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Abstract.
The concept of local consistency plays a central role in constraint

satisfaction and has been extended to handle general constraint-based
inference (CBI) problems. We propose a family of novel generalized
local consistency concepts for the junction graph representation of
CBI problems. These concepts are based on a general condition that
depends only on the existence and property of the multiplicative ab-
sorbing element and does not depend on the other semiring proper-
ties of CBI problems. We present several local consistency enforcing
algorithms and their approximation variants. Theoretical complex-
ity analyses and empirical experimental results for the application
of these algorithms to both MaxCSP and probability inference are
given. We also discuss the relationship between these local consis-
tency concepts and message passing schemes such as junction tree
algorithms and loopy message propagation.

1 Introduction

The concept of local consistency plays a central role in constraint
satisfaction. Given a constraint satisfaction problem (CSP), local
consistency can be characterized as deriving new, possibly tighter,
constraints based on local information. The derived constraints sim-
plify the representation of the original CSP without the loss of solu-
tions. This can be seen as a preprocessing procedure. For example,
a value may be removed from a variable domain by the preprocess-
ing because it violates these derived constraints. Both systematic ap-
proaches, such as inference or propagation algorithms, and stochas-
tic approaches, such as local searches, benefit from these simplifi-
cations or domain size reduction. Among the family of local con-
sistency enforcing algorithms or filtering algorithms, arc consistency
[16] is one of the most important techniques for binary classic CSPs.
It is straightforward to extend it as generalized arc consistency [17]
to handle non-binary classic CSPs. Many stronger local consisten-
cies [18, 25, 14] have been studied within the constraint program-
ming community. Based on the Semiring CSP [4] and Valued CSP
[22] frameworks, arc consistency has also been extended, as softarc
consistency [7, 3], to handle over-constrained and preference-based
problems that can be modelled as soft CSPs. Recently, we presented
a weaker condition [6] based on a semiring based framework for
constraint-based inference (CBI) problems [5]. More specifically, we
reduce a CBI problem to its underlying classic CSP according to the
weaker condition and then apply the generalized arc consistency ap-
proach to general CBI problems beyond classic and soft CSPs. The
weaker condition proposed in [6] has also been relaxed to fit gener-
alized approximate preprocessing schemes.
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In this paper we take a step beyond the generalized arc consis-
tency approach and propose a new family of generalized local con-
sistency concepts for the junction graph representation of CBI prob-
lems. These concepts are based on a general condition that depends
only on the existence and properties of the multiplicative absorbing
element and does not depend on other semiring properties of CBI
problems. We present several local consistency enforcing algorithms
with various levels of enforcement and corresponding theoretic and
empirical complexity analyses. We show in this paper that some of
these algorithms can be seen as generalized versions of well-known
local consistency enforcing techniques in CSPs and can be exported
to other domains. Other abstract local consistency concepts are novel
to the constraint programming community and provide efficient pre-
processing results with a user-specified approximation threshold. We
also discuss the relationship between these local consistency con-
cepts and message passing schemes such as junction tree algorithms
and loopy message propagation. Local consistencies can be achieved
along with message propagation and can improve the efficiency of
message passing schemes.

In this paper, we use bold letters to denote sets of elements and
regular letters to denote individual elements. Given a set of elements
X and an elementZ ∈ X, X−Z denotes the set of elementsX −
{Z}.

2 The Constraint-Based Inference Framework

Constraint-Based Inference (CBI) is an umbrella term for a class of
various superficially different problems including probabilistic in-
ference, decision-making under uncertainty, constraint satisfaction
problems, propositional satisfiability problems, decoding problems,
and possibility inference. We abstract these problems into a sin-
gle formal framework [5] using the algebraic semiring structure
S = 〈A,⊕,⊗〉 where constraint combination (constraint aggrega-
tion) is represented by the abstract multiplicative operator⊗ and
constraint marginalization (domain reduction) is represented by the
abstract additive operator⊕. This framework, based on the synthesis
of the existing abstract representation and algorithmic frameworks
from various fields [4, 22, 11, 10, 1, 21], provides a broader cover-
age of both the problem space and the inference algorithm space.

