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Abstract. Formal models for agent design are important for both practical and theoretical reasons. The

Constraint-Based Agent (CBA) design approach includes two formal models: Constraint Nets and Timed

b-automata. A constraint net models the agents and the environment symmetrically as, possibly hybrid,

dynamical systems; a timed b-automaton specifies the desired real-time dynamic behaviors of the situated agents.

Given a constraint-based specification of the desired behavior, a constraint-based agent can be synthesized as a

constraint solver. Using formal modeling and specification, it is also possible to verify complex agents as obeying

real-time temporal constraint specifications. This overview paper presents a summary of the development and

application of the CBA framework.
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1. Introduction and Motivation

Constraint programming has evolved several powerful frameworks for building problem-

solvers as constraint-satisfying devices. Primarily, these devices are offline problem-

solvers. For example, the Constraint Satisfaction Problem (CSP) paradigm has evolved

and matured over the last twenty-five years. The algorithms developed in the CSP

paradigm were made more available and more useful when they were incorporated into

the Constraint Programming (CP) language paradigms. Despite this success, however, a

major challenge still facing the constraint research community is to develop useful

theoretical and practical tools for the constraint-based design of embedded intelligent

systems. Many applications require us to develop online constraint-satisfying systems that

function in a dynamic, coupled environment [16]. An archetypal example of an application

in this class is the design of controllers for sensory-based robots [17, 24, 31]. If we

examine this problem we see that almost all the tools developed to date in the CSP and CP

paradigms are inadequate for the task, despite the superficial attraction of the constraint-

based approach. The fundamental difficulty is that, for the most part, the CSP and CP

paradigms still presume a disembodied, offline model of computation.

Consider an agent coupled to its active environment as shown in Figure 1. Each is an

open dynamic system in its own right, acting on, and reacting to, the other. The coupled

pair forms a closed system that evolves over time.

To deal with such embedded applications, we must radically shift our perspective on

constraint satisfaction from the offline model in which a solution is a function of pre-given
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static inputs to an online model where a solution is a temporal trace of values, resulting

from a transduction of the input trace over time. Values in the agent’s input trace may

depend on earlier values in its output trace. In fact, the input trace for the agent is itself a

causal mapping of its output trace, representing the dynamics of the environment, as

shown in Figure 1.

In this paper we present an overview of our formal approach to specifying, designing,

building and evaluating embedded intelligent systems: the Constraint-Based Agent (CBA)

framework.

Agent-based systems embedded as controllers in real or virtual environments must be

designed in an online model based on various time structures: continuous, discrete and

event-based. The requisite online computations, or transductions, are to be performed over

various type structures including continuous and discrete domains. Such time and domain

structures are modeled formally in Constraint Nets (CN) [32], a model for hybrid dynamic

systems. CN provides a new view of computation, constraint satisfaction and constraint

programming. To this end, we have defined constraint satisfaction as a dynamic system

process that approaches asymptotically the solution set of the given, possibly time-

varying, constraints [33]. Under this view, constraint programming is the creation of a

dynamic system with the required property.

A formal model for the agent systems alone does not complete the whole framework. In

order to design agent systems that guarantee some desired behaviors, a formal behavior

specification is required. We have developed timed b-automata for specifying behavioral

requirements for constraint-based agents. The timed b-automata model was developed in

[28, 35, 40] as an extension of discrete time b-automata [19] to continuous time, with

annotations for real-time. Timed b-automata are simple, yet able to represent many

important features of dynamic systems such as safety, stability, reachability and real-time

response.

Given a constraint-based specification of the desired behavior, a constraint-based agent

can be synthesized as a constraint solver. Using formal modeling and specification, it is also

possible to verify complex agents as obeying real-time temporal constraint specifications.

The agent-based view of design has been taken in the research communities of multi-

agent systems and distributed AI [9, 10, 27]. There, however, most of the work has been

focused on discrete, rather than discrete/continuous hybrid, systems. Furthermore, even

though online real-time intelligent behaviors have been explored, few have emphasized the

importance of offline verification of the overall system.

