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Abstract. Pathfinding on large maps is time-consuming. Classical search
algorithms such as Dijkstra’s and A* algorithms may solve difficult prob-
lems in polynomial time. However, in real-world pathfinding examples
where the search space increases dramatically, these algorithms are not
appropriate. Hierarchical pathfinding algorithms that provide abstract
plans of future routing, such as HPA* and PRA*, have been explored
by previous researchers based on classical ones. Although the two hierar-
chical algorithms show improvement in efficiency, they only obtain near
optimal solutions. In this paper, we introduce the Hierarchical Shortest
Path algorithm (HSP) and a hybrid of the HSP and A* (HSPA*) algo-
rithms, which find optimal solutions in logarithmic time for numerous
examples. Our empirical study shows that HSP and HSPA* are superior
to the classical algorithms on realistic examples, and our experimental
results illustrate the efficiency of the two algorithms. We also demon-
strate their applicability by providing an overview of our Route Planner
project that applies the two algorithms proposed in this paper.

1 Introduction

The population of wheelchair users is very significant and increasing dramatically
[13]. Therefore, finding accessible wheelchair routes is an important problem. In
developed countries, most buildings and public transportation are accessible,
making the lives of people in wheelchairs easier. However, the routes to the
closest elevator in a new building, temporary road conditions and bus schedules
may be unknown to wheelchair users. Therefore, we were motivated to create
route-planning software that can be installed on a small device to give wheelchair
users route accessibility information while they are travelling. Besides a route
planner, our software contains a simple scheduler that synchronizes with the
route planner to provide more accurate commuting information for clients. After
obtaining the destination from the scheduler, the route planner establishes some
possible paths and displays the best one to the client.

The first stage of our project is to implement an algorithm to hierarchically
find paths and obtain multiple levels of detail. Since an abstract high-level path
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can provide a general plan, the client can have an impression of future routing.
Instead of being presented with a cumbersome and lengthy low-level path, peo-
ple, especially the elderly, would prefer a cognitively visible path. In the next
stage, the software accommodates our scheduler and real-world maps, including
indoor and outdoor applications.

1.1 Problem Statement

The notation used in this section is described here. A map is represented by a
graph G = (N, E, l), where N is the set of nodes, E is the set of edges, and l is
the number of hierarchical levels. Hierarchical levels denote inclusion (containing
relation). For example, a building is an ancestor of rooms in it. The cardinalities
of N and E are denoted by n and e. Each node ∈ N contains a set of neighbours
neigh(node) and is assigned to a level. Each edge (i, j) ∈ E is associated with
another pair of nodes (exit, entrance) where exit and entrance are nodes of one
level lower, or they may be null. The weight on an edge (i, j) is denoted by
w(i, j), and the weight of a path P is w(P ) =

∑
(i,j)∈P w(i, j). We want to find

the shortest path P that has the minimum weight w(P ) from a node s to another
node d in a graph G.

Definition 1: Search on a graph G: The process of finding a path P =
{s, i, ..., d}, a sequence of nodes on G, from the start s to the destination d.

Human beings may approach complex problems by dividing them into easier
sub-problems, each of which can be further divided into smaller problems or
solved by a quicker search. More than forty years ago, Minsky realized that a
successful division of a complex problem will greatly reduce the search time by
a fractional exponent [1]. Such divisions can be considered as “islands” in the
search space, where these islands can be abstracted from groups of nodes. In this
section, an abstraction of a group of nodes is found when these nodes are at the
same level and within the same enclosure. The abstraction then is their enclo-
sure. For example, a building is an abstraction of the rooms in it. Conversely,
details at the room level constitute the refinement of the building.

Definition 2: Hierarchical Pathfinding: The process of finding a sequence

of paths {Pm, Pm−1, ..., P0}, m ≤ l, where Pi contains nodes of i-th level and

that are an abstraction of nodes on Pi−1.