A CBI problem P in this framework is a tuple(X,D,S,F),
where X is a set of variables,D is a corresponding set of fi-
nite domains for the variables,S = 〈A,⊕,⊗〉 is a commutative
semiring, andF is a set of constraints. Each constraint is a func-
tion that maps a subset of variables to values inA. More specif-
ically, we useScope(f) to denote the subset of variables that is
in the scope of the constraintf andDX to represent the domain
of variableX. Two constraint operations then are defined: (1) A



constraintg = f1 ⊗ f2 is the combination of two constraints
f1 and f2 if Scope(g) = Scope(f1) ∪ Scope(f2) and g(w) =
f1(w↓Scope(f1)) ⊗ f2(w↓Scope(f2)) for every value assignmentw
of variables inScope(g); and (2) A constraintg =

L
X

f is the
constraint that marginalizes outX ∈ Scope(f) from a constraintf
if Scope(g) = Scope(f) − {X} andg(w) =

L
xi∈DX

f(xi,w)
for every value assignmentw of variables inScope(g). Given a CBI
problem and the two constraint operations specified above, the infer-
ence task is defined as computinggCBI(Z) =

L
Y

N
f∈F

f , where
Z is a subset of variables of interest andY = X − Z. If ⊕ of the
semiringS is idempotent, the allocation task is defined as computing
y = arg

L
Y

N
f∈F

f , wherearg is a prefix of operator⊕. In other
words,arg⊕ is an operator that returns the arguments of the⊕ op-
erator. For example, the classic CSP can be seen as a CBI problem
using the commutative semiringSCSP = 〈{FALSE, TRUE},∨,∧〉
to embed it into the framework. The inference task of classic CSP is
to compute the truth value ofgCBI() =

W
X

V
f∈F

f and the allo-
cation task is find a complete assignment of variables that satisfies
gCBI .

Our local consistency concepts are based on this CBI framework
and apply to CBI problems with commutative semirings that are
eliminative. A commutative semiringS = 〈A,⊕,⊗〉 is elimina-
tive [6] if there exists amultiplicative absorbing elementα⊗ ∈ A

(α⊗ ⊗ a = α⊗, ∀a ∈ A) andα⊗ is equal to theadditive identity
element0 (0 ⊕ a = a, ∀a ∈ A). Furthermore, our approximate lo-
cal consistency concepts apply to CBI problems with commutative
semirings that are eliminative and monotonic. A commutative semir-
ing S = 〈A,⊕,⊗〉 is monotonic[6] if there exists a total order≤S

onA, the additive identity element0 is the minimum element w.r.t.
≤S, a≤Sb impliesa⊕c≤Sb⊕c anda⊗c≤Sb⊗c, ∀a, b, c ∈ A. For
example, Weighted CSPs can be embedded into the CBI framework
using the semiringSWCSP = 〈N, min, +〉. Because the multiplica-
tive absorbing elementα⊗ of the semiringSWCSP is equal to the
additive identity element0 that is equal to+∞, SWCSP is elimina-
tive. Also we can show thatSWCSP is monotonic. More details on
eliminative and monotonic semirings can be found in [6].

A junction graph J = (C,S) of a CBI problem P =
(X,D,S,F) is defined as follows:C = {C1, · · · , Cn} is a set of
clusters, each clusterCi is an aggregation of variables that is a sub-
set ofX and has attached initially a local constraintφCi

with null
scope and1 as the default constraint value or cost (1 is the iden-
tity element for⊗); S = {Sij |Ci, Cj ∈ C} is a set of separators
betweenCi andCj if Ci ∩ Cj 6= ∅ andSij is an aggregation of
variables that consists ofCi ∩Cj . A junction graph satisfies the con-
dition that for any constraintf ∈ F, there exists a clusterCi ∈ C s.t.
Scope(f) ⊆ Ci. The definition of junction graph ensures that the
subgraph induced by any variable is connected. We say a junction
graph isinitialized if for each constraintf ∈ F, we choose a cluster
Ci s.t.Scope(f) ⊆ Ci and updateφCi

by φCi
⊗ f 2.

3 Local Consistency for CBI Problems

We present here novel local consistency concepts for initialized junc-
tion graphs of a CBI problem with an eliminative semiring. If the
semiring used to represent a CBI problem is both eliminative and
monotonic, it is straightforward to modify these concepts to approx-
imate local consistencies using an elementǫ ∈ A to approximate

2 Alternatively, we can keep a set of constraints inside each cluster and not
initialize the potential with a combination of the constraints. Combination
of constraints can be computed along with the local consistency enforce-
ment using more space-efficient methods.

