uniform.

The data structures required to do a split-and-merge on images larger
than 512 X 512 are very large. Execution of the algorithm on virtual-
memory computers results in so much paging that the dominant activity
may be paging rather than segmentation. Browning and Tanimoto (1982)
describe a split-and-merge scheme where the split-and-merge is first 3
accomplished on mutually exclusive subimage blocks and the resulting i
segments are then merged between adjacent blocks to take care of the
artificial block boundaries.

B2. Edges

IF AN IMAGE is successfully segmented into regions, the contours of the
regions are available for shape analysis. However, it is sometimes more
expedient to compute the contours directly from the image, rather than
to go through one of the previously described segmentation processes. To
compute contours directly from the image, “edge detection” must be
performed. This subsection discusses the important characteristics of
edges. Edge detection continues to be a subject of intense research. Ele-
mentary methods for edge detection, including the Roberts cross operator
and the Sobel operator, are described in Article XII1.C4, Vol. 1IL

The Difficulties of Finding the Contours of Objects in an Image

What is an edge in a digital image? The first intuitive notion is that
a digital edge occurs on the boundary between two pixels when the
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tive brightness values of the two pixels are significantly different.
y different” may depend on the distribution of brightness

. yalues around each of the pixels.

rrr———
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—
>

" than its surroundi

int to a region on an image and say this region i8 brighter
ng area, meaning that the mean of the brightness
yalues of pixels inside the region is greater than the mean of the bright-
ness values outside the region. Having noticed this, we would then say

We often po

.fiﬁhat an edge exists between each pair of neighboring pixels where one

pixel is inside the region and the other is outside the region. Such edges

are referred to as step edges.

Step edges are not the only kind of edge. If we scan through a region

~ Jeft to right observing the brightness values steadily increasing, and

then after a certain point we observe that the brightness values are
steadily decreasing, we are likely to say that there is an edge at the
point of change from increasing to decreasing brightness values. Such
edges are called roof edges.

Thus, in general, an edge is a place in an image where there appears

to be a jump in brightness value or a jump in brightness value derivative.

In some sense, this summary statement about edges is quite reveal-
ing because in a discrete array of brightness values there are jumps (in
the literal sense) between neighboring brightness values if the bright-
ness values are different, even if only slightly different. Perhaps more
to the heart of the matter, there exists no definition of derivative for a
discrete array of brightness values. The only way to interpret jumps in
value and jumps in derivatives when referring to a discrete array of
values is to assume that the discrete array of values comes about as
some kind of sampling of a real-valued function defined on a bounded
and connected subset of the real plane R?. The jumps in value and jumps
in derivative really must refer to points of discontinuity of f and to points
of discontinuity in the partial derivatives of f.

Edge finders should then regard the digital picture function as a
sampling of the underlying function f, where some kind of random noise
has been added to the true function values. To do this, the edge finder
must assume some kind of parametric form for the underlying function
f, use the sampled brightness values of the digital picture function to
elstimate the parameters, and finally make decisions regarding the loca-
tions of discontinuities of the underlying function and its partial deriv-
atives based on the estimated values of the parameters.

_ Of course, it is impossible to determine the true locations of discon-
tinuities in value or derivatives based on samplings of the functions. The
locations are estimated by function approximation. The location of the
estimated discontinuity will be where the first derivative has a relative
maximum. This is where the second derivative will have a negatively
shaped zero-crossing if the edge is being crossed from low value to high
value. Sharp discontinuities will reveal themselves in high values for
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estimates of first partial derivatives. Sharp discontinuities in derivative
will reveal themselves in high values for estimates of the second partia]
derivatives. This means that the best we can do is to assume that the
first and second derivatives of any possible underlying image function
have known bounds. Therefore any estimated first- or second-order par-
tials that exceed these known bounds must be due to discontinuities in
value of the underlying function. The location of the estimated discon.
tinuity in derivative will be where the second derivative has a relative
extremum and this will be where the third derivative has an appropri-
ately shaped zero-crossing.

Recent Developments

Marr and Hildreth (1980) used for the second derivative the isotropic
Laplacian. Haralick (1984) and Canny (1986) used, for the second deriv-
ative, the second directional derivative taken in a direction that extrem-
izes the first directional derivative. The implementation of each of these
zero-crossing edge operators is quite different.

Since the differentiation of a sampled signal is, properly speakmg,
an ill-posed problem, it has been proposed that edge detection be per-
formed by first filtering the image (or “regularizing” it) and then differ-
entiating it. A mathematical problem is well-posed in the sense of
Hadamard, provided its solution exists, is unique, and depends contin-
uously on the given data. Regularization refers to the transformation of
an ill-posed problem into a well-posed one. Standard methods of regu-
larization have been developed—see, for example, Tikhonov and Arsenin g
(1977)—and applied in edge detection. Details may be found in Torre 4
and Poggio (1986). A good overview of edge detection, including a dis-
cussion of regularization, may be found in Hildreth (1987). ' 1

B3. Stereo 5

Overview

The objective in many computer vision problems is to reconstruct a
three-dimensional surface representation of a scene from the image infor-
mation output by cameras. Video cameras provide only 2-D images, and
stereo methods must be used to obtain depth information. The use of two
(or more) images of the same scene, taken from different positions, can
permit the determination of depth using parallax—the analysis of each
triangle formed by some notable surface point in the scene and the two
camera viewpoints. With two such images, the method of depth deter-
mination is called binocular stereo. With three, it is trinocular stereo.
With more, it is sometimes called multiple-image stereo. For an intro-
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duction to binocular stereo, see Article XIII.D3, or see Barnard and
Fischler (1987). When the scene is static but a sequence of images is
taken from a moving viewpoint, motion stereo may be used to establish
3-D information.

The usual sequence of steps needed in binocular stereo is as follows:

1. Input images either from two cameras or from one camera at two
different times and positions.

2. Determine camera parameters—position, orientation, focal length,
and so on.

3. Detect/select feature points in the images that are candidates for
matching (e.g., edge points).

4. Match feature points by constructing a correspondence between fea-
ture points of the two images.

5. Compute depth values at the locations of the matched feature points.

6. Interpolate depth values at all or many of the points in the image
that are not locations of matched feature points.

Feature Point Detection/Selection

With a simple camera geometry we may assume that the two images
of a point in the scene have a positional disparity along the x-axis of the
image but not along the y-axis. To determine this disparity, using fea-
ture-based or edge-based stereo, the points must be detected in each
image and then put into correspondence. Generally speaking, only cer-
tain points in the image are capable of being matched directly; these are
prominent locations in the image that are easily distinguished from
neighboring points. In most cases the feature points can be obtained
using edge-detection methods.

A popular method for finding feature points for stereo matching
requires that the Laplacian operator be applied to the image (see Volume
3, p. 211-212). Then the zero-crossing contours of the resulting image
are identified. The points on the zero-crossing contours are taken as the
feature points. Since the digital images have a limited number of scan
lines, the number of zero-crossing points is generally manageable.

Because the disparities occur in the x direction, it is usually sufficient
to perform the differentiation (or apply the Laplacian) in one dimension,
?IOHg each scan line of the image. This is computationally inexpensive
In comparison with two-dimensional Laplacians.

. If general camera geometries are used, the feature points must be
distinguishable in both the x and y directions. Although the detection of
hese points is therefore more computationally expensive, the resulting
rlll.mber of points is usually less than for one-dimensional analysis, and
this can speed up the matching process. Scene points that generate good
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feature points with distinction in both dimensions are corners (vertices)
of polyhedra and bright spots and corners of 2-D patterns painted on the
surfaces of objects in the scene.

It is also possible to match areas rather than features. In area-baseq
matching, correspondences are typically established using cross-corre.
lation. This tends to be computationally more expensive and also legg
accurate than feature-based or edge-based matching. However, area.
based stereo can be more robust in cases of noisy images or images with
poorly defined edges.

Matching. Although matching for stereo is similar in spirit to
model matching for object recognition, it is also somewhat different. I,
the case of horizontally constrained displacement, we have a collection
of one-dimensional matching problems, one for each scan line. We can
expect the disparity function along the scan line to exhibit some coher-
ence as we move to each successive scan line, as well as along the line,
Therefore the solutions to each 1-D matching problem are not completely
independent.

Some of the approaches to matching are as follows:

1. Coarse-to-fine (see Marr and Poggio, 1977; and Grimson, 1985)
2. Dynamic programming (see Baker and Binford, 1981)

3. Energy minimization (see Direct Matching with Simulated Anneal-
ing, described below)

4. Ad hoc correspondence building

Interpolating Depth Values. The problem of obtaining a full set
of depth values from the sparse set obtained from feature-based stereo
can be solved with interpolation. However, this interpolation should
satisfy both smoothness on surfaces and maintain sudden depth changes
at surface boundaries. In the case of natural terrain, quadratic surface
fitting may be appropriate (see Smith, 1984). For rapid interpolation
subject to smoothness constraints, multigrid methods may be used (see
Section D).

Direct Matching with Simulated Annealing. A method of match-
ing a stereo pair of images using simulated annealing has been proposed
by Barnard (1987). This is an area-based rather than a feature-based
approach. An energy measure E is to be minimized through the adjust-
ment of disparity values D;

I =2 (AL + NVDy)
Ll
where Al; = Ip(i,/)) — Iz(i,j + D;p; I and Ir are the left- and right-

image intensity values; and Dj is the disparity value for location (i, j).
This measures the difference in intensity between each two matched
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points as well as the unsmoothness of the disparity function. If both of
these terms are zero, the two images match perfectly, except for a trans-
Jation, and the scene must be flat.

Starting from an initial high-energy state, the disparity values are
adjusted stochastically according to the Metropolis algorithm (see page
576) or with an alternative method proposed by Barnard.

Nonbinocular Methods. Trinocular stereo employs three images
of a scene to obtain 3-D surface data. The third image, taken from a
viewpoint not colinear with the other two, greatly reduces the number
of incorrect matches and it can increase the accuracy of the resulting
depth information. A method that permits the three cameras to be in
arbitrary positions is described by Ayache and Lustman (1987). One that
requires the viewpoints to form a right triangle is given by Ohta et al.
(1986). Others are given by Yachida et al. (1986), Ito and Ishii (1986),
and Pietikainen and Harwood (1986). The number of viewpoints need
not be limited to three. Multiple-image stereo allows additional improve-
ments in accuracy at the expense of higher computational cost (see
Yachida, 1985).

In addition to binocular, trinocular, and multiple-image stereo, sur-
face orientation may be computed using two images from the same
viewpoint, but taken under illumination by a light source in two different
positions. This method is called photometric stereo and is described briefly
in the Overview to Chapter XIII in Volume III of the Handbook. The
change in shading at a surface point from one image to the other gives
an indication of the surface gradient at that point. Such methods are
described in Woodham (1980).