Figure 1. An agent interacting with its environment.
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Over the last decade, there has been a growing interest in hybrid dynamic systems. In

this community, much work has also been done in formal approaches to system

specification and verification [2, 3, 11, 19]. In general, there are two schools. One is

to develop a uniform specification for both systems and their requirements; the other is

to use two different specifications, one for systems and one for requirements. The

advantage of the former is that the same formal approach can apply to both system

synthesis and system verification. However, in most cases, if the specification language

is powerful for both systems and requirements, the synthesis or verification tasks become

hard. We advocate the latter approach, that is, using timed b-automata for requirements

specification and using Constraint Nets [28, 32, 35] for system modeling. Control

synthesis [28, 34] and verification [28, 30, 31, 35, 39] have also been studied in this

framework.

There have also recently been studies on heterogeneous modeling and design for

concurrent and embedded systems, such as UC Berkeley’s Ptolemy Project [21]. The

system uses a mix of discrete, concurrent process models with continuous differential

equations. The result is a very large and complex system. Choosing the right models and

determining the interactions among the mix of models are nontrivial.

The idea of using constraint solvers as controllers has also been explored in the control

community, where it comes under the rubric of Model Predictive Control (MPC) [6, 13].

There, the control objective is represented as an optimization function over an infinite time

horizon. At each control step, the controller solves a constrained optimization problem to

find the best control value based on the model and the objective over a finite horizon. This

type of computation, in general, is either for linear systems, or so time and resource

expensive that it is hard to implement for real-time embedded systems.

In this paper we present an overview of our approach, called Constraint-Based Agents.

Even though our framework is formal, the presentation in this paper is intended to be

informal, emphasizing the concepts and methods. For details of the formal modeling,

specification and verification, please read the cited references. In the rest of this paper,

we first discuss the design of embedded agents. The essence of the CBA model

consists of a symmetrical coupling of an agent and its active environment. We then

describe the Constraint Net model and introduce timed b-automata. We say that an agent

is constraint-based if its behavior satisfies a specification in a well-defined constraint-

based temporal logic or timed b-automaton. We then discuss general synthesis and

verification procedures for this type of requirements specification. We finally describe

the use of the CBA framework in the application of robot soccer, and finish with our

conclusions.

2. Agents in the World

The most obvious artificial agents in the world are robots. However, the CBA approach

applies equally to embedded devices, pure software agents and natural animate agents.

There are many ways of using a CBA model, including the embedded mode, simula-

tion mode, verification mode, optimization mode, learning mode and design mode [22,

p. 449]. The agent design problem is formidable, regardless of whether the agent is

designed or modified by a human (programming), by nature (evolution), by another
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agent (bootstrapping), or by itself (learning). An agent is, typically, an intelligent hybrid

dynamic system, consisting of a controller coupled to its body as shown in Figure 2.

The controller and the body each consist of discrete-time, continuous-time or event-

driven components operating over discrete or continuous domains. The controller has

perceptual subsystems that can (partially) observe the state of the body, and, through it, the

state of the environment.

Parenthetically, the ‘body’ of an agent is simply the direct interface of the agent to its

environment. The body executes actions in the environment, senses state in the environ-

ment (which may well cause state changes in the body) and reports to the controller. In the

case of a robotic agent, the body consists of one or more physical systems but in the case

of an embedded software agent, the body is simply the software module that directly

interfaces to the virtual or physical environment. Control theorists typically call the body

the ‘plant’. Some models do not differentiate between the body and the environment; we

prefer to make that differentiation, based on the distinction between what is directly, and

what is indirectly, controlled.

Agent design methodologies are evolving dialectically [14]. The symbolic methods of

‘Good Old Fashioned Artificial Intelligence and Robotics’ (GOFAIR) constitute the

original thesis. The antithesis is reactive ‘Insect AI’ and control theory. The emerging

synthesis, Situated Agents, has promise, but needs formal rigor and practical tools [8, 12,

14, 17, 18, 23, 31].

