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The central problem in vision is to determine scene properties from image properties. This is difficult because the problem, 
formally posed, is underconstrained. Methods that infer scene properties from images make assumptions about how the world 
determines what we see. In remote sensing, some of these assumptions can be dealt with explicitly. Available scene knowledge, 
in the form of a digital terrain model and a ground cover map, is used to synthesize an image for a given date and time. 
The synthesis process assumes that the surface is a perfectly diffuse or “lambertian” reflector. A scene radiance equation is 
described based on simple models of direct solar irradiance, diffuse sky irradiance, and atmospheric path radiance. Parameters 
of the model are estimated from the real image. A statistical comparison of the real image and the synthetic image is used 
to judge how well the model represents the mapping from scene to image. 

The methods presented for image synthesis are similar to those used in computer graphics. The motivation, however, is 
different. In graphics, the goal is to produce an effective rendering of the scene for a human viewer. Here, the goal is to 
predict properties of real images. In vision, one must deal with a confounding of effects due to surface shape, surface material, 
illumination, shadows, and atmosphere. These effects often detract from, rather than enhance, the determination of invariant 
scene characteristics. 

Key words: computational vision, reflectance, remote sensing, computer graphics, geographic information systems, image 
analysis, image synthesis, surface representation. 

Le probltme central en vision est de determiner des proprittes sctniques a partir de proprittks d’images. Ceci est difficile, car 
le probltme, pose de faqon formelle, n*est pas suffisamment lirnitk. Les methodes qui inferent des proprietts sciniques ii partir 
d’images font des hypotheses sur la fason dont le monde dttermine ce que nous voyons. En perception adistance, certaines de ces 
hypothtses peuvent &Ire traitees explicitement. Une connaissance de scene disponible, sous forme d’un modtle nurnkrique de 
terrain et d’un plan de surface horizontal, est utilise pour synthetiser une image pour une date et une heure donnees. Le processus 
de synthtse suppose que la surface est un rkflecteur diffusant parfaitement, i.e., “larnbertien.” Une equation de la radiance de la 
sctne est decrite en se basant sur des rnodtles simples de la radiance solaire directe, dc la radiance diffuse du ciel, et de la radiance 
du parcours atmospherique. Les parametres du modtle sont estimts ii partir de I’irnage reelle. Une cornparaison statistique de 
I’image reelle et de I’irnage synthttique est utilisee pour estirner a quel point le modtle reprksente le mapping de la sctne a 
l’irnage. 

Les rntthodes prisentees pour la synthese d’image sont similaires a celles utilisees dans les representations gmphiques par 
ordinateur. La motivation, ntanmoins, est differente. En dessin, le but est de produire une representation efficace de la sctne pour 
un observateur hurnain. Ici, le but est de prtdire les propnetis d’images rielles. En vision, on doit traiter d’un enchevktrement 
d’effets dO a la forme de la surface, au rnatkriau dont elle est constituee, I’eclairage, aux ombres, et a I’atrnosphtre. Ces effets 
portent souvent atteinte 2 la determination de caractiristiques sceniques invariantes plutbt que de rnettre en vnlrur celles-ci. 

Mots clis: vision par ordinateur, refraction, perception A distance, images par ordinateur, systtmes d’information 
gkographique, analyse d’image, synthtse d’image, representation de surface. 

[Traduit par la revue] 
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1. Introduction 
Computational vision is the study of systems that produce 

symbolic descriptions of  a world from images of that world. The 
computation from signal input to symbolic output is too 
complex to be treated a s  a single function. Vision requires many 
levels of  intermediate representation. Identifying those levels 
and establishing the constraints that operate both within and 
between levels is the fundamental task of  computational vision 
research (Woodham 1982; Mackworth 1983). In early vision, 
one deals with descriptions that can be computed directly from 
the image. Analysis by synthesis is one way that knowledge of 
the scene can be used in early vision. 