B4. Mathematical Morphology for Image Analysis

A cLass oF TECHNIQUES called mathematical morphology has found a
variety of applications in industrial machine vision. This section presents
the primary operations of mathematical morphology: dilation, erosion,
opening, and closing. In addition to their definitious, some properties of
these operations are also given.
- The mathematical morphology approach to the processing of digital
mages is based on shape. Appropriately used, these techniques can
Simplify image data, preserving essential shape characteristics and elim-
Inating irrelevancies. Since the identification of objects, features, and
Mmanufacturing defects depend closely on shape, this approach is natural
for such tasks.
Although the techniques are being used in the industrial world, the
asis and theory of binary morphology are not covered in many texts or
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monographs. Exceptions are the highly mathematical books by Matheroy,
(1975) and Serra (1982).

The language of mathematical morphology is that of set theory. Setg
in mathematical morphology represent the shapes that are manifesteq
on binary or gray-tone images. The set of all the black pixels in a black
and white image (a binary image) constitutes a complete description of
the binary image. Sets in two-dimensional Euclidean space are repre.
sented by foreground regions in binary images. Sets in three-dimensiong]
Euclidean space may actually represent time-varying binary imagery or
static gray-scale imagery as well as binary solids. Sets in higher dimen-
sional spaces may incorporate additional image information such ag
color, or multiple perspective imagery. Mathematical morphology trans.
formations apply to sets of any dimensions, including those in Euclidean
N-space and its discrete or digitized equivalents, the set of N-tuples of
integers, Z". For the sake of simplicity we will refer to either of these
sets as EV.

Those points in a set being morphologically transformed are consid-
ered as the selected set of points, and those in the complement set are
considered as not selected. Hence, morphology from this point of view is
binary morphology. We begin our discussion with the morphological oper-
ation of dilation.

Dilation

Dilation is a morphological transformation that combines two sets using
vector addition of set elements. If A and B are sets in N-space (EV) with
elements a and b, respectively, ¢ = (ai, ..., an) and b = (b4, ..., by) being
N-tuples of element coordinates, then the dilation of A by B is the set of
all possible vector sums of pairs of elements, one coming from A and one
coming from B. Denoting dilation by &,

APB={cEE"|c=a+b forsomea S A and b € B}

Dilation as a set theoretic operation was proposed by Minkowski
(1903) to characterize integral measures of certain open (sparse) sets.
Dilation as an image-processing operation was employed by several early
investigators in image processing as smoothing operations: Unger (1958),
Golay (1969), and Preston (1961, 1973). Dilation as an image operator
for shape extraction and estimation of image parameters was explored
by Matheron (1975) and Serra (1972).

Mathematically the roles of the sets A and B are symmetric; the
dilation operation is commutative because addition is commutative.
Hence A ® B = B® A. In practice, A and B are handled quite differently.
The first operand is considered to be the image undergoing analysis,
whereas the second operand, referred to as the structuring element, is




541

Low-level Vision

thought of as constituting a single shape parameter of the dilation trans-
' formation.
| Dilation of a set by a structuring element in the shape of a disk
1 h results in an isotropic swelling or expansion of the set. (Approximating
i the disk by a small square, 3 X 3, the expansion can be implemented as
[ a neighborhood operation on a mesh architecture or pipelined image-
{I-‘ processing architecture.) Some sample dilation transformations are illus-
| trated in Figures B—8 and B-9. In Figure B-8, the upper left is the input
i1 image consisting of a cross. The lower right shows an octagonal struc-
F ):II turing element. The upper right shows the input image dilated by the
-3 octagonal structuring element. In Figure B-9, the upper left contains
IEI. the input image consisting of two objects. The upper right shows the
iF input image dilated by the structuring element {(0, 0), (14, 0)}. The lower
il left shows the input image dilated by the structuring element {(0, 0),
1 5% (0, 14)}. The lower right shows the input image dilated by the structuring
\. i element {(0, 0), (14, 0), (0, 14)}. This example illustrates that dilation
% can be viewed as the replication of a pattern. In actual use, the replicated
copies of the pattern usually overlap, as in Figure B-8.
Since addition is associative, the dilation of an image A by a struc-
turing element D, which is itself a dilation D = B & C, can be computed

%h '|' ._ as

it ADPD=ABBDHC)=AGBDC

—_

Al al | ] =

| Al 2] =] —
—

—_
—_
—_| =] ]| —

—_

—al Al = -

al al =] =
—_

Figure B-8. Dilation by an octagonal structuring element.
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Figure B-9. Dilation with an additional structuring element.

That is, dilation is associative. The form (A @ B) @ C gives a considerable
savings in number of operations to be performed when A is the image
and B @ C is the structuring element. The savings come about because
a brute force dilation by B @ C might take as many as N? operations,
whereas first dilating A by B and then dilating the result by C could
take as few as 2N operations, where N is the number of elements in B
and in C.

The dilation of A by B can be computed as the union of translations
of A by the elements of B. That is,

AGB= U Ay
bER

Erosion

Erosion is the morphological dual to dilation. It is normally used to
eliminate small protrusions on a shape or islands in an image. It can
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- widen cracks and holes. Erosion combines two sets using vector subtrac-

tion of set elements. If A and B are sets in Euclidean N-space, the erosion
of A by B is the set of all elements x for which x + b € A for every

b€ B.
Let us denote the erosion of A by B as A © B. Erosion is thus defined

by

v i

=1 L o

i

=yl |

-

- '_——-’_‘:‘ i

AOB={x€EEY|x+bEA for every b € B}

The utility of the erosion transformation is better appreciated when
the erosion is expressed in a different form (that given by Matheron,
1975). The erosion of an image A by a structuring element B is the set
of all elements x of E" for which B translated to x 1s contained in A.

AOB={x€E"](BxCA}
FErosion is illustrated in Figure B-10. The upper left shows the input

image consisting of two blobs. The upper right shows the input image
eroded by the structuring element

T (R
Moo R
B
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{0, 0, (14, O}

The lower left shows the input image eroded by the structuring element
{(0, O, (0, —14)}

The lower right shows the input image eroded by the structuring element

{0, 0, (0, —14), (14, 0)}

Openings and Closings

In practice, dilations and erosions are usually employed in pairs, either
dilation of an image followed by the erosion of the dilated result or image
erosion followed by dilation. In either case, the result of iteratively
applied dilations and erosions is an elimination of specific image detail
smaller than the structuring element without the global geometric dis-
tortion of unsuppressed features. The opening of image B by structuring
element K is denoted by B © K and is defined as BO K = (BO K) ® K,
The closing of image B by structuring element K is denoted by B ® K
and is defined by B®e K = (B ® K) O K.

For example, opening an image with a disk-shaped structurlng ele-
ment smooths the contour, breaks narrow isthmuses, and eliminates
small islands and sharp peaks or capes. Closing an image with a disk-
structuring element smooths the contours, fuses narrow breaks and long
thin gulfs, eliminates small holes, and fills gaps on the contours.

Of particular significance is the fact that image transformations
employing iteratively applied dilations and erosions are idempotent, that
is, their reapplication effects no further changes to the previously trans-
formed result. The practical importance of idempotent transformations
is that they comprise complete and closed stages of image analysis algo-
rithms because shapes can be naturally described in terms of under what
structuring elements they can be opened or can be closed and yet remain
the same.

If B is unchanged by opening it with K, we say that B is open with
respect to K, whereas if B is unchanged by closing it with K, then B is
closed with respect to K.

Sets that can be expressed as some set dilated by K are necessarily
open under K.

ABK=ADKOK

Similarly, images that have been eroded by K are necessarily closed
under K.

ABK=(AOK eK
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| From these two facts, the idempotency of opening and closing follows.
| Ouenings and closings have other properties. For example, it follows
'iﬁimediately from the increasing property of dilation and the increasing
perty of erosion that both opening and closing are increasing.

There is a nice geometric characterization to the opening operation.
- This characterization justifies why mathematical morphology provides

'material for extracting shape information from image data. The opening
' i A by B is the union of all translations of B that are contained in A.

 Discussion

‘-I=. Dilation, erosion, opening, and closing can be used as the basis of
OB image algebras. These algebras allow the definition of shape transfor-
- ‘mations that are customized for particular applications. A sequence of
I.these operations, with suitable structuring elements, can be used to
" identify gear teeth in images of gears, or holes of particular sizes in

| images of machine parts. These techniques have been successfully
- applied to the problem of visually detecting shorts and open circuits in

_ JI‘I?‘. the wiring of printed cireuit boards. This is illustrated schematically in
B Figure B-11.
i Opening removes small protrusions, isthmuses and islands. Closing

| removes small cracks, bays, and holes. Taking the exclusive-OR of the

resulting image with the original gives an image in which only potential
A defects remain. The original binary image is shown in the upper left.
§ The result after erosion is in the upper center. After dilating that image,
e the result in the upper right is obtained. A second step of dilation takes
",",' Y us to the result in the lower left, and then another erosion takes us to
| l';*' . the lower center. Exclusive-ORing this with the original produces the
| I Image of the isolated defects, shown in the lower right.

These operations can be efficiently computed with appropriate hard-
ware. An entire session of the 1985 IEEE Computer Society Workshop
on Computer Architecture for Pattern Analysis and Image Database
Management was devoted to computer architecture specialized to per-
form morphological operations. Papers included those by McCubbrey and
Lougheed (1985), Wilson (1985), Kimmel, Jaffe, Manderville, and Lavin
(1985), Leonard (1985), Pratt (1985), and Haralick (1985). Gerritsen and
Yerbeek (1984) show how convolution followed by a table lookup opera-
tion can accomplish binary morphology operations.

Mathematical morphology is being extended to encompass more and
More general classes of operators. Gray-scale extensions have been stud-
led. Efforts have been made to cast morphology operations into a digital
signal processing framework. A tutorial article presenting many more
of the details of mathematical morphology is the paper by Haralick,

Sternberg, and Zhuang (1987).
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Figure B-11. Application of opening and closing to PC board
inspection.




C. COMPUTATIONAL VISION ADVANCES

C1l. Shape Representation and Analysis

THE TASK FACING a computational vision system is to compute descrip-
tions of a 3-D scene given projections of that scene into 2-D images. The
current paradigm for computational vision research assumes that a sys-
tem must be structured into levels or modules with various special-
purpose representations at each level and that processes transform
descriptions from one representation into another. Each representation
serves to make explicit some properties of the image or scene and leave
others implicit. The choice of a representation for each particular level
constitutes the determining design decisions for a particular vision sys-
tem. A wide variety of criteria enter into these choices; it is important
to discover and explicate these criteria. (See Articles I1.C5 and XIIL.D5, 6
for discussions of earlier work.)

For vision, we can distinguish four varieties of domains that need
explicit shape representation:

1. Functions of one variable such as those that occur in, say, examining
the intensity profile across a discontinuity in an image.

2. 2-D shapes such as the contour of an image region.

3. Functions of two variables such as the depth map of a visible surface
that gives depth as a function of x and y.

4. 3-D shapes such as the bounding surface of a solid object.

This section will be structured around descriptions of some advances in
Tepresentation techniques for each of these domains.