In 1992, Mackworth proposed robot soccer as a grand challenge problem [14] since it

has the task characteristics that force us to confront the fundamental issues of agent design

in a practical way for a perceptual, collaborative, real-time task with clear performance

criteria. At the same time, Mackworth described the first system for playing robot soccer.

Since then it has been a very productive testbed, stimulating research toward the goal of

building perceptual agents, both in our laboratory [5, 15, 24, 34, 36, 37, 39, 41] and in

many other groups around the world.

Figure 2. The structure of a constraint-based agent system.
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3. The Constraint Net Model

The Constraint Net (CN) model [32] was developed by Ying Zhang and Mackworth as a

model for building intelligent hybrid systems as Situated Agents. In CN, an agent system

is modelled formally as a symmetrical coupling of an agent with its environment. Even

though an agent system is, typically, a hybrid dynamic system, its CN model is unitary.

Most other agent and robot design methodologies use hybrid models of hybrid systems,

awkwardly combining offline computational models of high-level perception, reasoning

and planning with online models of low-level sensing and control.

CN is a model for agent systems software implemented as modules with I/O ports. A

module performs a transduction from its input traces to its output traces, subject to the

principle of causality: an output value at any time can depend only on the input values

before, or at, that time. The model has a formal semantics based on the least fixpoint of

sets of equations [32]. In applying it to an agent operating in a given environment, one

separately specifies the system of the agent body, the agent control program, and the

environment. The total system can then be simulated and/or shown to have various global

properties, such as safety and liveness. This approach allows one to specify, synthesize,

and verify behaviors of embedded control systems. Our goal is to develop it as a practical

tool for building real, complex, sensor-based agents. It can be seen as a formal develop-

ment of Brooks’ subsumption architecture [8] that enhances its reliability, modularity and

scalability while avoiding the limitations of the augmented finite state machine approach,

combining proactivity with reactivity.

An agent situated in an environment is modelled as three machines: the agent body, the

agent controller and the environment, as shown above in Figure 2. Each is modelled

separately as a dynamical system by specifying a CN with identified input and output

ports. The agent is modelled as a CN consisting of a coupling of its body CN and its

controller CN by identifying corresponding input and output ports. Similarly the agent CN

is coupled to the environment CN to form a closed agent-environment CN, as shown

above in Figure 1.

The CN model is realized as an online dataflow-like distributed programming language

with a formal algebraic denotational semantics. A visual programming environment called

CNJ, Constraint Nets in Java, is described in [25], along with CNML, an XML-based

interchange format.

4. Agents in Design

The framework of Constraint-Based Agents consists of a modeling language such as CN

and a specification language such as a real-time temporal logic, that allows the designer to

specify and prove properties of the situated agent by proving them of the agent-environment

CN. We have shown how to specify, design, verify and implement systems for a robot that

can track other robots [29], a robot that can escape from mazes and a two-handed robot

that assembles objects [31], an elevator system [38] and a car-like robot that can plan and

execute paths under non-holonomic constraints [34].

Although CN can carry out traditional symbolic computation online, such as solving

Constraint Satisfaction Problems and path planning, notice that much of the symbolic
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reasoning and theorem-proving may be outside the agent, in the mind of the designer, for

controller synthesis and verification. GOFAIR does not make this distinction, assuming

that such symbolic reasoning occurs explicitly in, and only in, the mind of the agent.

The question ‘‘Will the agent do the right thing?’’ [31] is answered positively if we can:

1. model the coupled agent system at a suitable level of abstraction,

2. specify the required global properties of the system’s evolution, and

3. verify that the model satisfies the specification.

In CBA, the modelling language and the specification language are totally distinct since

they have very different requirements. The modelling language is a generalized dynamical

system language. Two versions of the specification language, Timed Linear Temporal

Logic [34] and Timed b-automata [30], have been developed with appropriate theorem-

proving and model-checking techniques for verifying systems. In [22, Chapter 12] we

describe how to build a situated robot controller using CN as realized in a logic program.

In this paper, we will present an overview of Timed b-automata.