Knowledge of the scene is expressed as a scene radiance 
equation. Scene knowledge includes the illumination and the 
intrinsic reflectance properties of the surfaces in view. Image 
synthesis is used to  predict how specific objects will look when 
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viewed in a particular way. T h e  process iterates since compari- 
son of  the real and synthetic image contributes to an emerging 
description of the particular scene in view. In a synthesis 
approach to  analysis, the image domain itself becomes the 
unifying representation to  compare the scene against what is 
seen. This is a simple approach. Nevertheless, it is shown to be 
effective when applied to  remote sensing. 

In remote sensing, one  attempts to interpret multispectral 
scanner data directly in terms o f  ground cover. The effects of 
topography and atmosphere make this direct interpretation 
difficult. In industrial inspection, one attempts to interpret 
image data directly in terms o f  object shape. This is possible 
when objects have uniform optical properties (Horn 1977; 
Ikeuchi and Horn 1981; ,Woodham 1981). Separating changes 
in image intensity due to  object shape from changes due to 
surface material is difficult, because trade-offs emerge that 
cannot be resolved locally. Nevertheless, in remote sensing, 
there have been attempts to  extract both topographic and ground 
cover information from single multispectral images (Eliason et 
al. 1981; Wang el af. 1984). Other work uses terrain models in 
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an attempt to account for the dependence of scene radiance on 
topography and atmosphere (Smith e f  al. 1980; Justice et al. 
1981; Shibata eral. 1981; Teillet er al .  1982; Sjoberg and Horn 
1983; Woodharn and Lee 1985). 

Image synthesis can be thought of as a problem in computer 
graphics. In graphics, however, the goal is to produce an 
effective rendering of the scene for a human viewer. For 
example, image synthesis is used for hill shading in cartography 
(Horn 1981). But. many factors, such as shadows, skylight, and 
atmospheric attenuation, detract from the cartographic render- 
ing of terrain and are not included. In addition, part of the 
cartographer’s craft is to adjust the position of the light source 
locally to provide the best rendering of the terrain. Humans 
appear not to notice that the result is globally inconsistent and 
could not possibly correspond to the real lit world. 

In analysis by synthesis the goal is to predict properties of real 
images. In remote sensing, one must deal with a confounding of 
effects due to surface shape, surface material, illumination, 
shadows, and atmosphere. These effects often hinder, rather 
than enhance, the determination of invariant scene charac- 
teristics. 

2. Formulation 
Image synthesis requires a scene radiance equation. To 

specify scene radiance, i t  is necessary to consider both geometry 
and radiometry. 

2. I .  Geometry 
Consider a Cartesian coordinate system defined in terms of a 

plane at the earth’s surface with the X axis pointing east, the Y 
axis pointing north and the Z axis up. A terrain model can be 
written as a function z = f ( x ,  y ) ,  where z is surface elevation. 
When a terrain model is given as a discrete array of elevations on 
a regular grid, i t  is called a digital terrain model (DTM). 

For vertical imagery acquired from satellites such as Landsat 
1,  2, and 3 (nominal altitude 900km). image projection is 
essentially orthographic. That is, surface point ( x ,  y, z) projects 
to image point ( x ,  y).  

The direction of a surface normal at a terrain point can be 
found by taking the cross product of any two vectors lying in the 
tangent plane, provided they are not parallel to each other. Two 
such vectors are [ 1, 0, p ]  and [0, 1, 41, where p = df(x ,  y)lax is 
the slope in the west to east direction and q = d f ( x ,  y)/dy is the 
slope in the south to north direction. Their cross product is the 
vector 1 - p ,  - q,  1 I.  The quantity ( p ,  q) is called the gradient 
and is used to specify direction in the earth-centered coordinate 
system. 

Four parameters are required to specify the local geometry of 
the incident and the reflected rays. Often, however, one 
considers materials whose reflectance characteristics are in- 
variant with respect to rotations about the surface normal. For 
surfaces that are isotropic in this way, only three parameters are 
required. Figure 1 illustrates how to define the incident- and 
reflected-ray geometry in terms of three angles i, e, and g .  The 
incident angle i is the angle between the incident ray and the 
surface normal. The emergent angle e is the angle between the 
reflected ray and the surface normal. The phase angle g is the 
angle between the incident and reflected rays. The use of angles 
i, e ,  and g has one advantage over other possibilities. For a 
distant viewer and distant light source, the phase angle g is 
constant, independent of the surface normal. 

