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Abstract

This paper describes current research in ap-
plying schemata-based recognition methods to the
understanding of hand-drawn sketch maps. In this
system, schemata are employed as representations
for models of the cartographic objects and sys-
tems of objects possible in sketch maps. The re-
sulting hierarchical network is then searched
using a combination of both data-driven and model-
driven methods. Low-level models are invoked by
primary cues computed directly from the input
image. Once invoked, schema models apply object-
specific procedural methods to complete their
recognition. Completed schema instances are then
used as abstract cues to invoke other models
higher in the schema hierarchy. A multiprocess-
ing control regime is utilized to permit a number
of schemata to apply their recognition proce-
_dures concurrently.

1. Introduction

In order to cope with the enormous complex-
jty of visual information, computer vision sys-
tems must employ extensive model-specific knowl-
edge of the visual world. A major problem in
model-driven vision systems is the invocation of
appropriate models to interpret a given image.
Typically, data-driven methods are employed to
generate low-level image cues to select likely
1t has been pointed out
Low-level cues

models as hypotheses.
that this method is ineffective.
are highly ambiguous matching to many inappro-
priate high-level models.

As a solution to this problem, we are cur-
fently integrating model-driven and data-drive
recognition in schemata representations by em-
ploying a recursive hierarchy of cues and models.
Schema models are invoked both by primary cues
computed directly from the image and by abstract
cues created recursively as the result of recog-

nition. The successful recognition of a schema
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instance at one level in the hierarchy yields a
context-sensitive cue to invoke schema models at
higher levels.

Sketch maps have been chosen for this re-
search for the following reasons:

1) He believe that the conventional semantics of
of cartography accurately reflects geographic
features in real aerial and satellite iinag-
ery.

2} The use of vector graphic input data greatly
reduces the amount of low-level processing
required while still capturing the essential
difficulties of geographic image analysis.
The research is therefore able to focus on
issues of cue generation and model invoca-
tion.

3) The enhanced abilities of this approach cen
be easily compared to a previous sketch map
system, MAPSEE, [Mackworth, 1977a] employing
a constraint network representation and a
network consistency search method [Mackworth,

1975]. By testing both systems on the same
input maps, we should obtain a quantitative
measure of the expected improvement of sche-
mata over constraint network methods.

2. Model-Driven Recognition
Computer vision can be characterized as the

task of mapping a two-dimensional sensory image
into an abstract symbolic description of the
three-dimensional scene represented by that image
[Clowes, 1971]. This process necessarily in-
volves the interpretation of sensory signals that
are voluminous in their quantity and simulta-
neousty highly ambiguous in their possible mean-

ings. In order to cope with this complexity, com=-
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uter vision systems must employ both model-
riven and data-driven recognition methods.
odel-driven recognition utilizes knowledge of
he objects and their abstract relationships
ossible in the visual world. Conversely, data-
riven methods exploit spectral knowledge about
he signal source and physical knowledge about
he processes of image formation and surface re-
overy. Indeed, the representation and coordi-
ated application of knowledge is the central
roblem in computer vision [Reddy, 1978].
We are exploring a recognition paradigm
or computer vision that integrates top-down,
ydel-driven recognition with bottom-up, data-
riven methods in hierarchical schemata-based
owledge representations [Havens, 1378a]. A
1jor problem in model-driven vision systems is
e invocation of appropriate models to inter-
et a given image. In most current systems,
‘ta-driven methods are employed to generate
w-level image cues to select likely models ds
potheses. Cues can be regions of statistical-
» homogeneous properties or edges inferred
om characteristic changes in image intensity.
. has been po{nted out that this methodology is
effective [Barrow § Tenenbaum, 1975]. Region
d edge-finding algorithms have no knowledge of
e real objects to which thay may telong. As
result, low-level cues are highly ambiguous
tching too many inappropriate high-level
dels.
As a solution to this probiem, we argue
at high-level object models must be invoked
appropriate high-level cues. The discovery
such abstract cues is, of course, recursively
& recognition problem, thereby necessitating
e use of a recursive hierarchy of cues and
dels. Schema models must be invoked hoth by
imary cues computed directly from the image
d by abstract cues created recursively as the
sult of recognition. The successful recog-
tion of a schema instance at one level yields
-ontext-sensitive cue to invoke schema models
the next higher level.
To realize this recognition paradigm, we

> employing a multiprocessing programming
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language methadoloqy that supports the concurrent
execution of top-down and bottom-up search pro-
cesses in hierarchical knowledge representations
[Havens, 1978b].