5. Timed bb-Automata

In general, there are two uses of automata: first, to describe computations, for example,

input/output state automata, and second, to characterize a set of sequences, for example,

regular grammars/languages. Examples of the first category are mostly deterministic and

examples of the second category are mostly non-deterministic. However, all the original

automata work is based on discrete time steps/sequences. Approaches to extending

automata to continuous time have been explored in the hybrid systems community

[2, 3, 11]. The timed b-automata model that we developed belongs to the second category,

i.e., non-deterministic finite state automata specifying behaviors over continuous time. The

discrete time version of b-automata was originally proposed as a formalism for the

specification and verification of temporal properties of concurrent programs [19].

Intuitively, a b-automaton A consists of a set of states Q and a set of initial assertions

e, each on every state, and a set of transitional asserations c, each between any two

states. The set of states can be characterized into three categories: stable S, recurrent R

and bad B ¼ Q � (S v R). Each assertion denotes a constraint defined on a domain of

interest. Let D be a domain of interest; D can be finite, discrete, or continuous, or a

cross product of a finite number of domains. Physically, D can represent, for example,

velocities, distances, torques, sentences, commands or a combination of the above. A

constraint C defined on D is a subset of D, C � D. Physically, a constraint represents a

certain relation on a domain, such as a relation between external environment stimuli

and an agent’s internal knowledge representation, or, a relation between the agent’s

internal states and its actions, or, the relation between the current and next state. An

element d in domain D satisfies constraint C, if and only if d 2 C.

Let T be a time domain, which can be continuous, for example,R+. Let � : T ! D be a

function of time to a given domain of interest, i.e., a trace of the agent-environment

system. A run of A over � is a function r : T ! Q satisfying: (1) �ð0Þ satisfies the entry

assertion, i.e., �ð0Þ 2 eðrð0ÞÞ and (2) For any t 2 T ; �ðt�Þ; �ðtÞ and �ðt+Þ satisfy the

transitional assertions in qðt�Þ, q(t) and qðt+Þ. When T is discrete, the second condition is
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clear, bt > 0, �(t) 2 c(r(pre(t)), r(t)) where pre(t) is the previous time point of t. When T
is continuous, the second condition becomes more complex [35].

If r is a run, let Inf (r) be the set of automaton-states appearing infinitely many times

in r, i.e., Inf ðrÞ ¼ qAbtatVz t; rðtVÞ ¼ qf g. A run is called accepting if and only if

1. Inf (r) v R 6¼ 0, that is, some of states appearing infinitely many times in r belong to

R, or

2. Inf (r) � S, that is, all the states appearing infinitely many times in r belong to S.

A b-automaton A accepts a trace �, if and only if all runs of A over � are accepting for A.
One of the engineering advantages of using automata as a specification language is its

graphical representation. It is useful and illuminating to represent b-automata by diagrams.

A b-automaton can be depicted by a labeled directed graph, where automaton-states are

depicted by circle nodes and transition relations by directed arcs. In addition, each

automaton-state may have an entry arc pointing to it. Each recurrent state is depicted by a

diamond and each stable state is depicted by a square, inscribed within a circle. Nodes and

arcs are labeled by assertions as follows. A node or an arc that is left unlabeled is

considered to be labeled with true. Furthermore,

1. if an automaton-state q is labeled by  and its entry arc is labeled by /, the entry

condition e(q) is given by e(q) ¼  ^ /; if there is no entry arc, e(q) ¼ false, and

2. if arcs from q to qVare labeled by /i, i ¼ 1. . .n, and qVis labeled by  , the transition

condition c( q, qV) is given by c( q, qV) ¼ (/1 _. . ._/n) ^  ; if there is no arc from q to

qV, c( q, qV) ¼ false.

We can infer that, for the b-automata in Figure 3, (a) specifies the behavior of reach-

ability, i.e., eventually the system should satisfy constraint G, (b) specifies the behavior of

safety, i.e. constraint G is never satisfied, (c) specifies the behavior of bounded response,

i.e., whenever constraint E is satisfied, constraint F will be satisfied within bounded time.