The maximum length of an abstract path then is defined as maxlength(Pi) =
w(Pi) +

∑
node∈Pi

upperbound(node), and the minimum length of the path is
minlength(Pi) = w(Pi)+

∑
node∈Pi

lowerbound(node), where upperbound(node)
is the maximum of shortest distances between any pair of places within the node
and lowerbound(node) is the minimum distance from the entrance to the exit.
The upper bound of a node can be overestimated, whereas the lower bound can
be underestimated. Hence, upperbound(node) can be the total of low-level edge
lengths in an abstracted node, node, and lowerbound(node) can be zero.
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1.2 Previous Work

One of the well-known search algorithms is Dijkstra’s, a non-heuristic version
of A*. However, it is not as efficient as some A* algorithms with good heuris-
tics. A* [5] and IDA* [6] are both heuristic and complete algorithms on locally
finite graphs (graphs with a finite branching factor), but neither of these two
algorithms is well-suited into a dynamic environment.

Hierarchical pathfinding has been explored since the mid-nineties, and sev-
eral excellent algorithms have been developed. In [4], Rabin provides a high-
level description on path-finding using a two-level hierarchy. This algorithm uses
only two levels of abstraction, but real world maps are divided into numerous
levels. In [3], Holte et al. explain how abstraction could lead to speedup on
finding a solution for a graph-oriented problem. Similar to their work, Hierar-
chical Pathfinding A* (HPA*) [9] and Partial-Refinement A* (PRA*) [8] both
construct multi-level abstractions using grid-based representation, and greatly
reduce the amount of time required to find a near-optimal solution. Instead of
estimating a near-optimal solution, our algorithm finds all possible candidates
and keeps them until some are proven to be non-optimal.

If the number of sub-level nodes of each node is fixed, the size of the map
increases exponentially as the number of levels increases. The running times
of existing search algorithms grow exponentially as well, so they may not be
practical in reality. In this section, we propose the Hierarchical Shortest Path
(HSP) algorithm, as well as a hybrid of the HSP and A* (HSPA*) algorithms.
HSP finds a threshold that is the least upper-bound of the length of a high-
level path, and refines the paths that may be shorter than this threshold. It
stops refining a path when the path length exceeds the threshold, and finally
returns the shortest path among those that remain. HSPA* works in a similar
way, except that it uses A* for refinement as soon as it reaches a specific level.
The experimental results show that HSP and HSPA* are suitable for various
applications.

2 Hierarchical Shortest Path

Fig. 1. Examples: (a) and (b) are maps of campuses comprising three and four build-
ings, respectively, where each building contains a number of rooms
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The hierarchical approach taken in this section involves multi-level represen-
tation of a real-life map. For example, these levels can be campuses, buildings,
floors and rooms. Assume that a person wants to travel from room R1 in building
B1 to room R2 in building B2 in the world of Fig. 1 (a). If the person begins his
pathfinding from B1 to B2, then he could easily find the shortest path from B1 to
B2 with one edge. If the walking distances within these buildings are negligible,
then the person can take the shortest path between B1 and B2, and needs only
to refine the path from R1 to the exit of B1 and the path from the entrance of
B2 to R2. Hence, the person does not need to search paths within B3.

Therefore, in order to save time in planning, we can search for short paths
between high-level sites first, and then refine the paths within the selected sites
for more details. However, the high-level shortest path does not guarantee the
shortest overall path, because the paths within each site can vary in length.
Consider the previous example, where the walking distance within buildings B1

and B2 is significant. Then, a path from R1 to the exit of B1, and a path from
the entrance of B2 to R2, may increase the length of the overall path by a large
amount. As a result, we can prune away a path P only when it is guaranteed
to be non-optimal, i.e., the minimum length of the path exceeds the maximum
length of another path:

∃P ′ : minlength(P ) > maxlength(P ′). (1)

2.1 The Algorithm

The main algorithm, 1.1, consists of four major steps: first, find the topmost level
abstract nodes wherein the start node and the destination node are different, and
abstract the graph G to that level (line:1,2); second, find a high-level shortest

path between ancestors of s and d at the l̂-th level, based on which a threshold
is obtained (line:3,4); third, find all possible high-level paths with minimum
lengths less than the threshold (line:5); finally, refine each high-level path to the
lowest level and return the one with minimum length (line:6,7). This algorithm
is complete since it maintains all possible paths and ignores a path only when
it is definitely longer than another possible path. The following will explain the
algorithm in further detail.