C2. Criteria for Shape Representation

Given praT THE conCEPT of “shape” is intuitive rather than formal and
the fact that for any shape domain there are infinitely many possible
"epresentations of the “shape” of an object, many researchers have felt

e need to explicate adequacy criteria for shape representations. These
Necessary criteria allow us to make sensible design decisions and trade-
s when choosing a “good” shape representation. Here we shall provide

547
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a set of criteria based on the current state of the art (Marr and Nishihayrg
1978; Binford, 1982; Brady, 1983; Mokhtarian and Mackworth, 1986af
Mackworth, 1987; Woodham, 1987a, 1987b). ’

Computable: Given the input data and model assumptions, the repre.
sentation should be efficiently computable on a suitable serial or paralle]
architecture; that is, the computational complexity should be a low- |
order polynomial in time, space, and number of processors. |

Local: A useful representation must still be computable for portions of
an object. If the parts of the representation depend only on data in a
defined neighborhood of the object, it has local support. If only some of
the neighborhoods are present in the data, a useful representation can
il still be computed for occluded or distorted objects. Also the inherent
parallelism can be exploited by using special-purpose architectures that
process the neighborhoods in parallel.

Stable: A small local change in the object should induce a small local
| change in the representation. This is required for noise resistance and
' shape matching.

Unique: A given object must have a unique representation. The map-
ping from object to representation must be a single-valued function from
the object domain to the representation domain. This rules out schemes
that make arbitrary choices about the mapping.

Complete: For a large and important domain of objects, the function
from object to representation should be “total”; that is, for each and
every object there is a corresponding representation.

Invertible: Ideally the mapping from object to representation should be
invertible (also called rich or information preserving). If the object-to- 1
representation mapping is many-to-one, different objects cannot be dis-
tinguished on the basis of their representation. Thus the mapping must
be one-to-one; that is, a representation specifies a unique object. If the
one-to-one mapping is computationally invertible (which it might not
be even if the mathematical mapping is one-to-one), then, for example,
the visual appearance of an object can be predicted from its represen-
tations.

Invariant: If a pair of 2-D or 3-D objects differ only by a rigid translation
or rotation or by a magnification (a uniform change in scale), we say
they have the same shape. Accordingly we require that the shape rep-
resentation be essentially invariant under these transformations. This
requirement is apparently in conflict with the requirement for inverti-
bility; two objects seem to have the same representation. However, if
this representation includes translation, rotation, and magnification
parameters as components, the conflict with invertibility is resolved.

Scale-sensitive: The representation should incorporate information
about the object at varying levels of detail, coarse to fine. This usually
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corresponds to varying the size of the “neighborhood of local support.”
It also contributes to the required stability and matching properties of
the representation. By suppressing the fine detail in the representation,
we can concentrate on the broad, overall shape features and save on
storage and processing time at the expense of accuracy and the inver-

tibility criterion.
and 3-D objects have a natural recursive part-whole

Composite: 2-D
ure that should be explicit in the representation.

composition struct

Matchable: The representation should be designed to support a mateh-
ing process that compares two shape descriptions (one, for example, from
the image; the other, a stored prototype) and returns a deseription of
their difference. This includes computing properties of an object using
the representation. For example, we can determine whether or not an
object is symmetric by matching its description with that of a generic
symmetric object.

Generic: A shape representation should support the description of a
generic class of objects as well as specific objects (perhaps through par-
ameterization). Thus if the representation 1s invertible as well as

generic, it can be used in symbolically predicting appearances.

Refinable: If the representation supports generic descriptions, they
should be refinable with the acquisition of more constraints (from the
image or elsewhere) to characterize a more specific object class.

These dozen criteria serve as useful tools not only for the evaluation
of existing shape representations, but also for their elaboration and the
discovery of new methods. We now turn to examine their applications to
the four levels of object domains found in most vision systems.

Descriptions of Functions of One Variable

Suppose we wish to describe a noisy one-dimensional signal flx) in
order, say, to find intensity changes. A Fourier decomposition of the
signal has many desirable properties. It satisfies many of our criteria,
but crucially fails to satisfy the criterion of locality: that each of the

Fourier basis functions have an infinite neighborhood of support.

Suppose we want to use the description to find edges characterized

by abrupt changes of intensity. If the signal has undergone significant
degradation due to blurring and noise processes, an edge can be said to
exist at location x and scale o if the slope at point x and scale o achieves
a local maximum with respect to X. To make this precise, the slope at
Point x and scale o can be defined to be the result of differentiating the
g(llction F(x, o) that arises from convolving flx) with the Gaussian

X, ).
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Flx, 0) = Glx, 0) ® flx)

- 1 —{x—w)2/20cr2
= - e (u)du
f”‘( oV /

An “edge” exists at location x and o wherever F.(x, o) reaches 5
maximum or minimum or where

Fox,0) =0 and Filx, 0) #0

This technique, introduced by Stansfield (1980) and, most effectiVely,
by Witkin (1983), is known as scale-space filtering. It plays an important
role in many new techniques for shape representation. The (x, o) space,
known as scale space, can be used to represent a binary image, the scale
space image of flx), with a mark wherever F,.(x, o) = 0 and F,.. # 0.

We note the following:

Fualx, 0) = -5 [Glx, 0) @ flx)]
= Gelx, 0) © flx)

Thus the scale space image can be computed by precomputing the masks,
G.lx, o).

For an extensive discussion of scale-space methods with good exam-
ples, see Witkin (1987). The Gaussian is the only filter that does not
create generic zero-crossings as the scale increases, and this is true in
any dimension (Babaud et al., 1986, Yuille and Poggio, 1986). This key
monotonic property means that the scale-space image of a function of one
variable is hierarchically structured. In the scale-space image, the con-
tours of Frx, o) = 0 only have maxima—not minima. This property
allowed Witkin (1983) to define the interval tree in scale space. The
“edges” whose scales exceed any given value of o partition the x-axis
into intervals. As ¢ is decreased from a coarse scale, new edges appear
in pairs dividing the containing intervals into three subintervals.

This subdivision process continues as o is decreased down to the
finest available scale (Witkin, 1987). This interval tree can be used as a
representation of the shape of the function that satisfies many of the
criteria of Section C2. It is not as stable as one might like—small changes
in the function can produce large changes in the topology of the interval
tree. Surprisingly, it is invertible.

Yuille and Poggio (1984) show that the scale-space image uniquely
characterizes the curve modulo a multiplicative constant and a linear
additive component, but the inversion may not be “computationally well
conditioned” even if the slope or strength of each zero-crossing is known
(Hummel, 1986).

Mokhtarian and Mackworth (1986) show how to match scale-space
images using the A* algorithm (cf. Volume I).
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Clark (1987) observes that the “edges” marked in the scale-space
" image can be classified as “authentic edges” and “phantom edges.”
| «authentic edges” correspond to positive maxima and negative minima
~ of F.(x, o), whereas “phantom edges” correspond to negative maxima and
positive minima of Fa(x, o). These can be simply discriminated based on
" the sign of Fu(x, 0) Fuulx, 0). The removal of the phantom edges from

| the scale-space image produces a reduced scale-space image that is not

B .-. as well behaved as the scale-space image.

' Canny (1986) presents an edge detector that is almost optimum with

* respect to the tradeoff of detectability in the presence of noise and local-
ization based on similar multiscale techniques. His operator detects local

maxima in the convolution with the first derivative of a Gaussian. Der-

iche (1987) improves on Canny’s results.

Descriptions of Two-Dimensional Shapes

An arbitrary curve in 2-D space is the simplest generalization pos-
sible beyond a function of one variable. A 2-D connected region in a
binary image may be represented by the simple closed curve correspond-
ing to the exterior boundary and zero or more closed curves corresponding
to the boundaries of any holes. It is, therefore, important to have shape
representations for open and closed curves that satisfy our criteria.

Many current vision systems use global 2-D shape-dependent fea-
tures such as the number of holes, aspect ratio, the ratio of perimeter
squared to the area, moments of inertia, and the like (Brady, 1983).
Although such properties can be computed efficiently and can be used in
simple industrial inspection jobs (where the lighting can be controlled
and the context is narrowly limited), they are not sufficiently local,
stable, invertible, scale-sensitive, composite, generic, or refinable to han-
dle more general vision tasks such as interpreting outdoor scenes.

Brady and Asada (1984) proposed smoothed local symmetries as a
representation of 2-D shape. Essentially a local symmetry exists for a
pair of points A and B on a simple smooth closed curve if and only if the
right bisector of the straight line joining A and B serves as an axis of
symmetry for the tangents to the curve at A and B.

In Figure C-1 the point O lies on an axis of local symmetry. In
theory, for all pairs of points on the curve, we compute the set of all
Points that lie on axes of local symmetry. Then we compute the maximal
smooth loci of those points. Each locus is a candidate axis. A local
Symmetry constitutes a locally plausible way to describe a portion of the
contour and the region it subtends, called the “cover” of that axis. Each
axis whose cover is properly contained in the cover of another axis is
deleted to give the final representation.

In practice, the algorithm must contend with incomplete and noisy
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Figure C-1. Point O lies on an axis of local symmetry.

data and so is more complicated and must be optimized for better effi-
ciency. Brady and Asada (1984) propose placing knots at points of high
curvature on the bounding contour, constructing a piecewise smooth
approximation to the curve using straight lines and circles, and then
computing the smoothed local symmetries of the approximation to the
contour. Asada and Brady (1986) propose using the scale-space image of
the curvature as a function of arc length to recognize the existence of
certain primitives that embody orientation and curvature discontinui-
ties.

The smoothed local symmetries representation is a development of
the symmetric axis transform (Blum and Nagel, 1978) and the 3-D gen-
eralized cylinder representation (see Section C3). The symmetric axis
transform is the locus of the centers of maximal circles contained within
the region. Such circles must touch the boundary at two points, at least.

Hoffman and Richards (1982) also used curvature, proposing that
knots be placed at negative minima of curvature and that a dictionary
of “codons” be used as primitives between the knots. This has the advan-
tage of nicely explaining figure-ground reversal segmentation phenom-
ena as occur in Rubin’s Vase (see Figure C-2), for example, but it does
not satisfy the need for scale-sensitive and stable representations.

In searching for ways to generalize the scale-space transform from
functions of one variable to two-dimensional shape analysis, several
approaches are possible. We have already mentioned smoothing the i
boundary curvature as a function of arc length (Asada and Brady, 1986). ]
Another approach would be to smooth the 2-D image of the region with
a 2-D Gaussian filter and extract the zero-crossings of the Laplacian
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Figure C-2. Rubin’s Vase.

operator (9%ox” + o°/ay”) (Marr, 1982). Unfortunately, as Yuille and
Poggio (1986) show, as the scale of the filter is increased, a zero-crossing
contour so obtained can split into two, or two contours can merge into
one. Babaud et al. (1986) show a dumb-bell-shaped region that exhibits
both these behaviors. The single initial contour gplits into two as the
scale increases, but as it increases still further, they merge back again
into a single contour. Although the monotonic property discussed earlier
holds for 2-D smoothing in the sense that no new contour can appear
(without splitting off an existing contour), this behavior is nonmonotonic
in the sense that the number of regions defined goes from 1 to 2 and
back to 1 as o increases. This is not satisfactory from the point of view
of scale-sensitivity.