In order to specify real-time behaviors, in addition to bounded time, timed b-automata

are defined.

A timed b-automaton TA is a b-automaton A augmented with a global time bound and a

set of local time bounds. Let T � Q be a set of local time bounded states, � : T ! R+ be a

local time function, and l be a global time bound that can be any value in R+vl.

For a timed b-automaton, in addition for a run to be accepting, it has to satisfy

time constraints. Let I� T be a time interval and |I | be the time measurement, and let r|I be

a segment of r over time interval I. A run satisfies time constraints if and only if:

1. Local: For any q 2 T and any time interval I, if r|I is a segment of consecutive states of

q, then |I | � �( q);

Figure 3. Examples of timed b-automata.
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2. Global: For any time interval I, if r|I is a segment of consecutive states of B v S,

then
R
I
�BðrðtÞÞdt � � where �B : Q ! {0, 1} is the characteristic function for the

set B.

A timed b-automaton TA accepts a trace �, if and only if

1. all runs are accepting for A; and

2. all runs satisfy the time constraints.

In a graphical representation, a local time state is denoted by a number indicating the

time bound. For example, (d) in Figure 3 specifies the behavior of real-time response, i.e.,

whenever constraint E is satisfied, constraint F will be satisfied within 5 time units.

6. Examples of Behavioral Specification

Timed b-automata are a simple yet powerful model for the specification of behaviors of

dynamic systems, since it integrates constraint specification with timed dynamic behavior

specification.

6.1. Examples of Constraint Specification

Constraint specification alone can specify many performance metrics. As we said,

constraints can specify relations between external environment stimuli and an agent’s

internal knowledge representation, or between an agent’s internal states and its actions, or

between the current and next states. Constraints can be finite, discrete or continuous, or

any combination of the above. Constraints can be linear, nonlinear, equalities or inequal-

ities. Moreover, constraints can also specify optimal conditions or optimality with extra

constraints, or combinations of multiple optimal criteria and additional constraints.

Consider the following examples for specifying constraints:

1. Inequality: f (x) � 0 where x is a vector of variables and f is a vector of functions.

2. Optimality: min| f (x)| where |x| is a norm for x.

3. Negation: x 6¼ y.

4. Constrained Optimality: min| f (x)| given g(x) � 0.

5. Robustness: Let f (x) be a set of output functions with x as inputs. The robustness can be

represented by its Jacobian J. There are many ways to state an optimal condition for

robustness. One method is to minimize AwA where w is the vector of diagonal elements

of W in the singular value decomposition of J ¼ UWVT.

6.2. Examples of bb-Automata

With automata, timed dynamic behaviors can be specified. Here is a set of examples for

specifying performance using timed b-automata, as shown in Figure 3:

1. Let G be a constraint that the distance between the robot and its desired position is less

than some constant value. Then Figure 3(a) specifies that the robot will eventually

arrive at its desired position.
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2. Let G be a constraint that the error of a learning algorithm is less than a desired

tolerance. Then Figure 3(a) specifies that the learning will eventually converge. If we

let the state of IG in Figure 3(a) be a timed state with time bound t, it further specifies

that the learning will be done within time t.

3. Let G be a constraint that the distance between the robot and obstacles is less than some

constant value. Then Figure 3(b) specifies that the robot will never hit any obstacle. If

G denotes that the current memory usage is over the limit, Figure 3(b) specifies that the

memory usage at any time is within its limit.

4. Let E be an external stimulus and F be a response. Then Figure 3(c) specifies that there

is a response after the stimulus within bounded time. Figure 3(d) specifies that such a

response occurs within 5 time units.

Even though timed b-automata are powerful, still they are not able to represent all forms

of performance metrics. For example, optimal performance over time min
R
f (t)dt is not

specifiable with timed b-automata. This form is mostly used for characterizing energy,

efficiency or overall errors. Furthermore, specifications with probability behaviors are not

included either. However, it is possible to add probability; for example, instead of ‘‘all

runs’’ must be accepting and satisfy time constraints, we can say ‘‘x% of the runs’’ must be

accepting and satisfy the timing constraints.