One can determine cos i and cos e ,  given the surface gradient 
( p ,  q) .  Let the incident-ray direction have gradient ( p o ,  qo). 
That is, the vector [ -po, - qo. 11 points in the direction of the 
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FIG. 1. The three angles i, e, and g used to specify the local geometry 
of the incident and the reflected ray. 

light source. For nadir looking sensors, the vector [0, 0, 11 
points in the direction of the viewer. Expressing the cosine of 
the angle between two vectors as a normalized dot product of the 
vectors, one obtains 

t 11 1 + PPO + 940 cos i = 
g 1  + p2 + q2Vl + po2 + qo2 

I21 
1 cos e = 

Vl + p l +  ql  

2.2. Radiometry 
The reflectance properties of a surface material are deter- 

mined by its bidirectional reflectance distribution function 
(BRDF). The BRDF, denoted by the symbolf,. was introduced 
by Nicodemus et al. (1977) as a unified notation for the 
specification of reflectance in ternis of the incident- and the 
reflected-beam geometry. The BRDF is an intrinsic property of 
a surface material. It determines how bright thc surface will 
appear when viewed from a givcn direction and illuminated 
from another. 

The BRDF allows one to determine scene radiance, L,, for 
any defined incident- and reflected-beam geometry by integrat- 
ing over the specified solid angles. A systematic approach to 
perform this integration has already been given (Horn and 
Sjoberg 1979). The approach has been applied to BRDF’s 
proposed for remote sensing (Woodharn and Lee 1985). Here, 
results are summarized for nadir viewing of perfectly diffuse 
surfaces under different conditions of illumination. (Perfectly 
diffuse surfaces are commonly referred to as lambertian 
surfaces (Nicodemus er al .  1977), a convention that will be 
followed throughout.) 

A lambertian surface has BRDF 

131 f r  = PIT  

where p is the bihemispherical reflectance, loosely termed 
albedo, that determines the proportion of incident light reflected 
by the surface. For an ideal (lossless) lambertian surface, p = I .  

When illuminated by a collimated source with irradiance Eo 
measured perpendicular to the beam of light arriving from 
direction with gradient (po ,  qo), one obtains, for points not in 
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relatively high spatial frequencies and to have sustained 
temporal characteristics. Conversely, the motion-detection 
channel was said to be sensitive to lower spatial frequencies and 
to have transient temporal characteristics. Since the spatial 
characteristics of the form channel should not change with 
temporal frequencies, it is natural to assume separability. 

4. Evidence for inseparability 
Although the use of the DOG is remarkably widespread and 

appears to provide a reasonable account of spatial behaviour for 
static stimuli, the assumption of separability is extremely 
restrictive. Given that the centre and the surround are computed 
by separate mechanisms and that it is improbable that two 
different neural circuits have identical temporal properties, 
inseparability is a natural consequence. Below, two bodies of 
evidence suggesting the degree of spatiotemporal inseparability 
are briefly reviewed (more detail can be found in Fleet (1984)). 
The first suggests that the centre and the surround do not 
have identical time courses of response, with the surround 
sluggish and delayed relative to the centre. The second shows 
inseparable amplitude and phase spectra of responses to drifting 
sinusoidal gratings. 

4.1.  Longer surround rime course 
Figure 1 shows a typical response pattern produced by a 

bipolar cell or an X-type ganglion cell when a circular disc is 
turned on and then off in the centre of its receptive field. Of 
particular interest is the “transient peak” apparent at the onset 
and offset of the stimulus. This transient peak is widely 
attributed to the surround having a longer time course of 
response relative to the centre, with the initial rise time 
indicative of the centre response, and the slower decay back to 
the sustained response indicative of the surround rise time and 
antagonism (Rodieck 1965; Kaneko 1970; Werblin 1974). In 
general, there is considerable electrophysiological evidence 
for a centre-surround latency difference at the mammalian 
ganglion-cell and bipolar-cell levels (there are similar results for 
lower animals). The longer surround time course has been 
attributed to a combination of fixed delay and slower rise time 
for the surround (Rodieck and Stone 1965; Richter and Ullman 
1982; Fleet 1984; Fleet et al. 1985). 