Accordingly, Mokhtarian and Mackworth (1986) propose a boundary
smoothing approach. It is not appropriate to smooth y = y(x) as a function
of x for several reasons, one of which is simply that a smoothed version
of the curve and the smoothed version of the curve rotated through w/2
would have radically different shapes, which violates our invariance
criterion. They propose smoothing in a natural path-based coordinate
frame, The curve is described parametrically as

{Ga®), y)lt € 10, 1}

where ¢ is a linear function of path length. Then the curve is smoothed
by a 1-D Gaussian kernel G(t, o). The resultant smoothed curve repre-
sents the original curve at coarser detail. If the original curve is closed,
the smoothed curve is closed. The zeros of curvature (the inflection points)
on the smoothed curves can be displayed as a map in (¢, o) space as a
generalized scale-space image of the curve. This hierarchically structured
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scale-space image is a useful representation of the shape of the curve ¢
the region contained in the curve if it is closed. Mokhtarian and Mack.
worth (1986) show how to use this representation to match landforms iy,
a map and a LANDSAT satellite image using a coarse-to-fine strategy,
The major disadvantage of this representation is that all simple convey
curves have the same representation, the empty scale-space image,
because they have no points of inflection. Compared with the alternatiye
of smoothing the curvature function (Asada and Brady, 1986), it has the
advantage of preserving the closure of closed curves (Horn and Weldon,
1986).

Horn and Weldon (1986) propose a representation called the extendeq
circular image for simple, closed convex curves. This is the 2-D analog
of the extended Gaussian image representation for convex 3-D objects
(both discussed later in this article). In the extended circular image, we
are given the radius of curvature R as a function of normal direction 1,
For a circle radius B, we have R({s) = R. In general, R({) = 1/k(s), where
k(s) is the curvature as a function of path length. The integral of the
extended circular image over a range of angles is the length of the portion
of the curve with a normal direction within that range. The extended
circular image of a closed convex curve is unique and invertible. One
may smooth a closed convex curve by convolving its extended circular
image with a smoothing filter (such as the Gaussian) and inverting the
result to produce a smoothed, closed convex curve. This representation
has most of the properties of a good shape representation. With regard
to completeness, its domain is complementary to that of Mokhtarian and
Mackworth with respect to the set of all closed curves.

Descriptions of Functions of Two Variables

It is important to have good shape descriptions of single-valued func-
tions of two variables—surfaces in 3-space. Describing the image inten-
sity surface I(x, y) and the visible surface depth map z(x, y) are two
examples of where this is needed. The depth map z(x, y) may be an
intermediate stage of description of the scene or it may be obtained
directly as a range image from an active sensor using sonar or structured
light from, say, a laser. Besl and Jain (1985) survey some recent work
in the description of surfaces.

Haralick et al. (1983) survey several pdpers on topographical clas-
sification of digital surface features and propose a descriptive scheme
based on a set of ten labels that include features such as peak, ridge,
saddle, planar, and pit. At each pixel in the intensity image, the param-
eters of an analytical facet model are estimated to give the best local fit.
Those parameters can then be used to determine slope, the principal
directions of curvature, and the two principal curvatures that determine
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the pixel labels. Nackman (1984) proposes a similar scheme for seg-
menting surfaces based on critical points (local maxima, local minima,
and saddle points).

Scale-sensitive descriptions of functions of two variables may be
obtained using the 2-D scale-space approach with the drawbacks dis-
cussed in the previous section.

Recovery of the depth map z(x, y) from the image intensity function
I(x, y) is in general an ill-posed problem (Tikhonov and Arsenin, 1977)
because the solution is not unique—the imaging process is not uniquely
invertible. If, however, the imaging model is simple, we can recover the
“hest” surface that could have produced the given image, under known
illumination and imaging geometry and radiometry conditions. Suppose
the image intensity at a point on the surface imaged is known to depend
only on the surface gradient (p, q) (Mackworth, 1983). Then the image
irradiance equation takes the form (Horn, 1986):

I(x, y) = R(p, @)

Clearly, given I(x, y) on a digital grid as I;; = I(x; v,) and the func-
tional form of R(p, ), we cannot determine {p;} and {g;} because they
are underconstrained. The extra constraint necessary can be provided by
insisting that the surface found be the one that minimizes a weighted
sum of the squared error in the image irradiance equation and a quad-
ratic measure of the smoothness of the surface (Ikeuchi and Horn, 1981).
This functional essentially selects a single surface from the set of all
possible surfaces. We can determine this surface by setting the partial
derivatives of this functional with respect to the orientation parameters
equal to zero and solving the large sparse set of linear equations by an
iterative relaxation method. Terzopoulos (1986, 1987) has shown that
the convergence of this process can be accelerated using multigrid relax-
ation methods, again demonstrating the importance of scale-sensitive
descriptions. (Further details on multigrid methods are given in Section
D.) Woodham (1987a) and Horn (1986) provide excellent overviews of
the shape-from-shading method and the use of multiple light sources and
photometric stereo (Woodham, 1980) to overconstrain the gurface gra-
dients.

Another approach to determining shape-from-X is based on fractal
modeling of the surface (Pentland, 1983). If we assume that a surface
has isotropic fractal characteristics, then under certain Imaging assump-
tions the image intensity surface will algo have fractal characteristics.
By measuring those characteristics, we can arrive at estimates of the 3-
D surface characteristics.

Another class of shape-from-X methods is shape-from-contour. The
blocks world scene domain was the development ground for many of
these methods as documented in Volume III of the Handbook. Despite the
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fact that most researchers abandoned the blocks world, many important
theoretical and practical problems remained unsolved. Sugihara (1986)
has continued to attack those problems. His book is an excellent suy,.
mary of his results. It is organized around the exposition of a four-moduy]e
procedure for the interpretation of line drawings as polyhedral sceneg
The first module is the classical Huffman-Clowes labeling. Howevep
Huffman-Clowes labeling may generate specious labelings that are no£
realizable as polyhedral scenes (Mackworth, 1977a). Accordingly, the
second module determines which of the proposed labelings are realizable.
This test of geometric feasibility is carried out by reducing the problem
to the determination of a feasible solution to a linear programming
problem. The third module allows tolerance in the definition of geometric
feasibility by removing redundant constraints and “correcting” the orig-
inal line drawing (moving vertices and the like). The fourth module
allows the use of additional information sources such as 3-D range find-
ing, surface shading, and texture to pick a unique scene interpretation
from the infinite number of possible scenes in the equivalence class of
interpretations depicted by the image.

There were at least four main open issues at the end of the first
decade of blocks world research. First, procedures such as Huffman-
Clowes-Waltz labeling and gradient space reasoning applied necessary
but not sufficient tests for realizability (see Article XIII.B5, Vol. III).
Second, it was not clear how to characterize the degrees of freedom in
the scene equivalence class. Third, the computational complexity of the
problems and their algorithms was not understood (see Section C4 on
constraint satisfaction). Fourth, it was not known how to apply these
methods to “real” images, integrating these methods with other shape-
from-X methods and coping with noisy data. Sugihara has contributed
substantially to the solution of each of these problems.

The old question as to whether this approach will generalize outside
the blocks world must be faced. Obviously the techniques will not work
- on images of tea cups or clouds. But, just as with the gradient space
approach, the underlying methodology does apply generally. It is a dem-
onstration of the power of characterizing the equivalence class of scenes
in terms of the constraints from the image imposed on the a priori degrees
of freedom of the scene (Mackworth, 1983) and furthermore of finding a
unique scene by minimizing a functional over the equivalence class.
Moreover, Sugihara (1986) contributes to the theme of structure rigidity
by developing the analogy between the duality principle behind gradient
space structures and the corresponding duality principle behind force
diagrams of rod and pin structures. These ideas will generalize far
beyond the blocks world as we design and build large space frame struc-
tures on earth and beyond. The developments in Sugihara’s book depend
on recent advances in matroid theory, which makes them somewhat
inaccessible to many readers.
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includes cubes, diamonds, pyramids, and cylinders. The complete mgq.
eling system allows these parts to be stretched, bent, twisted, ang
tapered, and then combined using Boolean combinations (ANDs, ORs,
and NOTSs) to form new prototypes that can then, recursively, be agaln
deformed and combined with other prototypes. From the perspective of
our adequacy criteria for shape representation, this proposal offers sey,. |
eral advantages. The completeness of the domain of coverage is high
though there are still some difficulties with such things as pentagonal '
solids. Most other proposals such as generalized cones are essentially
subsumed by superquadrics.

C3. Object Recognition

LET us Now REVIEW developments in the automatic recognition of objects,
We refer to several important systems that focus on recognition in g
“bin-picking” (factory robotics) environment. Bolles and Cain (1982)
present the “local-feature-focus method” for recognizing and located 2-D
possibly occluded objects. An object model consists of a graph whose
vertices represent features such as corners and holes and whose edges
are labeled with the distance and relative orientation of the two features
related by the edge. The edge constraints help to control the matching
process.

Similarly, Grimson and Lozano-Perez (1984) show how to use local
measurements of 3-D positions and surface normals to identify and locate
objects in a scene from a set of known objects. The objects are modeled
as polyhedra with three degrees of rotational freedom and three degrees
of translational freedom. The local measurements could come from a set
of tactile sensors or 3-D range sensors. The measurements are assumed
to have a small range of possible errors, although the normal measure-
ments are assumed to be less reliable than the position measurements.
The problem can easily be formulated as an exhaustive search problem;
the trick is to reduce the search space to one of manageable size. For
each object in the repertoire, the system searches an interpretation tree.
If there are s measurements and n faces for the object, the tree has s
levels and a branching factor of n at each level. The tree has, potentially,
n’ leaves each corresponding to a set of assignments of the s measure-
ol ments to the n faces. However, the search tree may be cut off above the
y leaf level using such binary constraints as:

1. Distance constraint—The distance between a pair of measurements
must be a possible distance between the pair of faces assigned to
them.
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9. Angle constraint—The range of angles between measured normals
must include the angle between the pair of faces assigned to them.

These and other constraints are used very effectively to prune the inter-
?retation trees as early as possible. Considerable data is provided to
‘demonstrate the power of using such local constraints to control the

LA global object matching process.

e,

it

Grimson (1986) provides careful combinatorial analysis of the effi-
cacy of various constraints. Grimson (1987) extends the approach to the
recognition of objects that can vary in parameterized ways, with parts

" that may have rotational, translational, scaling, and stretching degrees

of freedom.
Bolles and Horaud (1986) describe 3DPO, a system for determining

" the 3-D position and location of parts in a jumbled bin of identical parts.
" It generates hypotheses about part locations using 3-D edge features
' extracted from range data and then matches distinctive features to con-

firm or refine the match.

Another successful approach to the bin-picking problem has been
‘reported by Ikeuchi and Horn (1984) (see also Horn (1986), Chapter 18).
This approach does not use direct range data, relying instead on photo-

- metric stereo (Woodham, 1980, and Article XIILA, Vol. II). Multiple

images are captured, changing the position of the light source but keep-
ing the camera in place. These images, combined with a reflectance map
model of the imaging situation and the surface reflectance, provide suf-
ficient, constraints to extract an image-registered map of surface grad-
lents (the needle diagram).