7. Verification and Synthesis of Constraint-Satisfying Controllers

For most dynamic systems, stability or convergence is the most important property that

needs to be verified. For example, we can verify that equation dx/dt ¼ 0 satisfies the

property of the b-automaton in Figure 3(a) with G as |xV| � � for any positive number �.
The most commonly used method for the verification of such properties is the use of

Lyapunov functions. We developed a formal method based on model-checking, that

generalizes Lyapunov functions [28, 35]. This method is automatic if the domain of

interest is finite discrete and time is discrete [28].

The basic verification strategy is, first, to find a set of invariants, each associated with an

automaton-state in the timed b-automaton. Then, find a set of Lyapunov functions, which

are non-increasing in stable states and decreasing in bad states. Finally, find a set of

local and global timing functions, where local timing functions are decreasing in

timed states and global timing functions, like Lyapunov functions, are non-increasing in

stable states and decreasing in bad states, in addition to having bounded values.

Many agents can be designed as online constraint-satisfying devices [30, 33, 34]. A

robot in this restricted scheme can be verified more easily. Moreover, given a constraint-

based specification and a model of the body and the environment, automatic synthesis of a

correct constraint-satisfying controller sometimes becomes feasible, as shown for a simple

goal-scoring robot in [34].

As a simple example, in Figure 2 suppose the CONTROLLER is a thermostat turning

on or off a furnace, the BODY, that is heating the ENVIRONMENT. The goal of the

system is to make the temperature of the ENVIRONMENT, TE (t), equal to a desired

temperature, TD(t). In other words the CONTROLLER of the AGENT is trying to solve

the constraint TE ¼ TD. One version of CONTROLLER correctness is established if we
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can prove that the (thermal) dynamics of the coupled AGENT-ENVIRONMENT system

satisfy the temporal logic formula w5|TE � TD| < � where w can be read as eventually and

5 can be read as ‘always’. In other words, the system will, no matter how disturbed,

eventually enter, and remain within, an �-neighborhood of the solution manifold of the

constraint. As a timed b-automaton, this requirement is represented by Figure 3(a). A less

restrictive form of correctness corresponds to the specification 5w |TE � TD| < � which is

to say that the system will always return, asymptotically, to the constraint solution manifold

if it should happen to leave it. As a timed b-automaton, this specification is represented by

Figure 3(c). Assuming the on/off thermostat’s dynamics be dTE=dt ¼ k if on and dTE=dt ¼
�m if off, a simple controller can be on if TD � TE > C and off if TE � TD > C where k, m,

C > 0. In order to satisfy the ‘‘strong’’ condition shown in Figure 3(a), C < �.
In general, a constraint is simply a relation on the phase space of the agent system, which

is the product of the controller, body and environment spaces. A controller is defined to be

constraint-satisfying if it, repeatedly, eventually drives the system into an �-neighborhood
of the constraint using a constraint satisfaction method such as gradient descent or a

symbolic technique.

A constraint-satisfying controller may be hierarchical with several layers of controller

above the body, as shown in Figure 4. In this case, each layer must satisfy the constraints,

defined on its state variables, appropriate to the layer, as, typically, set by the layer above.

The layers below each layer present to that layer as a virtual agent body in a suitably

abstract state space [34, 36]. The lower layers are, typically, reactive and synchronous (or

in continous time) on continuous state spaces; the upper layers are more deliberative and

asynchronous (or event-triggered) in symbolic, discrete spaces.

Figure 4. A hierarchical agent controller.
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A typical layer in a hierarchical controller is shown in Figure 5.

Each layer has two external inputs: the trace of constraint requests coming from above

ConstraintsIn (CI ) and the reports coming from below ReportsIn (RI ). Its two outputs

are its reports to the level above ReportsOut (RO) and its constraint requests to the level

below ConstraintsOut (CO). These traces arise from causal transductions of the external

inputs:

CO ¼ CtðCI ;RIÞ ð1Þ
RO ¼ RtðCI ;RIÞ ð2Þ

If the constraint-solver can be represented as a state-based solver then the layer may be

represented as shown in Figure 6.