Abstract of a Graph. As mentioned above, the desired level in the first step is
needed for abstracting the graph. For example, if a person travels from a room
in a city to another room in another city within a country, the two cities are
the topmost places he should consider. In other words, we seek out the first
same ancestor of the two places to find the one level below that ancestor that is
desired. Algorithm 1.2 presents the procedure for finding the first same ancestor
of two places and returning the level of that ancestor. Note that pathfinding
between different level architectures is also allowed. After the desired level l̂ is
found, the graph G is abstracted to that level:

Ĝ := (N̂ , Ê), (2)
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Algorithm 1.1 : main (G, s, d)

Input: A graph G = (N, E, l), the start node s and the destination node d

Output: A shortest path P from s to d

1: l̂ := sameAncestorLevel(s, d)− 1
2: Ĝ := abstract(G, l̂)
3: P̂ := A∗(Ĝ, ancestor(s, l̂), ancestor(d, l̂))
4: threshold := maxlength(P̂ )
5: S := possiblePaths(Ĝ, ancestor(s, l̂), ancestor(d, l̂), threshold)
6: Ŝ := refine(S, l, threshold)
7: Return P := min{Ŝ}

Algorithm 1.2 : sameAncestorLevel (s, d)

Input: The start node s and the destination node d

Output: The level l′ of the first same ancestor of s and d

1: lower = lowerLevelNode(s, d)
2: higher = higherLevelNode(s, d)
3: while lower is not at the same level as higher do

4: lower = parent(lower)
5: end while

6: while lower is not a sibling of higher do

7: lower = parent(lower)
8: higher = parent(higher)
9: end while

10: Return l′ := level(lower)

where N̂ and Ê are subsets of N and E, respectively, and the nodes node ∈ N̂

and i, j : (i, j) ∈ Ê are only those at level l̂.

A High-level Shortest Path and a Threshold. Either Dijkstra’s or the A* algo-
rithm is used on Ĝ to find the shortest path P̂ between the ancestors of s and d

at the l̂-th level. Then, maxlength(P̂ ) is the threshold that we are looking for.
The time required to find the high-level path and the threshold is insignificant if
the number of high-level nodes is relatively much smaller than that of low-level
nodes.

High-level Possible Paths. After a threshold is obtained, we could search on Ĝ

for all possible high-level paths and prune away those with minimum lengths
exceeding the threshold. This process is shown in Algorithm 1.3.

Hierarchical Refinement on High-level Short Paths. After high-level paths are
found, a refinement step is executed, as shown in Algorithm 1.4. It refines each
possible high-level path to one level lower each time by recursively finding the
shortest path from the entrance to the exit of each node on the high-level path.
Then, the lowest level path is constructed by concatenating all partially refined
paths. The refinement step ceases if the length of the current path exceeds the
threshold.
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Algorithm 1.3 : possiblePaths (Ĝ, ancestor(s, l̂), ancestor(d, l̂))

Input: The abstract graph Ĝ, the ancestors of s and d at level l̂,
and the threshold t

Output: A set of paths at level l̂ with minimum lengths less than t

1: CurrentPaths← {{ancestor(s, l̂)} }
2: Output← { }
3: while CurrentPaths changes do

4: for each P ∈ CurrentPaths do

5: if last node ln of P is ancestor(d, l̂) then

6: Output← Output ∪ {P}
7: PossiblePaths← PossiblePaths ∪ {P}
8: else

9: for each nb ∈ neigh(ln) do

10: P̂ = P ∪ {nb}
11: if minlength(P̂ ) is smaller than t then

12: PossiblePaths← PossiblePaths∪ {P̂}
13: end if

14: end for

15: end if

16: end for

17: CurrentPaths← PossiblePaths

18: end while

19: Return Output

2.2 A Hybrid of HSP and A* (HSPA*)

Note that there may be more than one high-level path of shorter length than
the threshold, but that is unusual in many realistic cases. The refinement step is
fast, if the number of possible short paths is small. Otherwise, the time spent on
refining these paths may be excessive. Hence, we could refine our algorithm to
select between HSP and A* depending on the number (α) of these paths. Fur-
thermore, from the experimental results shown in the next section, it is evident
that HSP is not as fast as A* if the number of levels is small and the number of
sub-nodes is not significantly large. Therefore, we could use A* algorithm when
a high-level path is refined to a specific low-level (β).