The needle diagram can then be mapped onto a tessellated Gaussian
Sphere, giving an orientation histogram where each facet contains the

~ sum of the object surface areas corresponding to that range of orienta-

tions, This is a discrete approximation to the visible half of the extended
Gaussian image (Section C2). This shape representation can be matched
against a stored histogram obtained from a prototype model of the part.
The best match gives the attitude (but not the distance away) of the
object to be picked up. The object gripper is moved out along the ray
ffmm the camera on which the object is known to lie until a proximity
Sensor is triggered, at which point the gripper can be oriented for the
nown attitude of the object. The object is then grasped and removed.

Advances in 3-D object recognition from a single intensity image
beyond ACRONYM (Brooks, 1981) (Handbook, Article XIILF3, Vol. 11D
have heen reported by Goad (1983) and Lowe (1985, 1987). Goad presents
an‘ interesting view of recognition as special-purpose automatic program-
Ming, His assumption is that a program to recognize a particular object
fan be optimized offline for that object by considering all possible views
of the object to minimize actual recognition time. Recognition is seen as
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a process of searching for the camera viewpoint in an object-centerq
coordinate system. As with Grimson and Lozano-Perez (1987), this pro-
cess is seen as a tree search that matches image data to model data. 1y,
this case the matched data are lines from the image with edges in the
model. The order of matching is precomputed to minimize search timeg
Recognition times on the order of one second are reported on a 1 Mp
machine.

Lowe (1987) has also described a system, SCERPO, that can recognige
and locate 3-D objects in single gray-scale images. The system firgt
extracts edge-based features and forms perceptual groups (based on col.
linearity, parallelism, and proximity) that are likely to be invariant ovey
a wide range of viewpoints. These are then matched against object struc.
tures with a probabilistic matching structure used to reduce the size of
the search space. Finally, the unknown viewpoint and model parameters
are determined by an iterative process of spatial correspondence baseq
on Newton’s method. Results on an image of a bin of disposable razors
show robustness in the presence of occlusion and poor segmentation data,

Besl and Jain (1985) provide an extensive survey of 3-D object rec-
ognition systems and techniques with a particular emphasis on the uge
of range images.

C4. Constraint Satisfaction

THE TERM “constraint satisfaction” is used both to describe a class of
problems and to name a method of solving these problems. Constraint
satisfaction problems have considerable importance in vision and other
areas of Al (Mackworth, 1987b). We shall briefly survey the two main
approaches, emphasizing some recent results. Boolean constraint satis-
faction problems, as typified by Huffman-Clowes-Waltz labeling, are one
main class. The other is the class of optimization problems that used to
be known as probabilistic relaxation problems.

Boolean Constraint Satisfaction Problems

A Boolean constraint satisfaction problem (CSP) is specified if we
have a set of variables

V = {v1, ve, .., Un}

and a set of Boolean constraints limiting the set of allowed values for
specified subsets of the variables. Each variable takes on values in some
domain. The set of solutions to the CSP is the largest subset of the
Cartesian product of the domains of the n variables such that each n-
tuple in the set satisfies all the given constraint relations. We may have
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o list or describe all the solutions, find one, or just report if the solution
et contains any members—the decision problem (Mackworth, 1977b;
iﬁaralick and Shapiro, 1979).

For example, deciding if an image can be labeled using the Huffman-

" (lowes labels is a CSP decision problem. There the variables can corre-

gpond to the junctions, the domains to the set of possible corners allowed

" for each junction type, and the constraint relations to the binary con-
* gtraint that the corners at each end of an edge must have the same label

i

%

' for the edge. Or, dually, we could set up a CSP with the variables corre-
‘sponding to the edges, the domains to be the set of possible edge labels
allowed, and the constraint relations to the k-ary relations corresponding

" to the set of possible corners allowed by each junction type.

Determining if a planar map can be colored with three colors is a

" Boolean CSP that is NP-complete; therefore efficient (polynomial) algo-

sithms are unlikely to be found for the general class. Moreover, it has

yecently been shown that even the Huffman-Clowes labeling CSP is NP-
complete (Kirousis and Papadimitriou, 1985).

Since the general problem may well require exponential time to

~ solve, approaches have concentrated on polynomial approximation algo-

rithms that enforce necessary but not sufficient conditions for the exis-

tence of a solution.
Waltz’s (1975) filtering algorithm is one of the arc consistency approx-

~ imation algorithms. These algorithms are members of a class of network

consistency approximation algorithms (Mackworth, 1977b) further gen-

~ eralized by Freuder (1978). Mackworth and Freuder (1985) settled a long-

;_ standing debate by proving that Waltz’s arc consistency algorithm
" requires time linear in the number of constraints, at most.

: Although in the past it was felt that CSPs are amenable to parallel
- solution, Kasif (1986) showed that arc consistency is “inherently” a serial

" problem. Precisely, he has shown that arc consistency is log-space com-

plete for P. (Log-space complete problems for P are those problems solv-
able on a single Turing machine in polynomial time.) The implication is

~ that it is very unlikely that arc consistency can be solved in time poly-

Nomial in log n with a polynomial number of processors. This somewhat
| counterintuitive result can be understood better if we realize that we
can set up CSPs with serial data dependencies. A local inconsistency can

‘ [ be discovered by one processor at a vertex, which when removed causes

an inconsistency at an adjacent vertex and so on. Since this propagation
1s serial, all but one of the processes may be idle all the time.

NUdel (1983) has shown some tight results on expected time com-
Plexity for classes of CSP on a single processor. Mackworth, Mulder, and
teaVenS (1985) have described a new algorithm, hierarchical arc consis-

ncy, that exploits the situation where the values within a domain can
¢ organized hierarchically with common properties. They describe the
application of the algorithm in a schema-based recognition system for
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maps and provide theoretical and experimental complexity results. Malik
(1987) describes the application of the hierarchical approach to line
labeling.

Optimization Problems

In computational vision one is often not just satisfying a set of
Boolean constraints, rather one is optimizing the degree to which the
solution satisfies a variety of possibly conflicting constraints: trading one
constraint off against another. For example, Zucker, Hummel, and Rosep.-
feld (1977 and as covered in Article XIII.LE4) in a curve enhancement
application attach weights or “probabilities” in [0, 1] to each of nipe
labels (corresponding to eight compass orientations and “no line”) ang
the relation matrices or “compatibilities” have entries in [~1, 1] that
measure the extent to which two values from related domains are com.
patible. This scheme, known as probabilistic relaxation, iterates the
application of a parallel updating rule, modifying the weights in each
domain until a fixed point is reached or some other stopping rule applies,
For an excellent overview of applications of this paradigm, see the survey
by Davis and Rosenfeld (1981).

The probabilistic interpretation has problems of semantics and con-
vergence—other interpretations are now preferred (Ullman, 1979; Hum-
mel and Zucker, 1983). Algorithms in this class have been called
cooperative algorithms (Julesz, 1971; Marr, 1982). Compatible values in
neighboring domains can cooperatively reinforce each other while incom-
patible values compete, trying to suppress each other. Each value in a
domain is competing against each of the other values in that domain,
Cooperative algorithms are attractive because they are inherently par-
allel, requiring only local neighborhood communication between uniform
processors that need only simple arithmetic operations and limited mem-
ory such as is available on the Connection Machine (Hillis, 1985; and
Article D5 of this Chapter). These features suggest implementations for
lower level perception (such as stereo vision) in artificial and biological
systems (Marr, 1982; Ikeuchi and Horn, 1981; Zucker, 1983; Ackley et
al., 1985; Little et al., 1987).

The design of these algorithms is best based on the minimization of
a figure-of-merit. Ikeuchi and Horn (1981), as described in Section C2,
carry out shape-from-shading using a figure-of-merit based on a combi-
nation of a measure of deviation from the image data and a measure of
surface smoothness. The iterative relaxation solution corresponds to
using gradient descent on the figure-of-merit, searching for the best set
of orientation values for the surface elements. Note that the domains do
not consist of a finite set of values each with a weight in [0, 1], but rather
they consist simply of one value that is the current best estimate of the
local value of the solution.
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Gradient descent techniques are only guaranteed to find the global
minimum of the figure-of-merit or “energy” surface if that surface is
everywhere an upward concave function of the state variables of the
gystem. In that case, there is only one local minimum and it is the global
minimum. If the surface has local minima that are not the global mini-
mum, techniques such as “simulated anneal ing” based on the Metropolis
algorithm and the Boltzmann distribution can be used to escape local
minima (Kirkpatrick et al., 1983, and Ackley et al., 1985).

Earlier, in Section C2, we described the shape-from-shading approach
of Tkeuchi and Horn (1981) as an example of using regularization theory
to solve an “ill-posed” problem. Regularization theory has been applied
to a wide variety of early (low-level) vision problems (Poggio et al., 1985).
For example, edge detection is an ill-posed problem because locating
zeros of the numerical first derivative of the image is unstable; its solu-
tion does not depend continuously on the input intensities. Smoothing
the image regularizes the problem, making discontinuity detection well
posed (Hildreth, 1987).

Poggio, Voorhees, and Yuille (1984) and Torre and Poggio (1986)
derive an optimal smoothing operator as follows. Suppose I(x) is the
image intensity function and S(x) is the smoothed intensity function
required. S(x) should fit the image intensities closely and be as smooth
as possible. In other words, S(x) should minimize

3 ) = Sl + A S8

where \ is a constant controlling the tradeoff between fidelity to the
image and smoothness. The solution to this minimization problem is
equivalent to convolving the image with a cubic spline, which is similar
to the Gaussian.

Hadamard defined a problem to be well posed if its solution exists,
is unique, and depends continuously on the initial data. An ill-posed
problem, one that is not well posed, fails to satisfy one or more of these
conditions. A well-posed problem may, however, still be numerically ill
conditioned and oversensitive to noise in the initial data (Poggio et al.,
1985).

One general approach to the regularization of an ill-posed problem
(Tikhonov and Arsenin, 1977) is as follows. Suppose we wish to solve the
inverse problem: given Az = y, find z given the data y.-This is solved by
determining the function z that minimizes

|Az — yII* + N|IP2[l*

where \, the regularization parameter, controls the relative importance
of the fit to the data and the degree of regularization of the solution.
IPz||? is the regularization criterion—usually some measure of “smooth-
ness.” Poggio, Torre, and Koch (1985) discuss the regularization of seven
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ill-posed problems in early vision: edge detection, optical flow, surface
reconstruction, spatiotemporal reconstruction, color, shape-from-shagq.
ing, and stereo. Difficulties arise when the regularization imposegs a
smoothness constraint on the world that may be inappropriate. They alsg
discuss how linear analog electrical and chemical neuron-based networkg
could solve the minimization problems that arise in a regularizatiop
approach.




D. VISION ARCHITECTURE

Overview

In the past decade the growth of interest in parallel computing within
the computer vision community has been changing the field. More and
more studies of machine vision are based on or motivated by a particular
computer architecture. This section discusses the most influential archi-
tectural directions, along with their relationships with computer vision.