3. Schemata Representations

Recent research has focused on the applica-
tion of schemata [Bartlett, 1932] as a represen-
tation of knowledge [Minsky, 1975] [Bobrow &
Winograd, 1977] [Rumelhart & Ortony, 1976].
Schemata have been used or proposed in a number
of computer vision systems [Freuder, 1976)

[Hanson & Riseman, 1978b] [Brady, 1978]. Schemata
are object centered representations which repre-
sent complex concepts as specific compositions of
simpler schemate thereby forming hierarchical
knowledge structures. By exploiting composition,
a finite number of schema stereotypes can be used
to represent an arbitrary number of object in-
stances. Schemata may contain bath active and
passive knowledge. Passive knowledge represents
descriptive models of stereotypical objects.
Active knowledge is represented as proceduras
attached to schema models to guide the recogni-
tion process for instances of those schema stereo-
types [Winoarad, 1975],

The recognition process in schemata-hased
systems can be characterized as a search of the
schema hierarchy to find a best match of the in-
formation present in the input image to the knowl-
edge represented in the knowledge-base. Havens
[1976] has shown that this search can be neither
a strict top-down nor bottom-up search. Instead,
recognition must be an integration of top-down,
hypothesis-driven search and bottom-up, data-
driven methods [Rumelhart & Ortony, 1976]. Sche-
mata represent models providing expectation and
guidance for top-down search. At the same time,
features discovered in the image provide cues for
the bottom-up selection of particular schemata
as likely hypotheses.

We are investigating the integration of
model-driven and data-driven recognition by em-
ploying both a model hierarchy and a cue hier-
archy within a schemata knowledge representation.

The interactions between model-driven and data-
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driven processes in computer vision are poorly
understood [Brady, 1978].
cerned with characterizing that interaction,

This research is con-

A preliminary schemata knowledge representa-
tion for sketch maps is illustrated in Figure 3,
The nodes in this tree represent schema stereo-
type models of various cartographic objects and
systems possible in sketch map scenes. The arcs
represent composition with nodes higher in the
hierarchy being composed of connected nodes lower
The interpretation of the

arcs, however, depends on whether a top-down or

in the hierarchy.
bottom-up search method is being applied. Using
top-down search, the arcs are possible subgoa)

paths.
this schema can selectively call the Town, Road

To recognize a Road-System, for instance,
and Bridge schemata as subgoals. Using bottom-
up search, on the other hand, the arcs represent
cue paths to select possible supergoals. As an
example, if the Bridge schema has satisfied its
expectations for a bridge instance in the input
image, it must invoke plausible higher schemata
as supercoals. In this case, both Road-System
and River-System are very likely to be found in
3 sketch map scene containing a bridge.

For this sketch map system, the image is
represented as plot vectors taken directly from
a vector graphics tablet. Conceptually, the
data consists of connected image points called
Links and blank space called Patches.

employed a simple recursive quadrant-splitting

We have

region finder to yield a conservative first seg-
mentation. For this domain, regions are thought
to be poor cues. Instead, a line finder which
attempts to connect plot vectors into chains is
used to provide primary cues. This algorithm is
again chosen to be conservative, forming chains
only where the distance between links is small

and there is no ambiguity as to chain direction.

4. Cycles of Perception

Unfortunately, to completely segment a com-
plex image requires the use of model-specific
information about the scenes interpretation, yet
that information is only fully available after

the segmentation has been performed. In order

to avoid this "chicken and egg problem" [Mack-
worth, 1977b] [Hevens, 1976], an integration of
tow and high-level processing must be achieved.
Mackworth [1978] has advocated a “cycle of per-
ception” theory for computer vision to avaid this
Kanade [1977] defines a
An initial conservative
segmentation is used to generate primary cues
that invoke appropriate object models.

problem (see Figure 1).
similar cyclic model,

Once in-
voked, these models can guide a context-sensitive
resegmentatian of the image, thereby providing )
new more powerful cues to repeat the cycle. .