Input: A CBI problemP = (X,D,S,F) and its initialized junc-
tion graph representationJ = (C,S)

Output: A Single Cluster Consistent CBI problemP′ =
(X,D′,S,F′)

1: for eachCi ∈ C do
2: for eachX ∈ Domain(φCi

) do
3: if REVISE(X, φCi

) then
4: for eachCj ∈ C do
5: if X ∈ Scope(φCj

) then
6: Remove all tuples inφCj

with the value that is re-
moved fromX

7: end if
8: end for
9: end if

10: end for
11: end for
12: ReturnP′ := P

Figure 1. Single cluster consistency enforcing algorithm (SCC-Enforcing).

the multiplicative absorbing elementα⊗ that is equal to the addi-
tive identity element0 for an eliminative commutative semiring, and
using≤S to replace6= in the following definitions.

3.1 Single, Directional and Neighborhood Cluster
Consistencies

The fundamental concept of local consistency for an initialized junc-
tion graph of a CBI problem with an eliminative commutative semir-
ing is single cluster consistency. Here we consider only the local
constraints attached to a single cluster and do not consider the effects
of other clusters. Formally:

Definition 1 (Single Cluster Consistency (SCC))A cluster Ci of
an initialized junction graph is locally consistent if∀X ∈
Scope(φCi

), ∀x ∈ DX , ∃w, a value assignment of variables
Scope(φCi

)
−X

, s.t.φCi
(x,w) 6= α⊗. An initialized junction graph

of a CBI problem is Single Cluster Consistent if all the clusters are
consistent.

Single cluster consistency covers the definition of Generalization
of Generalized Arc Consistency (GGAC) [6], which abstracts Gen-
eralized Arc Consistency (or Hyper-Arc Consistency) in constraint
programming. If the junction graph of a CBI problem is primal, in
other words, there is one cluster that corresponds to exactly one con-
straint (bijection), SCC is identical to GGAC. If the junction graph
is constructed without satisfying this special structural requirement,
SCC is stronger than GGAC in general.

Figure 1 shows a generalized routine for enforcing single clus-
ter consistency for an initialized junction graph of a CBI problem
P = (X,D,S,F) with an eliminative commutative semiringS. The
procedureREVISEof SCC-Enforcingis shown in Figure 2.

We also introduce two other local consistencies for an initialized
junction graph of a CBI problem that are stronger than Single Cluster
Consistency. They are Directional Cluster Consistency and Neigh-
borhood Cluster Consistency. Effects of other clusters in the junction
graph are taken into account. The distinction between these two local
consistencies is based on which clusters are selected for considera-
tion.



Input: A variableX ∈ X and a constraintf with X ∈ Scope(f)
Output: TRUEif a value is removed from the domain ofX, FALSE

for else
1: flag := TRUE
2: for eachx ∈ DX do
3: for eachvalue assignmentw of Scope(f)

−X
do

4: if f(x,w) 6= α⊗ then
5: flag := FALSE
6: Break loop
7: end if
8: end for
9: if flag then

10: Removex from DX

11: ReturnTRUE
12: end if
13: end for
14: ReturnFALSE

Figure 2. ProcedureREVISE(X, f) for eliminating a domain value from a
variableX according to the local constraintf .

Definition 2 (Directional Cluster Consistency (DCC)) Given
a total ordering of the clusters and a clusterCi of an ini-
tialized junction graph. LetSij be a separator that connects
another clusterCj to Ci and L(Ci) be a subset of clusters
that consist of lower order neighbor clusters ofCi. Define
gi = φCi

⊗
N

Cj∈L(Ci)
(
L

Cj−Sij
φCj

). We sayCi is directional

consistent if∀X ∈ Scope(gi), ∀x ∈ DX , ∃w, a value assignment
of variables Scope(gi)−X

, s.t. gi(x,w) 6= α⊗. An initialized
junction graph of a CBI problem is Directional Cluster Consistent
given a total ordering of the clusters if all clusters of the graph are
directional consistent.