Architecture’s Influence on Algorithms. Although much
research in computer vision is driven purely by the insights about vision
that the research community has accumulated, some research responds
directly to the possibilities that new computer architectures offer. Com- .
puting with cellular-logic processors, connection machines, and real-time
video processors has a flavor sufficiently different from conventional
mainframe, mini, and micro computing that it has encouraged lines of
research substantially different from those of the more traditional com-
putational vision.

Those who have programmed highly parallel machines such as the
CLIP4 and the Connection Machine say that after some experience, one
begins to think “in parallel” on a whole new, higher, algorithmic plane
than before. There are two reasons for this. First, the highly parallel
machines offer relatively high-level instructions as the conceptual build-
ing blocks for algorithm design. A typical instruction of such a machine
causes two images to be added together, whereas an ordinary computer
could only add two individual pixels together in one instruction (or it
might even take several instructions). Therefore the programmer is
encouraged to work at a higher level of abstraction than otherwise.
Second, these machines perform such operations very quickly—in a mat-
ter of microseconds, rather than seconds. This means that the program-
mer/researcher can effectively interact with the system at this high level
of abstraction, rather than work with it in a batch mode.

Relationship with Data Structures. Some highly parallel com-
puters are designed specifically to support operations on certain kinds of
data structures. The CLIP4 operates on images. The Connection Machine
can operate on images or pointer maps. Some pipelined systems such as
Aspex’s PIPE operate on video data streams. Parallel pyramid machines
operate on pyramid data structures (see Uhr, 1987, for accounts of several

pyramid machines).
By operating on these data structures as units, many of these parallel
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architectures have an organizing principle built in; the data structuye
becomes the machine structure.

Parallelism in Vision

Although the computing community generally has been moving
toward parallel processing, the case for parallelism in vision has been
promoted with even greater strength. This is both because the human
visual system seems to be a massively parallel system and because it ig
fairly obvious how images can be handled in regularly structured paralle}
systems (e.g., one processor per pixel). Nonetheless, parallelism can be
used in vision in a significant variety of ways. A review of these wil]
make the essential architectural alternatives clearer.

Parallel Methodologies

SIMD versus MIMD Systems. As is customary, let us divide the
realm of parallel architectures into two broad groups:

1. Those in which a single program is being executed and in which at
any one time all processors perform the same instruction on their
own data.

2. Those in which processors follow different programs or different cop-
ies of the same program more or less independently on their own
data.

In the terminology of Floyd, the first class of architectures are single-
instruction-stream/multiple-data-stream (SIMD) systems, whereas the
latter are multiple-instruction-stream/multiple-data-stream (MIMD) sys-
tems.

This distinction is a matter of processor autonomy; SIMD systems use
many processing elements with little autonomy—they are permitted
their own data but must execute programs in lockstep with one another.
On the other hand, MIMD systems have highly autonomous processors
that may work independently except when their programs call for com-
munication and synchronization with other processors. In reality, many
systems do not fall at one end or the other of this spectrum of processor
autonomy; for example, their processors may have conditional instruc-
tions based on local conditions or they may have highly autonomous
addressing capabilities. However, the SIMD-versus-MIMD distinction is
very useful in examining the broad realm of parallel architectures.

In the vision community, there are vocal proponents of both SIMD
and MIMD architectures. Consequently it is useful to understand the
relative strengths and weaknesses of the two families.

First, we have the matter of cost. If cost were measured in the number
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of logic gates in a computer, we could provide more processing elements
in an SIMD system than in an MIMD system for the same cost because
the SIMD system’s processing elements do not require program counters
and instruction-decoding logic. Proponents of MIMD systems argue that
the flexibility of MIMD systems allows them to be manufactured and sold
in larger quantities and therefore more cheaply than the more special-
purpose SIMD systems.

Second, let us consider the programming problems these architec-
tures present. The SIMD architectures tend to be structured according to
some data structure such as a two-dimensional image array, and pro-
gramming them is relatively easy. Whereas an MIMD system requires
the programmer to write synchronization protocols and work out load-
balancing arrangements, SIMD systems obviate most synchronization,
and the programmer is not normally concerned with load balancing. This
is because it is impractical to map computations onto the array in a
fashion that does not follow the machine’s special (e.g., image) structure.

In some ways, SIMD systems execute parallel computations more
efficiently than MIMD systems—there is little communication overhead
between processing elements because their interactions are prepro-.
grammed and presynchronized. Depending on the interconnection net-
work that links the processing elements, the overhead of routing data
can be very low in SIMD systems. A limitation of SIMD systems, however,
is that in computations where only one or a small number of processing
elements are doing meaningful work, all the others must either operate
on dummy or garbage data or wait idly. In MIMD systems, processors are
not constrained by the architecture to idle if other meaningful tasks are
ready to execute.

Data Flow. Another way of thinking about parallel processing is
in terms of the flow of data through a network of operations where the
data get transformed. The nodes of a data-flow network represent points
in the process where the data is operated upon. It is not necessary that
each node correspond to a processor; however, at some point during the
computation, each node must be assigned to some processor S0 that the
operation(s) can actually be performed. Several data objects might flow
to the same node; one operation involving several operands might take
place there, or a succession of operations might be performed at the node.

Data-flow paradigms have not been used much in machine vision
except to the extent that image-stream processing may be thought of as
data-flow processing. However, this particular kind of data-flow para-
digm is better known as pipelining. In the future, general data-flow
technigues may be appropriate for higher level (symbolic) processing of
visual information.

MIMD Systems: Butterfly, Hypercubes, RP3, Warp. Computer
systems that incorporate multiple processors, each executing an instrue-
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tion sequence that is independent of the others, are of interest becausge
of their ubiquity and flexibility, especially for vision-related computa.
tions at the symbolic level (rather than the pixel level). Several prom;j.
nent MIMD systems are these: the Butterfly developed by Bolt, Beranek,
and Newman, Inc., the Cosmic Cube developed at the California Institute
of Technology (Seitz, 1984), the RP3 developed by IBM (Pfister et al
1985), and the Warp at Carnegie-Mellon University. Of these, the twq
architectures designed principally for Al/vision applications are
described here in more detail.

The Butterfly architecture covers a family of MIMD parallel processor
systems that can have up to 256 processors in a system (Crowther et al
1985). Each processor has a local memory with access time of about twq
microseconds, but the processor can also access the local memories of al]
the other processors through the network, and such an access takes
approximately six microseconds. The Butterfly architecture works welj
on problems that can be decomposed for large-grain parallel processing
with only modest amounts of interprocessor communication.

The Warp computer (Annaratone et al., 1987) is a linear array of
programmable processors developed at Carnegie-Mellon University.
Intended primarily for computer vision, it can also be applied to signal
processing and scientific computation. A ten-processor prototype became
operational in 1986. Originally it was conceived of as a “systolic” system
in which data would be piped through the line of processors with SIMD
control. Later it was decided to make the processors autonomous, and it
became an MIMD system. The processors in the linear array operate on
32-bit words, and they are interconnected with 16-bit wide data paths.
The linear array is connected through an interface unit to a host (Sun-
3 workstation plus additional processors).

Multicomputers with Reconfigurable Interconnections. To
avoid the limitations of any particular fixed interconnection structure,
“reconfigurable” systems have been proposed. At a cost of slightly more
switching hardware, the data and control paths among processing ele-
ments and control units can be made programmable. The CHiP computer
and the PASM are two specific systems that have been described in the
literature.

A CHIP (configurable highly parallel) computer is an array of pro-
cessing elements interconnected with a system of wires and program-
mable switches (Snyder, 1982). Because the processing elements and
switches are laid out on VLSI chips in an integrated manner, it is possible
to achieve SIMD cellular array efficiency (including short data paths and

synchronous communication). It is also possible to embed rich nonplanar =

interconnection graphs in a CHiP system because the switches can also
be programmed to produce long, convoluted data paths containing cross:
overs.
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The PASM (partitionable SIMD/MIMD) system permits the set of pro-
cessing elements to be grouped (under program control) and each group
associated with a separate control unit (Siegel et al., 1979 and Chu et
al., 1987). The offect of this is to allow PASM to contain a multiplicity of

| 8IMD parallel programs each executing independently of (or communi-
~ gating agynchronously with) the others. A number of simulations have
| peen reported that give the predicted performance of PASM on image

analysis tasks.

Neighborhood Parallelism and Pipelined Systems. Another

b way to organize the processing of image data for parallel computation is

‘{o treat the neighborhood as the atomic unit of computation. In a neigh-
“borhood-parallel, pipelined image processing system, one neighborhood
\(generally a 3x3 set of pixels) is processed in a single machine cycle. The

" image data is shifted through the neighborhood processor so that every

L

&
1

neighborhood (of the given gize) is processed in a single scan of the image.

* Examples of neighborhood-parallel pipelined systems include PICAP

(Kruse, 1980), the Cytocomputer (Lougheed et al., 1980), and PIPE (Kent
ot al., 1985), among others. It has also been proposed that such systems
be implemented optically (Huang et al., 1987).

Let us describe PIPE (pipelined image processing engine) in more
detail. Tt is a commercially available system that is oriented largely
toward the processing of digitized video data in real time (30 frames/
second). A PIPE consists of from three to eight “modular processing
stages,” each of which consists of a frame buffer, a neighborhood pro-
cessing unit, and an address generator. In addition to these stages, there
are an input stage, output stage, control unit, and control and data paths.
Six modular processing stages and their interconnections are dia-
grammed in Figure D-1.
~ In typical operation, a stream of digitized video is passed from the
input stage to the first processing stage, where a filtering operation is
performed on it. By piping the image through the 3%3 neighborhood
processor (which computes a single output value with the help of pro-
grammable lookup tables), the filtering is accomplished in a frame time.
The result is then fed to the second stage where it is averaged with a
similarly filtered picture from the video frame preceding the one on
which this filtered image is based. This output is then passed to a third
modular processing stage where an edge template is applied. The final
outputs may be displayed or passed to a host for additional analysis.
Because almost all aspects of the computation are programmable (neigh-
borhood operators, data paths, and address generators), the programmer
has substantial flexibility in designing algorithms for PIPE.

Although processing the nine points of a neighborhood in parallel
¢an gignificantly speed up an image processing operation, an architecture
that provides a separate processor for each pixel of an image can achieve
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Figure D-1. Modular processing stages and data paths in
PIPE (from Kent et al., 1985, courtesy of
E. Kent).

much faster performance, albeit at an increased hardware cost. The
mesh-based architectures of the next section demonstrate this.

Mesh Architectures

The period 1980 to 1987 saw major advances in the realization of
massively parallel mesh-oriented processors. Notable systems in this
group include the CLIP4, MPP, and the Connection Machine.

CLIP4. The first such machine, CLIP4 (Cellular Logic Image Pro-
cessor, version 4), became operational in early 1980 at the Department
of Physics and Astronomy, University College, London (Duff, 1976). The
CLIP4 consists of a 9696 array of processing elements controlled by a
single program-interpretation unit. Each processing element (PE) of the
CLIP4 has one bit of input from each of its eight nearest neighbors. These
inputs can be masked under program control and then logically OR’ed
and further combined with Boolean data from the PE’s local memory.
Thus each CLIP4 instruction performs a cellular-logic operation on an
entire 96x96 binary image in one cycle. A conventional computer would
have to perform over 10 billion operations per second to keep up with
the CLIP4 (Preston and Duff, 1984).