2.3 Analysis of Running Time

Let b be the number of sub-nodes within an abstract node. If b is fixed, then the
total number of lowest-level nodes is n = b l, where l is the number of levels. A*
and IDA* with good heuristics can solve difficult problems in polynomial time
[2, 7], i.e., O(nc) = O(b cl) where c is a constant. Therefore, the algorithms are
exponential to the order of l. On the other hand, HSP only executes searches on
O(b) nodes on each level if there is only one abstract path found. In this case,
HSP has a running time of O(bc l). Even if there is more than one abstract path,
say d paths, the running time of HSP is O(bc d l). As long as d � b, HSP is still
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Algorithm 1.4 : refinement (S, l, t)

Input: A set S of high-level paths, the lowest level l and the threshold t

Output: A set Ŝ of low-level paths at level l

1: Ŝ = { }
2: for each hierarchical high-level path P ∈ S do

3: P̂ = {s}
4: for each node ∈ P do

5: find the edge from last node of P̂ to the entrance of node

6: if level(entrance) ≥ l then

7: P ′ = HSP (entrance, exit) where entrance and exit are within node

8: P̂ = P̂ ∪ P ′

9: end if

10: if minlength(P̂ ) > t then

11: ignore P̂ and continue the outer loop
12: end if

13: end for

14: Ŝ = Ŝ ∪ {P̂}
15: end for

16: Return Ŝ

much more efficient than A* or IDA*. In reality, where distances within a site
are usually considered insignificant, one high-level abstract path is expected to
appear. Hence, the running time is O(bc l) for the HSP algorithm in real-world
examples versus O(b cl) for A* and IDA*, i.e., linear in l versus exponential in
l. Moreover, l is usually small while b is large. Thus, O(bc l) or O(bc d l) should
be relative smaller than O(b cl).

2.4 Experiments and Results

In real life, each site is connected to its neighbours from exits to entrances. For
example, if two buildings are adjacent, then we can exit from a door of one
building, and enter through a door of the other building. Hierarchical maps in
our experiments are constructed with this connection in mind. Weights of the
edges and the upper bound of the shortest distances between any pair of places
within an site are included in the map, which is created in XML form. One of
the reasons that we use XML form is due to its consistency and flexibility; i.e.,
you have to define each element with an opening and an ending tag, while you
can use an arbitrary tag name. Another reason is that nested tags in XML can
represent hierarchical relations easily.

All experiments described in this section were run on a Linux Intel(R) Pen-
tium 4 machine running at 3.20GHz with 2 GB of RAM, using Eclipse version
3.1.

Examples First, we analyze the algorithms using the example shown in Fig. 1
(a). Each building contains three floors, while each floor contains three rooms,
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and so on. In reality, the number of nodes at one level lower is usually much
more than three, where the time saved from pruning away unnecessary high-
level paths is more obvious. Here we use this example because of its simplicity
in building a XML file and its simulation of a simple world. The total number
of lowest level nodes is n0 = 3l, and since it grows exponentially to the order
of l, Dijkstra’s and A* algorithms are inefficient here. The A* heuristic used
in our experiments is the Euclidean distance, which is popular to use in real-
world route-finding problems. However, this heuristic may not be useful for a
multilevel structure, since the heuristic values for low-level nodes may be similar.
For example, the Euclidean distances from nearby rooms in one city to a room
in another city may be indistinguishable. In contrast, HSP, which prunes away
most insignificant high-level paths, runs well in these examples.

As shown in Fig. 2 (a) and (b), both multi-level representation running times
of Dijkstra’s and A* algorithms blow up quickly, while the HSP running time
grows slowly. A semi-log graph of the three algorithms’ running times is drawn
in Fig. 1 (c). We can observe that the slope of the HSP curve is significantly
less steep than that of the other two curves. A further observation from Fig. 2
(c) is that HSP is not superior among the three algorithms all the time. When
the number of levels is small, HSP wastes time on recursive calls. Therefore, it
is better to use a hybrid of HSP and A*, the HSPA* (as described in Sect. 2.2).
The running-time results for HSPA* are compared with those of the other three
algorithms in Fig. 2 (d). Note that HSP and HSPA* have similar performances
in these examples, although HSPA* is more stable.