Definition 3 (Neighborhood Cluster Consistency (NCC))Given
a cluster Ci of an initialized junction graph, LetN(Ci) be
a subset of clusters that are neighbor clusters ofCi. Define
gi = φCi

⊗
N

Cj∈N(Ci)
(
L

Cj−Sij
φCj

). We sayCi is neigh-

borhood consistent if∀X ∈ Scope(gi), ∀x ∈ DX , ∃w, a value
assignment of variablesScope(gi)−X

, s.t. gi(x,w) 6= α⊗. An
initialized junction graph of a CBI problem is Neighborhood Cluster
Consistent if all clusters are neighborhood consistent.

We revise the single cluster consistency enforcing algorithm in
Figure 1 to directional cluster consistency and neighborhood cluster
consistency enforcing algorithms by updating the local potentialφCi

according to the definition, as shown in Figure 3 and 4, respectively.

3.2 Approximate Local Consistencies

Given a CBI problemP = (X,D,S,F), if the commutative semir-
ing S = 〈A,⊕,⊗〉 is both eliminative and monotonic, we propose
an approximation scheme to enforce local consistency for its initial-
ized junction graph representation with a user-controlled threshold.
More specifically, we use an elementǫ ∈ A to approximate the mul-
tiplicative absorbing elementα⊗ that is equal to the additive identity
element0 for an eliminative commutative semiring, and use≤S to
replace6= in the previous local consistency definitions. The mono-
tonic properties for both multiplicative and additive operators in a
monotonic semiring ensure that this approximation always returns a
lower bound estimate of the inference task for a given CBI problem

Input: A CBI problemP = (X,D,S,F), its initialized junction
graph representationJ = (C,S), and a total orderingOC of
clusters inC

Output: A Directional Cluster Consistent CBI problemP′ =
(X,D′,S,F′)

1: for i = |C| − 1 to 1 do
2: Let Ci = OC[i]
3: φold := φCi

4: for j = |C| to i + 1 do
5: Let Cj = OC[j]
6: φCi

:= φCi
⊗ (
L

Cj−Sij
φCj

)

7: end for
8: if REVISE(X, φCi

) then
9: for eachCk ∈ C do

10: if X ∈ Scope(φCk
) then

11: Remove all tuples inφCj
with the value that is re-

moved fromX

12: end if
13: end for
14: end if
15: φCi

:= φold

16: end for
17: ReturnP′ := P

Figure 3. Directional cluster consistency (DCC) enforcing algorithm.

Input: A CBI problemP = (X,D,S,F) and its initialized junc-
tion graph representationJ = (C,S)

Output: A Single Cluster Consistent CBI problemP′ =
(X,D′,S,F′)

1: for eachCi ∈ C do
2: φold := φCi

3: for eachCj ∈ N(Ci) do
4: φCi

:= φCi
⊗ (
L

Cj−Sij
φCj

)

5: end for
6: if REVISE(X, φCi

) then
7: for eachCk ∈ C do
8: if X ∈ Scope(φCk

) then
9: Remove all tuples inφCj

with the value that is re-
moved fromX

10: end if
11: end for
12: end if
13: φCi

:= φold

14: end for
15: ReturnP′ := P

Figure 4. Neighborhood cluster consistency (NCC) enforcing algorithm.

[6]. Correspondingly, the procedureREVISEin Figure 2 is modified
to handle approximate local consistency enforcing tasks, as shown in
Figure 5. All the local consistency enforcing algorithms discussed in
the previous section then can be modified respectively.



Input: A variableX ∈ X, a constraintf , an elementǫ ∈ A

Output: TRUEif a value is removed from the domain ofX; FALSE
if else

1: flag := TRUE
2: for eachx ∈ DX do
3: for eachvalue assignmentw of Scope(f)

−X
do

4: if ǫ≤Sf(x,w) then
5: flag := FALSE
6: Break loop
7: end if
8: end for
9: if flag then

10: Removex from DX

11: ReturnTRUE
12: end if
13: end for
14: ReturnFALSE

Figure 5. Procedureǫ-REVISE(X, f, ǫ) for eliminating a domain value
from a variableX according to the approximate thresholdǫ of a local

constraintf .

4 Complexities and Discussion

The worst case space complexities of all three local consistency en-
forcing algorithms are the same: linear in the number of clusters in
the junction graph and exponential in the maximal cluster size. The
worst case time complexities are linear in the size of the junction
graph and exponential in maximal cluster size too. We compare their
upper bounds for time and space of local consistency enforcing al-
gorithms for initialized junction graphs in Table 1. All of them use
the same space, though achieving Single Cluster Consistency uses
the least time, followed by Directional Cluster Consistency, and then
Neighborhood Cluster Consistency.