4 .2 .  Inseparable amplitude and phase spectra 
Recent physiological experiments have shown that spatial- 

frequency tuning does indeed change significantly with tem- 
poral frequency. In fact, the amplitude spectrum is spheroidal 
and radially band-pass at moderate mean light levels. Figure 2 
shows data reported by Demngton and Lennie (1982) for an X 
cell and a Y cell stimulated with drifting sinusoidal gratings. In 
each case the spatial-frequency sensitivity profile is shown for a 
variety of temporal frequencies. Notice that spatial tuning 
changes from roughly band-pass at low temporal frequencies to 
low-pass at higher temporal frequencies. Enroth-Cugell et al. 
(1983) obtained similar results for X cells as well as for a 
subgroup of the W-type ganglion-cell population. Dawis et 01. 
(1984) showed inseparability in both phase and amplitude 
components of responses, confirming the earlier results. 

The spatiotemporal inseparability exhibited by these units is 
pronounced. Physiological evidence shows that the centre and 
surround do not have identical temporal properties. This is 
supported by sine-wave grating studies which report changes in 
spatial-frequency tuning with temporal frequency. Therefore, 
the DOG model is not valid for time-varying images. Although 
inseparability has been observed and included in several recent 

V 
FIG. 1.  The response profile of a goldfish bipolar cell, for a 

stimulus in which a disc is turned on and then off, exhibits a faster rise 
time than decay time. The amplitude ofresponse is plotted on the vertical 
axis and time on the horizontal axis (from Kaneko (1970)). 

modelling studies (Demngton and Lennie 1982; Richter and 
Ullman 1982; Enroth-Cugell er a f .  1983; Dawis eral. 1984), its 
functional significance has not been fully explored in the 
literature and is discussed further below. 

5. Spatiotemporal centre-surround (CS) model 
To accommodate the inseparable behaviour discussed above, 

the conventional DOG model has been extended to include 
physiologically relevant temporal mechanisms. The spatio- 
temporal centre-surround (CS) model, first proposed by Richter 
and Ullman (1982) and further examined by Fleet (1984) and 
Fleet et al. (1983, includes exponential low-pass temporal 
filters for the centre and the surround. In addition, the surround 
is delayed relative to the centre and is assumed to have a longer 
rise time. The impulse-response function (receptive field) for 
the inseparable CS model is given by 

[41 CS(x, t )  = K(t; h,)G(x; u,) - K(t - d; A,)G(x; us) 
where G(x,  a) is the 2-d spatial Gaussian [ 2 ] ,  d 2 0 is the 
surround delay, and 

is the temporal exponential with rise time A-’. Essentially, the 
three functionally significant parameters that affect the form of 
the model are (1) the ratio of the spatial standard deviations, 
crs/uc; (2) the ratio of the time constants, AF1/AF1; and (3) the 
surround delay, d. The standard deviation of the centre, uc, and 
the time constant of the centre, A;’, are free to he set according 
to the spatial and temporal frequencies the system is required to 
discern and are restricted in a discrete environment only by 
spatial and temporal sampling rates. 

6. Response behaviour of the CS filter 
The behaviour of the CS model has been analyzed in two 

ways. First, we consider the response patterns produced by the 
CS filter [4] in response to a variety of spatiotemporal inputs. 
This is an extension of the analysis done by Richter and Ullman 
(1982). Secondly, we apply Fourier analysis and consider the 
form of the amplitude spectrum with parameter values of 
physiological interest. In particular we find that frequency 
analysis allows us to compare the qualitative behaviour of the 
CS model with physiological observations and contrast the CS 
model with the DOG model. 