Table 1 shows the running times of the four algorithms in the example where
every abstract node has four sub-nodes, as shown in Fig. 2 (b). In this example,
more than one abstract high-level path is found at each level, but the running
times of HSP and HSPA* are still promisingly good. Examples with larger num-
ber of sub-nodes (b) are also explored, and the outcomes are shown in Table 1
as well.

Table 1. Running times: The running times (in milliseconds) of four algorithms using
examples where every abstract node has four or more sub-nodes (b)

(b) : (4) (5)

Level: 1 2 3 4 1 2 3 4

Dijkstra 2 6 35 295 2 11 94 1278

A* 1 4 22 149 1 10 56 717

HSP 1 8 23 130 2 12 42 97

HSPA* 1 8 24 174 1 11 35 88

(b) : (6) (7)

Level: 1 2 3 4 1 2 3 4

Dijkstra 3 24 350 7817 3 25 466 15601

A* 2 23 218 3462 2 21 231 8368

HSP 2 28 131 354 2 31 137 368

HSPA* 2 24 99 296 2 28 116 316
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Fig. 2. Running time plots: (a), (b): the running times of three algorithms; (c): the
running times of three algorithms in log-scale; (d): the running times of four algorithms
in log-scale

2.5 Application

Several existing projects, such as the Assistant Cognition and the Aphasia projects,
have been helping physically challenged people to better perform daily activi-
ties [10, 12]. The usefulness of these projects motivates us to build a cognitive
assisted system for people with disabilities.

Route Planner for People with Disabilities. Our route planner, which shows ac-
cessible routes for wheelchair users contains the data of several buildings at the
University of British Columbia (UBC): ICICS, the X building and Dempster,
the three main buildings in our department. This system is based on a sched-
uler system, which can be Microsoft Outlook, ESI Planner II [11], or others.
We used Microsoft Outlook for our system because of its ease of use and com-
patibility with other systems. Based on an accurate schedule, the destination
can be easily estimated. Then, the route planner computes the possible paths
to the destination using HSPA* and shows both high-level path and low-level
paths to the client. The system is installed on a small device, such as a tablet
PC, so that users can carry the device and find a path to destination while they
are travelling. For example, if a client is heading to class, then Fig. 3 shows a
high-level path from ICICS to Dempster, where most classes are held. After the
user acquires an overview of the whole path, he/she clicks the “Detail” button.
Then, the low-level path corresponding to the high-level path is shown, as in
Fig. 4. (See Appendix A for more details.)

3 Conclusion and Future Work

In this paper, the Hierarchical Shortest Pathfinding (HSP) algorithm is presented
and its running time analyzed. The speedup from eliminating unnecessary high-
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level paths is remarkable, and good performances of HSP is expected in real-
world pathfinding problems. There are a few directions that this research could
be extended beyond the work shown in this paper. First, more examples are
anticipated to analyze the performances of the four algorithms. We analyzed the
running times of the HSP and HSPA* algorithms based on artificial examples.
We shall apply the algorithms on more actual examples, such as the whole UBC
campus. Second, as described in Sect. 2.2, the HSPA* algorithm contains two
parameters, namely α and β. The best-fit values of these two parameters may
vary depending on different problems. Therefore, it may be worthwhile learning
well-suited values for these two parameters using stochastic local search methods.
Third, comparison of HSP, HSPA* and other hierarchical pathfinding algorithms
could be further investigated in terms of their running times and performance.
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A Screen Shots

Users can select one of the events from the event list on the left hand side of the
main frame to view the event information. If a path is found for that event, then
the high-level path is shown, as in Fig. 4. Note that the buttons that represent
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the corresponding (sub)destinations are located where the (sub)destinations are.
The “YOU” button represents the current position of the client. Clicking on one
of the buttons that represents (sub)destinations will display useful information
regarding the desired (sub)destination on the left-hand pane. The whole path
with specific steps (nodes on the path) is shown on the left-hand as well. Since
nodes are not able to show on the same picture, buttons for each picture should
be added so that users can view any portion or the whole path. These buttons
are placed on the left bottom corner, as shown in Fig. 3 to 4. To view the detailed
path, the user can click the “Detail” button, and then Fig. 4 will show.

Fig. 3. A screen shot of the Route Planner when a high level path is shown
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Fig. 4. A screen shot of the Route Planner when a low level path is shown