Table 1. Time and space upper bound comparison among various local
consistency enforcing algorithms for a junction graphJ = (C,S) of a given

CBI problem, whered = maxDi∈D |Di| andk = maxCi∈C |Ci|.

SCC DCC NCC
Time |C|dk+1 (|S| + |C|)dk+1 (2|S| + |C|)dk+1

Space |C|dk+1 |C|dk+1 |C|dk+1

As shown in Table 1, the upper bounds of both time and space
for achieving local consistencies using cluster consistency enforc-
ing algorithms proposed in this paper are bounded by the maximum
cluster size as well as the structure of the junction graph for a given
CBI problem. Intuitively a simple junction graph implies large clus-
ter sizes, so there is a tradeoff between the size of the graph and the
largest cluster when constructing a junction graph. Various heuristic
search approaches that can be used to construct junction graphs are
discussed in [5].

The space complexity of SCC can be improved using the GAC ap-
proaches for global constraints such as in [2] and [24] for constraint
networks. The basic idea is not to initialize with a combination of
the constraints that are allocated to a single cluster into a large con-
straint, but to keep a set of constraints inside each cluster. When we
need to compute a combination of constraints during SCC enforcing,
we only need to compute new tuples that are not marked as deleted.
The same approach can also be applied to DCC and NCC enforcing,
though the upper bounds for space will not change.

The junction tree representation is a special case of junction graphs
that satisfies the tree property. The junction tree algorithm [23] is a
widely studied inference algorithm in probability inference that uti-
lizes the properties of the junction tree structure. It is also general-
ized to handle constraint-based inference problems [5], based on the
seminal work on constraint programming [8, 26] and the latest gen-
eral algorithmic framework [10]. Given the identical message rep-
resentation and updating scheme in the inward phase of the junc-
tion tree algorithm and our directional cluster consistency enforc-
ing algorithm (with a cluster order given by the width-first traverse
starting from the root cluster), it is straightforward to show that di-
rectional cluster consistency can be achieved along with the inward
message passing in the junction tree algorithm, if the junction graph
of a given CBI problem satisfies the junction tree properties. In this
case, the potential reset steps (Lines 3 and 15 in Figure 3) are not
necessary if the constraint combination operator⊗ is idempotent.
If it is not, the complement operator⊘ of ⊗ should be introduced
to cancel the duplicated costs or potentials passing from the chil-
dren of the child clusters [5]. We refer readers to [12] for further
discussion of this technique from the semiring perspective. Analo-
gous approaches to cancelling the double-counted information in lo-
cal consistency methods can also be found in [13, 7]. A CBI problem
processed by such aDCC-enforcingprocedure then can be solved
by a search starting from the root cluster, which is a process equiva-
lent to outward message propagation in the junction tree algorithm.
This observation ensures that we can perform the message passing
of junction tree algorithms and at the same time simplify the original
problem representation according to the DCC enforcement. Perform-
ing the message propagation and the simplification together reduces
both the time and space complexities of the junction tree algorithm.
The nature of the message passing scheme in the junction tree algo-
rithm ensures that the directional cluster consistency enforcing can
be performed in parallel for clusters in different branches of the tree.
We plan to investigate different parallel and hybrid DCC-enforcing
techniques following the results of [26] in future work.

Loopy message propagation [19] is another widely studied ap-
proximate inference approach based on the junction graph represen-
tation in probability inferences. It is also generalized to apply to other
CBI problems [5] using the semiring concepts. Neighborhood cluster
consistency can be achieved along with each message updating step
in the generalized loopy message propagation. This can be achieved
without additional computational cost except for invalid value detec-
tion at each cluster. Similar to the junction tree algorithm, the poten-
tial reset steps (Lines 2 and 13 in Figure 4) are not necessary if the
constraint combination operator⊗ is idempotent. If⊗ is not idem-
potent, we can cancel the duplicated costs or potentials coming from
the same cluster via different paths by introducing the complement
operator⊘ of ⊗. The time and space complexities of loopy message
propagation are reduced after invalid values are removed from the
CBI problem following NCC enforcement. The message updating
step as well as NCC enforcement of the generalized loopy message
propagation can be performed in all clusters in parallel, saving sig-
nificant computational cost if parallel computing is feasible.