6.1. Response patterns 
Figure 3a shows the superposition of response patterns 

produced by a mudpuppy bipolar cell when presented (individ- 
ually) with different-sized discs flashed on and then off in the 
centre of its receptive field. The smaller disc (giving the lowest 
steady state) is approximately the size of the central excitatory 
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FIG. 2. The digital terrain model (DTM) of the study site. Here, 
brightness is directly proportional to elevation. 

Island, British Columbia, centred at geographic coordinates 
W 123:50:00, N 48:35:30. Elevation data along ridges and 
channels was manually digitized from the 1 : 50 000 Canadian 
National Topographic System (NTS) map sheet 92 B/12 (Shaw- 
nigan Lake). The ridge and channel structure was represented 
initially using a triangulated irregular network (TIN) (Peucker 
et al. 1978). Two grid representations were produced from the 
TLN. A 263 x 346 DTM (60 m grid) was used for the precise 
geometric rectification of Landsat images. A smaller scale 
131 X 173 DTM (120m grid) was generated for the work 
described below. Grid coordinates in the DTM correspond to 
the Universal Transverse Mercator (UTM) map projection used 
in Canadian NTS maps. The DTM is shown in Fig. 2. Within 
the study site, elevations vary from 150 to 850 m above sea level. 

A forest cover map for a 7.0 x 13.0km’ area within the test 
site was available from previous studies (Catanzariti and 
Mackworth 1978; Starr and Mackworth 1978). The seven 
original ground cover classes were reduced to four broad 
classes: old growth (class 1). second growth (class 2 ) ,  recent 
logging (class 3), and water (class 4). Ground cover classes 
were also represented in grid form. When positions in the forest 

FIG. 3. The ground cover map of the study site. Old growth (class I )  
is shown as light gray. Second growth (class 2) is shown as white. 
Recent logging (class 3 )  is shown as dark gray. A small amount of 
water (class 4) also is present and is shown as black. 

cover map are given in UTM map coordinates, no additional 
rectification of map to image or DTM is required. A 58 x 108 
(120 m grid) grid representation was used to combine Landsat, 
DTM, and forest cover data. The ground cover map is shown in 
Fig. 3. Within the study site, 53.9% of the area is old growth, 
19.8% is second growth, 26.0% is recent logging, and 0.3% is 
water. 

3 . 2 .  The Landsat images 
Landsat-1 was the first in a series of remote sensing satellites 

launched by NASA beginning in 1972. The operational sensor 
on Landsat-1 was a multispectral scanner (MSS) with four 
spectral bands. Band 4 (0.5-0.6pn) is in the visible green. 
Band 5 (0.6-0.7 Fm) is in the visible red. Band 6 (0.7-0.8 Fm) 
and band 7 (0.8-1.1 pm) are in the near infrared. Sensor 
outputs are digitized on board the satellite and transmitted to 
ground receiving stations for further processing and distribu- 
tion. Landsat MSS bands can be displayed in a variety of ways. 
A standard false colour composite is produced by displaying 
band 4 as blue, band 5 as green, and band 7 as red. This corre- 
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sponds to the dyes used in colour infrared aerial film and pro- 
duces a product that is familiar to photointerpreters. 

Two Landsat MSS images were chosen to correspond closely 
in time to the date of preparation of the ground truth map. The 
first, a winter image, was acquired January 8, 1973 (Landsat 
frame-id 1169-18373). The second, a summer image, was 
acquired August 12, 1973 (Landsat frame-id 1385-18365). 
Landsat image line and column coordinates are not given in an 
earth-based reference frame. Rectification of the two Landsat 
images to the DTM was required. Rectification was performed 
automatically using the method described in Little (1982). The 
two false colour composite images, rectified to UTM coordi- 
nates, are shown as the left-most column of Fig. 4. 

3.3.  Ancillary data 
Given latitude, longitude, date, and time, the position of the 

sun is determined by a computer program based on the method 
of Horn (1978). The exact timing of overflight for each Landsat 
MSS image is contained in the ancillary data recorded with each 
scan line. The January 8, 1973 image was acquired at 18:37 
GMT (10:37 am PST). At that time, the sun had elevation 15.4" 
above the horizon and azimuth 154.9' measured clockwise from 
north. The August 12, 1973 image was acquired at 18:38 GMT 
(11:38 am PDT) with the sun at elevation 50.1" and azimuth 
138.9". The study area is small enough that sun elevation and 
azimuth can be considered constant throughout. 