MPP. The Massively Parallel Processor (MPP) became operational
in 1983. Developed by Goodyear Aerospace under sponsorship of the
NASA Goddard Space Flight Center, the MPP contains a 128128 array
of processing elements roughly comparable in power to the CLIP4 PEs.




X ™

Vision Architecture 571

Each PE in the MPP has a reconfigurable shift register that speeds up

pit-serial arithmetic by a constant factor over the CLIP4; however, each

~ ppin the MPP can only access a bit of data from one neighbor at a time,

rather than eight at a time in CLIP4. The MPP augments the mesh with
a “staging memory,” which 18 provided to lessen the effect of the input/
output bottleneck from which both the CLIP4 and the MPP suffer
(Batcher, 1980). By using later technology than the CLIP4 and a larger
array, the MPP achieves approximately the equivalent of one trillion
operations per second on a conventional computer (Preston and Duff,

1984).

Multilevel Architectures

Mesh-based architectures are highly efficient for computing trans-
formations of images where the output at a pixel is only a function of
the local neighborhood of that pixel. However, many computer vision
problems require the computation of more global and gymbolic represen-
tations of an image. To make the more general kinds of computation
efficient, meshes have been augmented in a variety of ways. The CLIP4
and MPP actually include a feature that lets the control unit know
whether any PE has a nonzero value in its accumulator. However, this
is a very minimal augmentation to a mesh.

Pyramid Machines. A relatively straightforward augmentation to
a mesh is some additional meshes. Although it would be possible to build
a three-dimensional mesh and thereby increase processing power and
efficiency for 3-D spatial problems, such a system would still lack the
capability to efficiently gather data globally from an image. An alter-
native is to let the additional meshes get, progressively smaller, tapering
to a point, thus forming a “pyramid.” By connecting each PE to four
“children” in the mesh below and a “parent” in the mesh above, a quad-
tree of interconnections is added to the mesh interconnections. The pyr-
amid can then perform the computations of a tree machine if and when
desired. For example, after some filtering operation has been applied to
the image in the largest (bottom-level) mesh, the average value can be
obtained by letting each PE compute the average value from its four
children, until the global average emerges at the apex; the value is
obtained in O(log N) time, whereas a pure mesh would require O(N)
time.

Pyramid machines also efficiently support multiresolution compu-
tations (Tanimoto, 1983; Rosenfeld, 1984; and Dyer, 1987) as well as
hierarchical extensions to cellular logic (Tanimoto, 1984). These systems
can also be thought of as specialized processors for manipulating pyramid
data structures (see Article XII1.E1). Prototypes of pyramids have been
constructed at the University of Washington (Tanimoto et al., 1987),
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George Mason University (Schaefer et al., 1985), and are under devel-
opment elsewhere (Cantoni et al., 1987). Closely related to the pyramid
architecture is the mesh augmented by a tree without auxiliary meshes;
an example of such a system is NON-VON, developed at Columbia Uni-
versity (Shaw, 1985).

Darpa Image Understanding Architecture. Another multilevel
architecture based on a mesh is one developed at the University of
Massachusetts (Levitan et al., 1987). This system was designed specifi-
cally for vision applications in which computation is to proceed in real-
time at three levels of abstraction: the pixel (or low) level, the feature
(or intermediate) level, and the symbolic (or high) level. The architecture
calls for three corresponding processor levels: a mesh of 512x512 PEs,
another mesh (64Xx64) of more powerful intermediate-level processors,
and a collection of 64 LISP processors. Shared between the lowest two
levels is a one-gigabyte dual-ported memory, whereas a 512-megabyte
shared memory sits between the upper two levels.

The system is designed to efficiently support the algorithms devel-
oped for the VISIONS system (Riseman and Hanson, 1986), among others,
A prototype is currently under development with the cooperation of
Hughes Aerospace and sponsorship of the Defense Advanced Research
Projects Agency.

The Connection Machine. Rather than augment a mesh with a
tree or additional meshes, the Connection Machine uses a data-routing
network, which is physically arranged as a hypercube. The general archi-
tecture of the system is given in Hillis (1985). The first version of the
Connection Machine, the CM-1, became operational in 1986. That model
allows either a 128x128 or a 256256 array of processing elements to
be installed. Each PE has 4K bits of iocal memory. The system operates
from a 4MHz clock. The CM-2, available since the fall of 1987, uses 64K
bits/PE and an 8MHz clock, plus optional floating-point hardware. The
hypercube-based router of each model is 12-dimensional, with each rou-
ter node responible for 16 PEs. However, the user programs data transfers
as if each PE were accessible directly from any other. A good account of
how the Connection Machine may be programmed for computer vision
problems is given in Little et al. (1987).

Part of the inspiration for the Connection Machine was NETL (Fahl-
man, 1979), which is a model for a large hardware system based on a
semantic-network/meural-network paradigm. Neural networks have also

inspired research into a more amorphous family of information process-
ing systems that are usually described as “connectionist.”

Connectionist Architectures

The various models of computing that fall under the heading of
connectionist architectures generally have their roots in observations ©
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* human and other biological neural systems. Tn addition to the influence
_ of neurophysiology and experimental psychology, the connectionist

approach benefits from a recognition of some inherent limitations of

* conventional computers.

The “Von Neuman bottleneck” is the principal limitation of a con-
ventional serial computer system. There is only one processing unit, the
CPU, and it can perform only one operation at a time. These operations
involve only one word-sized data object at a time, and memory can be
accessed directly only by using addresses (not by contents, by semantic
associations, or by structure). It is true that today’s serial computers can
perform an operation in 100 nanoseconds. Yet these operations are com-
paratively simple, and those required for artificial intelligence appli-
cations are complex enough to need thousands of the elementary
operations. The result is that Al applications (and especially vision appli-
cations) run very slowly on Von Neumann—style computers.

Further underscoring the limitations of the traditional serial archi-
tecture is the fact that biological systems succeed at complex tasks even
though their neural computing elements run several orders of magnitude
more slowly than the corresponding electronic elements. The biological
“proof” that parallelism works starts with the observation that a neuron
requires on the order of one millisecond to fire, whereas computer switch-
ing times are on the order of 108 seconds (10 nanoseconds). To account
for the computing power and intelligence of the human brain, we are
forced to rule out the speed of the neuron as the key; the speed of human
perception must be due to the brain’s parallel architecture, not the speed
of individual computing elements.

If we could have the same massive parallelism that we have in the
brain, but with electronic computing elements instead of neurons, it
seems that we should be able to obtain intelligent systems with 1,000
times the power of the brain. With systems of this power, what would
take a human three years to learn might take such a computer only one
day to learn, if the computer could somehow be provided with an efficient
enough learning environment. The hope that man will be able to improve
machine intelligence by building highly parallel, highly interconnected
computer systems has stimulated considerable activity in connectionist
research.

General Structure of a Connectionist System. A connectionist
architecture consists of a specification for an elementary processing ele-
ment, called a “unit” plus a specification of the interconnections among
a collection of these units.

A unit may be thought of as a processor: a computing element that
takes one or more inputs, maintains a state, and may produce one or
more outputs. One of the inputs may be external, from outside the system;
whereas other inputs to the unit may be the outputs or the states of
other units, which are tied to the unit by connections. The set of states
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that a unit can be in may be binary (i.e., the set {0, 1}), or it may be the
set of real numbers or some interval of the reals or the integers, or i
may be some other set. Many connectionist architectures use units that
sum their inputs and then compare the sum with a threshold. Other
systems use units that compute other, sometimes more complex, func.
tions.

The connections among units are like the arcs of a graph; units are
connected pairwise. Each connection from unit A to unit B is assigned a
weight (or a strength). The weights are usually real numbers that regu-
late the influence that the state of one unit can have on the state of
another. In some architectures, connections are constrained to be sym-
metric; in a symmetric-weight architecture, the connection from A to B
always has the same weight as the connection from B to A.

An important aspect of some connectionist architectures is the man-
ner in which the network changes over time. In addition to units chang-
ing state, the weights on the interconnecting arcs may change value.

Knowledge is represented in connectionist systems in different ways.
In the “localist” approaches, each unit holds some knowledge. In the
“wholistic” approaches, a given item of knowledge is represented as a
configuration of several (and possibly all) units.

In the remainder of this section, we present several well-known types
of connectionist networks and attempt to describe the manner in which
they may solve problems.

The terms “connectionist architecture,” “connectionist network,” and
“neural network” are often used interchangeably. We will often use the
abbreviations “network,” or “net” to refer to such a system.

Perceptrons. In the late 1950s and 1960s, a class of connectionist
networks called perceptrons were studied (Rosenblatt, 1962). In the

_excitement of the day, great expectations were raised about the capabil-
ities of perceptrons. Some negative results by Minsky and Papert (1969)
triggered a backlash that subdued attention given to these systems for
approximately a decade. Today there is a better understanding of per-
ceptrons that makes it clear that many of the limitations cited by Minsky
and Papert can be overcome by generalizing the model. (The introduction
of “hidden units” into the networks is the key to increasing their power.)

Perceptrons have been most commonly studied as layered systems in
which computations proceed bottom-up. Typically, input signals from

sensors are fed up into the first layer, in which combinations of the

inputs are weighted, summed, and thresholded to obtain a set of outputs
from the first layer. These are subsequently weighted, summed, and
thresholded in a second layer, etc., until the desired level of abstraction
is reached. At that level, the inputs are classified (e.g., “Grandmother is
in the picture”).

Hopfield Nets. Whereas a layered perceptron typically produces
each classification on a single separate output unit and therefore repre-

R N1Y
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sents results locally, another approach is to represent results as global
states of the network. This notion is combined with an iterative relaxa-
tion approach in the model of Hopfield (1982). In a Hopfield net, the
inits are started in a pattern of states that represents the input vector.

fach unit then continually examines the units to which it is connected

and computes a local energy function. Whenever this energy would be
lowered by the unit’s changing its state, it does so. Because the overall
energy in the network decreases as long as there is activity, a Hopfield
net must relax or converge. An analogous convergence criterion for relax-
ation labeling has been given by Hummel and 7ucker (1983). The global
state at which it converges represents the output.

Let us describe the Hopfield model more precisely. For a network of
units connected symmetrically, the connection between unit and unit j
has a weight wy, which represents the extent to which the two units
should attempt to be in the same state. A fixed threshold 6, is associated
with each unit. Let s; denote the (current) state of unit #; that is, s; = 1
if unit i is on, and 0 if it is off. Then the energy of the net (for a given

state vector) is

E=-— X sisjwy + >, s
=i 7

Fach unit can compute the effect that its changing state would have
on the total energy, using the formula,

AE = Eiyy = Ein = > siwij
J

If the unit is off and AE is negative, it should turn on. If the unit is on
and AE is positive, it should turn off; otherwise, it should maintain its
current state.