5 Experimental Results

We discuss in this section experimental results of applying the local
consistency enforcing algorithms proposed in this paper to the junc-
tion graph representation of Weighted CSP and Probability Assess-
ment that can be modelled as CBI problems. These preprocessing or
filtering algorithms simplify the original problem so that inference



algorithms can then be applied with less computational complexity.
A workstation with a Pentium 4 3.0GHz CPU and 1 GB memory run-
ning SuSE Linux 9.1 was used to run the experiments in this section.

5.1 Weighted CSP

Weighted CSP is a direct extension of MaxCSP where each value
assignment in a constraint corresponds to a non-negative integer or
weight instead of 0 for legal and 1 for forbidden in MaxCSP. Two
constraint tuple weights are combined with arithmetic plus and the
goal of the inference is to find a value assignment of all variables
that minimizes the combination of all constraints in the problem.
Weighted CSPs can be easily embedded into the semiring-based CBI
framework using the semiringSWCSP = 〈N, min, +〉. Because
the multiplicative absorbing elementα⊗ of the semiringSWCSP is
equal to the additive identity element0 that is equal to+∞, SWCSP

is eliminative. Also we can show thatSWCSP is monotonic, so both
the exact and approximate local consistency enforcing schemes in
this paper apply to Weighted CSPs.

We study a random binary Weighted CSP with 100 variables and
200 constraints. The domain of each variable consists of 5 values.
We choose randomly a weight from 0 to 10 for each value assign-
ment of every constraint. We construct junction graphs through re-
stricting the maximum cluster size from 2 to 4. Then we apply SCC,
DCC and NCC enforcing algorithms to preprocess this Weighted
CSP with variousǫ that approximate the multiplicative absorbing el-
ementα⊗ = ∞. The efficiency of the preprocessing algorithms is
characterized as the average variable domain size. We show the ex-
perimental results in Table 2. For the purpose of comparison, we nor-
malize the local constraint at each cluster before performing invalid
value detection. Given these experimental results, we conclude: (1)
For all of these approximate local cluster consistency enforcing algo-
rithms, the closerǫ is to the exact multiplicative absorbing element
α⊗ = ∞, the fewer domain values are eliminated during the prepro-
cessing. (2) The preprocessing time for each local cluster consistency
enforcing algorithm is affected by the structure of the junction graph,
but it does not change monotonically with the maximal cluster size.
(3) In sequential computing schemes, SCC uses the least preprocess-
ing time, followed by DCC and then NCC. The time used by DCC
or NCC can be reduced if parallel computing is introduced. (4) DCC
has the strongest preprocessing ability due to its “global” property.
In other words, message passing from lower order clusters contains
information from clusters that are lower than them. NCC with one
step message updating is slightly better than SCC in that a cluster
in NCC collects information from all its immediate neighbors. If we
perform several steps (3 in our experiments) of message updating,
more values are removed.

5.2 Probability Assessment

Probability inference problems can be seen as constraint-based in-
ference by treating conditional probability distributions (CPDs) as
soft constraints over variables. A Bayesian network (BN) [20] is a
graphical representation for probability inference under conditions
of uncertainty. BN is defined as a directed acyclic graph (DAG)
where verticesX = {X1, · · · , Xn} denoten random variables and
directed edges denote causal influences between variables.D =
{D1, · · · , Dn} is a collection of finite domains for the variables. A
set of conditional probability distributionsF = {f1, · · · , fn}, where
fi = P (Xi|Parents(Xi)) is attached to each variable (vertex)Xi.
The probability distribution over all the variables is given by the
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Figure 6. (a) Number of operations: the number of binary operations
required for probability assessment after using the local cluster consistency
enforcing algorithms (shown as a fraction of the number required without

preprocessing) as a function ofǫ and (b) Average error: the resultant average
error of the marginal probability for the Insurance network as a function ofǫ

combination of the CPDs using the arithmetic product. The prob-
ability assessment problem computes the posterior marginal prob-
ability of a subset of variables, given values for some variables as
known evidence. The probability assessment problem can be repre-
sented as a CBI problem using the commutative semiringSPROB =
〈R+ ∪ {0}, +,×〉. It is easy to show thatα⊗ = 0 = 0 in SPROB

andSPROB is monotonic that both the exact and approximate lo-
cal consistency enforcing schemes in this paper apply to probability
assessment problems.