Six one bit-per-pixel mask files are generated for use in 
subsequent analysis. One mask file is generated for each of the 
four ground cover classes. A fifth mask file is generated, using 
the gradient ( p ,  4). for flat terrain. (Flat terrain is excluded when 
estimating parameters related to slope and aspect.) Finally, a 
sixth mask file is generated for points that lie in shadow. 
Approximately 12% of the January 8, 1973 image consists of 
pixels shadowed from the sun. For the August 12, 1973 image, 
the sun was sufficiently high in the sky that no image points were 
in shadow. 
3.4 .  Synthetic image examples 

The values of A ,  B ,  C and P k ,  k = 1, . . . ,4 ,  required for image 
synthesis can either be hypothesized from assumptions about 
the world or estimated from the real image. Eight different 
methods for determining these parameters are described. Each 
method has been applied separately to each date and to each 
Landsat band. The results obtained are summarized in Table 1 .  
The synthetic images corresponding to three of the methods are 
shown in Fig. 4.  

The first five methods do not consider sky illumination 
explicitly. That is, parameter L? of 191 is set to zero and scene 
radiance is given as the sum of two terms 

~ 3 1  Lr(i ,  e, g) = Apk cos i + C 
(Once again, the first term, due to solar irradiance, is zero for 
points in shadow.) 

Method A considers p k  to be constant. Method A accounts 
only for the dependence of scene radiance on topography and 
the direct solar beam. This serves as a useful benchmark. The 
correlation coefficients for Method A, given in Table 1, are 
typical of those reported elsewhere for similar terrain and 
ground cover (Horn and Bachman 1978; Teillet et al. 1982; 
Woodham and Lee 1985). 

Two qualitative observations can be made. First, method A 
did better for the January image than for the August image. This 
is mainly due to the lower sun elevation in January, 15.4" 
compared with 50.1". As is often noted in guidelines for aerial 

photography, a low sun angle accentuates topographic varia- 
tion, whereas a high sun angle is recommended to better 
delineate ground cover. Second, for each date, method A did 
better in band 7 than in band 4 or 5 .  The relative contribution of 
skylight and path radiance is greater in the shorter wavelength 
bands. Since method,A accounts only for the direct solar beam, 
it is expected to be better in band 7 where atmospheric effects 
are minimized. 

But ground cover is significant. Computing correlation 
coefficients on a per class basis supports the hypothesis that the 
correlation coefficients are different for each class. For exam- 
ple, method A, applied to band 7 of the January image, has an 
overall correlation coefficient of 0.68. On an individual class 
basis, the correlation coefficients are: old growth 0.77, second 
growth 0.75, and recent logging 0.48. (Water is excluded since 
lakes are flat. Estimating scene radiance as a function of the 
gradient (p, q )  is meaningless for horizontal surfaces.) 

Again, these results are consistent with intuition. Old growth 
is the most homogeneous cover class and thus would be most 
likely to have a single albedo throughout. Second growth is 
next. Recently logged areas, however, have different ground 
cover depending on circumstances and do not really represent a 
homogeneous cover type. It would not be as likely that a single 
albedo could account for as high a proportion of the variance for 
this class. 

Method B estimates values for Apt for each ground cover 
class without regard to path radiance. A linear regression is 
performed using [I31 subject to the constraint C = 0. The 
resulting synthetic images are shown in the second column of 
Fig. 4. Although some improvement in the overall correlation 
coefficients is noted, it is clear from a visual comparison of the 
real and synthetic images that too much variation is being 
attributed to topography and not enough to ground cover. 

Method C first estimates the additive term C in [ 131 by linear 
regression without regard to ground cover. Then, method C 
estimates values for Apt for each ground cover class by linear 
regression, subject to the constraint that L, = C when cos i = 0. 
The results show improvement, especially for the August 
image. 