Here, for simplicity, a discrete-time state-based layer is shown. It produces an extra

output StateOut (SO) that is consumed as an extra input StateIn (SI) after a unit delay

(�). In this case the behavior of the layer may be represented by computing the values

of each of the three outputs as a transliteration (function) of the current values of the

three inputs:

COðtÞ ¼ Cf ðCIðtÞ;RIðtÞ; SIðtÞÞ ð3Þ
ROðtÞ ¼ Rf ðCIðtÞ;RIðtÞ; SIðtÞÞ ð4Þ
SOðtÞ ¼ Sf ðCIðtÞ;RIðtÞ; SIðtÞÞ ð5Þ
SIðt þ 1Þ ¼ SOðtÞ ð6Þ

Figure 5. A layer in a constraint-based controller.

Figure 6. A layer with state in a constraint-based controller.
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8. Robot Soccer Players

The CBA framework has also been motivated, developed and tested by application to the

experimental challenge of designing, building and verifying controllers with perceptual

systems for robot soccer players with both off-board and on-board vision systems.

In the Dynamo (Dynamics and Mobile Robots) project in our laboratory, we have

experimented, since 1991, with multiple mobile robots under visual control. The Dynamite

testbed consists of a fleet of radio-controlled vehicles that receive commands from a

remote computer. Using our custom hardware and a distributed MIMD environment,

vision programs are able to monitor the position and orientation of each robot at 60 Hz;

planning and control programs generate and send motor commands at the same rate. This

approach allows umbilical-free behavior and very rapid, lightweight fully autonomous

robots. Using this testbed we have demonstrated various robot tasks [5], including playing

soccer [24] using a 2-layer deliberative/reactive controller architecture.

One of the Dynamo robots, Spinoza, is a self-contained robot consisting of an RWI base

with an RGB camera on a pan-tilt platform mounted as its head and a trinocular stereo

camera in its base. As an illustration of these ideas, consider the task for Spinoza of

repeatedly finding, tracking, chasing and kicking a soccer ball, using the pan-tilt camera.

After locating the moving ball Spinoza is required to track it, move to within striking

distance of the ball and strike it. The available motor commands control the orientation of

the base, the forward movement of the base, and the pan and tilt angles of the camera. The

parameters can be controlled in various relative/absolute position modes or rate mode. The

available rate of pan substantially exceeds the rate of base rotation. A hierarchical

constraint-based active-vision controller, using prioritized constraints and constraint

arbiters, can be specified for Spinoza that will, repeatedly, achieve and maintain (or re-

achieve) the desired goal subject to safety conditions such as staying inside the soccer

field, avoiding obstacles and not accelerating too quickly. If the dynamics of Spinoza and

the ball are adequately modelled by the designer then this constraint-based vision system

will be guaranteed to achieve its specification.

Yu Zhang and Mackworth have extended these ideas to build 3-layer constraint-

satisfying controllers for a complete soccer team [39]. The controllers for our softbot

soccer team, UBC Dynamo98, are modelled in CN and implemented in Java, using the

Java Beans architecture [36, 41]. They control the soccer players’ bodies in the Soccer

Server developed by Noda Itsuki for RoboCup. These experiments provide evidence that

the constraint-based CN approach is a clean and practical design framework for perceptual

robots.

9. Conclusion

The Constraint-Based Agent approach is a framework for the specification, design,

analysis, implementation and validation of artificial and natural agent systems. It requires

a new model of online and embedded computation for Constraint Programming such as

Constraint Nets, and a general behavior specification language like timed b-automata.

In this overview paper, we have shown how to use formal methods to specify the

dynamic system using Constraint Nets and the desired behaviors with timed b-automata.
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The advantage of formal methods over other methods lies in their precision and generality.

Constraint Nets, with its unified semantic model for hybrid systems, provides a clear

component structure for complex systems. Timed b-automata, with its graphical depiction

and constraint specification, is a simple yet powerful formalism for specifying many

properties of dynamic systems.
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