The Bayesian network used here is the Insurance network from
the Bayesian Network Repository [9]. The network has 27 variables
and 27 non-binary constraints (CPDs). In our experiments, we ran-
domly choose one variable as observed. The approximate local clus-
ter consistency enforcing algorithms are used to preprocess the prob-
lem based on a junction graph representation with the maximal clus-
ter size of 5. The junction tree algorithm in Lauritzen-Spiegelhalter
architecture [15] is used to infer the marginal probability of every
unobserved variable. We compare the number of binary operations
required for probability assessment after using the preprocessing al-
gorithms (shown as a fraction of the number required without pre-
processing) and the resultant error of the marginal probability for the
Insurance network as a function ofǫ in Figure 6. At each value of
ǫ, we collect data for 5 runs. It is clear thatǫ controls the tradeoff
of the precision and the speed of the inference. DCC and NCC have
stronger ability to speed up the inference but introduce more errors
than SCC, so they are more sensitive to the selection of the approxi-
mation thresholdǫ.

6 Conclusion

As the first contribution of this paper we propose a family of novel
generalized local consistency concepts for the junction graph repre-
sentation of CBI problems. These concepts apply to a broader cov-
erage of inference problems from various fields based only on the
general condition that depends on the properties of semirings that
are used to abstract these problems. Second, we present several local
consistency enforcing algorithms, including single, directional and
neighborhood cluster consistency enforcing algorithms and their cor-
responding approximation variants. Third, theoretical complexities



Table 2. Average variable domain sizes for a Weighted CSP that is preprocessed by three approximate local cluster consistency enforcing algorithms with
different junction graph representations and different approximate elementǫ. Here SCC stands for Single Cluster Consistency; DCC standsfor Directional

Cluster Consistency; NCC-n stands for Neighborhood-Cluster Consistency withn steps of message updating.k is the size of the maximal cluster in a junction
graphJ = (C,S). The original average domain size is 5 and we normalize the local constraint at each cluster for comparison.

k = 2 k = 3 k = 4

|C| 200 107 69
|S| 1500 772 520

Max Degree 26 24 26

Algorithm SCC DCC NCC-1 NCC-3 SCC DCC NCC-1 NCC-3 SCC DCC NCC-1 NCC-3

ǫ = 7 4.84 2.40 3.17 1.38 4.70 2.69 2.90 1.44 4.41 2.94 3.02 1.50
ǫ = 10 5.00 2.88 4.21 1.58 4.97 3.36 3.97 1.65 4.94 3.51 4.05 1.87
ǫ = 15 5.00 3.35 4.85 1.87 5.00 4.05 4.79 2.02 4.98 4.22 4.76 2.28
ǫ = 25 5.00 3.97 5.00 2.36 5.00 4.44 4.96 2.61 5.00 4.65 4.97 2.88
ǫ = 50 5.00 4.32 5.00 3.09 5.00 4.88 5.00 3.39 5.00 4.91 5.00 3.75
ǫ = 75 5.00 4.55 5.00 3.53 5.00 4.94 5.00 3.93 5.00 4.97 5.00 4.22
ǫ = 100 5.00 4.66 5.00 3.88 5.00 4.97 5.00 4.22 5.00 4.98 5.00 4.46
ǫ = 125 5.00 4.77 5.00 4.08 5.00 4.98 5.00 4.36 5.00 4.99 5.00 4.59
ǫ = 150 5.00 4.82 5.00 4.24 5.00 4.99 5.00 4.53 5.00 5.00 5.00 4.66
ǫ = 200 5.00 4.90 5.00 4.46 5.00 5.00 5.00 4.65 5.00 5.00 5.00 4.75
ǫ = 500 5.00 4.94 5.00 4.89 5.00 5.00 5.00 4.99 5.00 5.00 5.00 4.92

Avg. Time (s) 0.16 16.25 42.88 180.65 2.62 12.72 30.86 137.48 3.55 16.25 43.85 234.80

of these preprocessing or consistency enforcing algorithms are dis-
cussed and experimental results of applying them to both MaxCSP
and probability assessment problems are given. Finally, we discuss
the relationship between these local cluster consistency concepts and
message passing schemes such as junction tree algorithms and loopy
message propagation. We intend to study efficient approaches to
combining local cluster consistency enforcing with message prop-
agation for general CBI problems in future work.
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