To use a Hopfield net for pattern recognition, certain units can be
designated as input units. After holding the input units in the input
state until the rest of the system converges, the global state represents
a local minimum configuration consistent with the input. This state may
not be a global minimum.

Boltzmann Machines. To overcome the tendency of a pure Hop-
field net with hidden units to become trapped in local minima that are
not global minima, the transition of each unit from one state to another
can be made probabilistic. By starting the relaxation at a high “temper-
ature” in which transitions are almost completely random, and then
gradually lowering the temperature so that transitions tend more and
more to only reduce the system’s energy, the probability of finding the
global minimum can be made close to 1. This method, known as simu-
lated annealing, was developed by Geman and Geman (1984) and inde-
pendently with a different emphasis and name—Boltzmann machine—
by Fahiman, Hinton, and Sejnowski (1983).
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A Boltzmann machine is a computational system consisting of a set
of elements called units. Each unit may be in either the 0 state or the ]
state, and it changes its state at each iteration (of a system cycle) sto-
chastically according to the probability:

1
Di = a+ e—AEi/T)

where AE; is the difference in energy between the 1 state and the 0 state
of the ith unit, and T is a parameter analogous to temperature.

A Boltzmann machine can be thought of as a network of binary
processors that use a form of the Metropolis algorithm (Metropolis et al,|
1953) to update their states (Hinton and Sejnowski, 1987).

The Metropolis Algorithm. The Metropolis algorithm is a general
procedure for finding the minimal energy state of a system by stochas.
tically making local adjustments to it. It is a precursor of simulated
annealing. The algorithm goes as follows:

Randomly select a state S.
Set T' < initial temperature (high).
while T > 0 do
Randomly generate an adjustment yielding state S'.
Compute the energy difference: AE < E(S") — E(S).
If AE = 0 then accept the state change: S <— S".
else accept it anyway with probability P:
P — e—AE/T.
x < random number in {0,1].
Ifx < Pthen S <« S
If there has been no significant decrease in E for many iterations
then lower the temperature 7.

An important element of such a procedure is the temperature sched-
ule, which controls the gradual lowering of the temperature from one
iteration to the next. Geman and Geman (1984) suggest the following
schedule, where & is the iteration number and C is an appropriate energy
constant:

T = Cllog(1 + k)

Clearly, in early iterations, when T is large, the system energy is
permitted to increase often, thus allowing the system to escape from local
minima. As T approaches zero, the system energy decreases almost mon-
otonically; then the system “freezes” at a local minimum that is very
likely to be the global minimum.

Application to Figure/Ground Discrimination. To illustrate
how a stochastic-relaxation approach (which is based on a neural-net-
work model) can solve problems in machine vision, an example is pre-
sented in which a figure/ground discrimination must be made. AS
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rated in Kienker et al. (1986) and in Hinton and Sejnowski

(1987), a parallel system can efficiently solve this problem even when

* the input information is noisy and incomplete.

A classical problem of visual perception is to take a binary {black
and white) image and decide whether the black regions are figure and
white regions background, or vice versa. The chalice of Rubin (Rubin’s
vase) is a particularly ambiguous case (see Figure C—2). The problem is
just as difficult or more difficult when the black/white information is
gone and only edge information is available.

Let us consider an array such as that shown in Figure D-2. Each
it. Each unit is con-

square or triangle in the figure represents one uni
nected to those immediately adjacent to it. The square units may be
thought of as small regions, and the triangles represent oriented edges.
A triangle that is on (white) corresponds to a strong edge, whereas one
that is off indicates the lack of the corresponding edge. If a square is on,
it is interpreted as belonging to the figure; otherwise, it is taken to be
background.

The connections among units embody constraints about what consti-
tutes a reasonable figure/ground interpretation. The weights are sym-
metric and isotropic (equivalent under 90-degree rotations). A square is
connected to each of its eight nearest neighbors with weight +10. The

OLI
ONN ()
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Figure D-2. Cell array for figure/ground resolution, showing
(a) excitatory and inhibitory connections to a
square (shaded), and (b) excitatory and
inhibitory connections to a triangle (also
shaded) Diagram after Sejnowski and Hinton
(1987).
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weight between a triangle and the square A it points to is +12, whereas
for the one B that it points away from the value is —12. For each of the
two squares on either side of A the weight with the triangle is +10,
whereas for those on either side of B the weight is —10. The weight
between an adjacent pair of triangles (facing in opposite directions) is
strongly inhibitory (—15).

The input to the algorithm is an initial assignment of values to each
unit. The inputs to the triangles represent the strengths of edges in an
image, and they are called “bottom-up” inputs since they depend on the
image data. On the other hand, the figure units are given initial weightsg
“top-down” from an imaginary process that controls the focus of atten-
tion.

In the example shown, the edge elements bordering on a 9X6 rec-
tangle were given initial inputs of 60; since those with values over 41
are shown in Figure D-3, this rectangle is visible. The top-down inputs
to the figure units were given values according to a Gaussian distribution
centered on the unit just to the right of the rectangle’s center. The figure
units shown are those with values exceeding 1.

Applying simulated annealing to this network, Kienker et al. (1986)
found that it consistently converged on the desired solution. Figure D-
4 shows their results. Although the method provides a useful demon-
stration of cooperative computation with simulated annealing, it breaks
down on more complicated shapes such as spirals, unless a very long
annealing schedule is adopted. However, figure/ground distinctions are
also difficult for humans to make in cases of highly convoluted shapes
like spirals.
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Figure D-3. Display of initial input values for the figure/
ground problem. (Courtesy of T. Sejnowski.)
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Stages in the simulated annealing of the figure/
ground problem: (a) after three iterations and T
= 16.2, (b) after ten iterations and T = 7.7, and
(¢) after 28 iterations and T' = 3.3. (Courtesy of

T. Sejnowski.)

Figure D—4.

Over the past decade it has been found
that certain vision problems require the solution of two-dimensional
numerical constraint satisfaction or optimization problems. Tyraditional
numerical algorithms for these problems are computationally expensive.
However, a class of numerical techniques called multigrid methods has
been brought to the attention of the vision community by Terzopoulos
(1984a). These methods make the solution of certain field reconstruction
problems computationally much more attractive than they otherwise

would be.
As noted in the preceding pages of this chapter, several vision prob-

Multigrid Algorithms.
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lems boil down to computing a complete set of surface points or image
pixels from sparse data. Stereo image analysis, for example, requires the
determination of a depth map from a sparse set of depth values that haye
been determined by matching feature points in the two images (foy
example, Grimson, 1981, 1985). Since the sparse data is generally not
sufficient to completely constrain the desired surface, assumptions about
continuity of the surface are usually brought to bear on the desireq
solution. The resulting problem is one of finding the optimal surface that
obeys the surface continuity constraints (which may allow for disconti-
nuities) and the particular constraints imposed by the sparse data.

One formulation of this general reconstruction problem is as follows;
imagine the surface to be reconstructed as the equilibrium state of a
flexible plate that is supported by vertical pins of different lengths and
attached to them by springs with different spring coefficients. The pins
are irregularly spaced. The solution to the problem can be obtained by
using a “variational principle” (Courant and Hilbert, 1953), which states
that the equilibrium surface u(x,y) is one that minimizes the potential
energy of the system, which is composed of the energies due to the
deformation of the plate, the springs, general external forces (e.g., grav-
ity), external forces on the boundary, and bending moments applied to
the boundary.

After approximation and discretization, the use of a finite-differences
method to solve such a problem results in a large and sparse system of
linear equations,

At =

where u” is the vector of nodal variables on the mesh using spacing A.
Although it is sometimes possible to solve such systems directly using
Gaussian elimination or other methods to obtain an exact solution (up
to machine precision), direct methods are more often than not inapplic-
able to realistic problems. For these cases, iterative techniques are
required. Conventional iterative methods such as the Jacobi and Gauss-
Seidel iterations continually update their current approximation, nor-
mally converging on the solution. Such convergence, however, is slow.
On the other hand, multigrid methods perform their iterations at differ-
ent levels of resolution in such a way as to accelerate the convergence.
The reason that the Jacobi and Gauss-Seidel methods converge
slowly (when they converge) is that each local updating operation works
on the neighborhood of a point in the mesh. Consequently excess energy
or a deficiency of energy in the current approximation can move only
one grid unit per iteration. This means that although high frequency
components of the error surface can be damped rapidly, the low frequency
portions require many iterations for their attenuation.
Multigrid relaxation achieves its acceleration of convergence by
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ents of the error gurface to move

idly across the space at coarse resolution levels. Asin a pyramid data
a single neighborhood at a coarse level covers a large area in
arse level solution has been found, it can be

to the next finer level as the starting approximation for a

Although the most obvious approach to multilevel relaxation (per-
forming a sequence of conventional relaxation operations gtarting at a
coarse level and progressing to the finest level) improves on unilevel
relaxation, the best results are obtained by a more complex schedule of
relaxation steps at different levels. Such gschedules are discussed in

(1982). One schedule is

that implicit in the following two procedures adapted from Terzopoulos

(1986):

procedure FullMultiGrid
u’ SOLVE(s,uh‘,fh‘);
for [ < s + 1to L do
v e EXPAND(u’”“);
MultiGrid(l,v"’,f’”);

procedure MultiGrid
if I = s thenu < SOLVE(s,u, g)
else
for i < 1 to n1 do
RELAX(,u,8);
v «— REDUCE(u);
d « A"y + REDUCE(g - Al
for i < 1 to n2do MultiGrid( — 1,v,d);
u < u + EXPAND(v — REDUCE(u))
for i «— 1 to nadou < RELAX(l,u,g)
Here SOLVE applies unilevel relaxation long enough to achieve some
desired degree of accuracy. RELAX applies a single unilevel iteration of
the relaxation. The parameters 71, 12, and ns are set to obtain the best

performance for a given class of problems. The coarsest level (or “start-

ing” level) is indexed by s, and L is the index of the finest level. The

vector u’ holds the approximation to the solution at the starting level.
Vectors u, and v hold current approximations at any level, with v one
level coarser than u at any particular time. The matrices A™ and Al
represent versions of the original matrix A" at resolution levels ! and
l — 1, respectively.

The function EXPAND(w) takes a current approximation at level [ —
1 and produces an approximation at level | by using bilinear interpola-
tion. Thus it maps data from one grid to the next finer grid.

Similarly, the function REDUCE(u) takes the approximation at level
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! and produces a reduced-resolution version of it at level I — 1 using
simple injection.

Multigrid methods have been applied by Terzopoulos to a variety of
visual reconstruction problems including reconstruction of geometric sur-
faces, depth maps from stereo, lightness, and optical flow fields. The
computational savings over unilevel relaxation were found to be quite
significant; typically the time required for the multigrid approach was
only two percent of that used by the non-multigrid method.

For addition information on multigrid algorithms see Terzopoulos
(1986, 1984a), the tutorial by Briggs (1987), the collection of papers
edited into a book by Hackbusch and Trottenberg (1982), and the seminal
paper of Brandt (1977). For related work on relaxation in computer
vision, see Article XIII.E4, and Glazer (1984).
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