!
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We argue that this cycle of perception can
as well be characterized as a recursive process.
When 211 the expectations of a2 particular model
have been satisfied, the instantiated model be-
comes an abstract cue to recursively invoke ap-
prapriate models higher in the knowledge hier-

archy (see Figure 2). Instead of relying only

- on primitive context-free cues, the recognition
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of schema instances at intermediate Tevels in
the hierarchy can provide context-sensitive cues
for the next level.

2= SCHEMATA
invokes f/" directs

EXPECTATIONS OBSERVATION
matches primitive success
&\\__ CUE e /
DISCOVERY
& abstract
COMPLETION
Figure 2



yr such tasks as computer vision is an active
-ea of research [Bobrow & Raphael, 1974]). Re-
ant work has focused on the development of
chemata-based programming languages such as KRL
gobrow & Winograd, 1977] and MAYA [Havens,
978h]. Such languages define data structures
or represeating and accessing schemata and for
A method of
-opying stereotype schemata to provide specific
Since sche-

onstructing schemata networks.

cchema instances is also essential.
nata.may contain both descriptive and procedural
knowledge, & mechanism must also be included for
allowing attachment of procedures to data within
schemata [Winograd, 1975].

The procedures associated with each schema
are considered model-specific methods for guiding
the search process for that schema. Procedural
mathods can be used in both top-down and bottom-
up search of the schema hisrarchy. Both require
rultiprocessing capabilities. Top-down, subgoal
search can be realized by using generators [Suss-
man L McDermott, 19727 as independent processes
that can be recalled on failure to repeatediy at-
tempt alternative solutions to their subgoals.

Bottom-up search reguires that a number of
models be allowed to b2 active hypotheses simul-
taneously. Therefore, each procedural method as-
sociated with an active schema must be realized
as an independent process. fach such process is
allowed to guide the recognition process for its
schema stereotype. The coordination of multiple
compating processes'in goal-directed systems is
poarly understood [Brady, 1978]. KRL defines 2
hierarchy of scheduler processes but leaves the
spacification of these schedulers to the program-
mer.

To the contrary, MAYA defines four control
primitives for implementing bottom-up, data-
driven recognition in schemcia networks. The
first primitive, PROCESS, creates a new process
associated with some schema and begins its execu-
tion. This process may attempt to satisfy its
schema's model by employing subgoal search or by

invoking low-level jconic processes to generate

primary cues. If the search is unproductive, the
process can suspend itself, using SUSPEND, to
simple n-tuple patterns representing the unful-
filled expectations of the schema model. When
such information is discovered later by a lower
process, the process can be restarted, using
RESUME, by a successful pattern match to its pat-
tern. A number of schemata can, therefore, con-
duct their recognition in pseudo-parallel being
activated by the discovery of cues or information
matching their model’s expectations, applying
their methods, suspending themselves when infor-
mation is not available, and being resumed later
by the discovery of additional matching cues of
jnformation. See Figure 4.

This iterative cycle continues for each
active schema until some schema succeeds in
satisfying its model's expectations. If the
schema is intermediate in the schema hierarchy,
then the completed schema instance is an ab-
stract cue., The control primitive COMPLETE al-
lows this schema to perform two essentia) control
operations. A pattern match determines which
higher schemata processes are waiting for the in-
formation provided by this completed instance.
The completed process js suspended and the
matched higher-level processes are resumed, in

turn, to continue their own methods.

6. Conclusion

This research is concerned with extending
the use of model-driven recognition methods in
computer vision. By employing a recursive hier-
archy of cues and models, vepresented as sche-
mata, the acknowledged difficulties of invoking
models by low-level cues are avoided. By using
a schema-bhased multiprocessing programming en-
vironment, a number of models can simultaneously
be active hypotheses applying thair object-
specific methods concurrently. Finally, by test-
ing these tachniques on the jdealized domain of
cartographic sketch maps, both qualitative an.
quantitative measures of their performance can

be obtained.
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MAPSEE2 COMPOSITION HIERARCHY

Figure 3
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