One difficulty with using regression in this context is that the 
solution always passes through the data points. Thus, it can be 
the case that real intensities occur that are less than the estimate 
of the path radiance term C. This violates the world model in the 
sense that C is assumed to be an additive term applied to all 
measurements. Woodham and Lee (1985) estimate path radi- 
ance as a function of elevation by a constrained optimization 
technique that fits the solution curve under the data rather than 
through it. When C does not vary with elevation, this is 
equivalent to setting C equal to the minimum intensity recorded. 

Method D estimates values for Apt for each ground cover 
class by linear regression, subject.to the constraint that C equals 
the minimum intensity value recorded. The results, as expected, 
are slightly worse than for method C, but the model has been 
forced to conform to assumptions made about the world. 

Method E considers the possibility that C also depends on 
the ground cover class. Values of Apk and Ck are estimated for 
each ground cover class by linear regression. The resulting 
synthetic images are shown in  the third column of Fig. 4. 
Method E is the best of the first five, although the differences 
between methods C, D, and E are slight. 

The last three methods include the sky as a hemispherical 
uniform source. There are several ways to estimate the 
parameters A ,  B ,  and C of [9]. Once a path radiance correction 
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TABLE 1. Table of values of the correlation coefficient between bands 4, 5, and 7 of the two Landsat MSS images, acquired January 8, 1973 
and August 12, 1973, respectively, and the corresponding synthetic images generated by the eight methods described in the text 

January 8, 1973 August 12, 1973 

4 5 7 4 5 7 

DTM 0.33 0.42 0.68 0.23 0.20 0.46 

DTM + ground cover 0.40 0.48 0.71 0.30 0.40 0.45 

DTM + ground cover + path radiance 0.51 0.55 0.71 0.55 0.56 0.53 

DTM + ground cover + path radiance 0.46 0.52 0.70 0.54 0.55 0.48 

DTM + ground cover + path radiance 0.58 0.61 0.73 0.56 0.55 0.48 

DTM + ground cover + sky 0.48 0.56 0.73 0.32 0.43 0.44 

DTM + ground cover + path radiance + sky 0.58 0.41 0.74 0.53 0.55 0.45 

DTM + ground cover + path radiance + sky 0.59 0.63 0.76 0.54 0.56 0.41 

(Method A) 

(Method B) 

(Method C) 

(Method D) 

(Method E) 

(Method F) 

(Method G) 

(Method H) 

has been applied, local measurements across shadow boun- 
daries have been used to estimate the relative contributions of 
sun and sky (Sjoberg and Horn 1983; Woodham and Lee 
1985). This has not proven very successful in practice. The 
reason is not entirely clear. One possibility is that points neai 
shadow boundaries are a poor choice, because they correspond 
to points where a significant fraction of the sky is occluded by 
neighbouring terrain. The fraction of the sky seen would then 
not be a local function of the gradient ( p .  q )  alone. 

Method F estimates values for Apt and Bpk for each cover 
class without regard to path radiance. Multiple linear regression 
is performed subject to the constraint that C = 0. Method G sets 
Cequal to the minimum intensity value recorded, as did method 
D, and then estimates Apk and Bpk for each cover class. Method 
H lets C depend on the ground cover class, as did method E, and 
estimates values for Ap,, Bpk ,  and Ck for each cover class. The 
synthetic images produced by method H are shown in the 
right-most column of Fig. 4. 

4. Discussion 
The atmosphere and adjacent targets further complicate the 

scene radiance equation for remote sensing as illustrated in Fig. 
5. The atmosphere has optical thickness. This causes attenua- 
tion of the direct solar beam before it reaches the target. The 
radiance reflected from the target is also attenuated by the 
atmosphere before it reaches the sensor. Both the upward and 
downward transmission of the atmosphere depend on elevation 
and other factors and thus vary spatially. 

Skylight includes radiation from the sun scattered by the 
atmosphere to the target, radiation reflected directly to the target 
from adjacent targets, and radiation reflected from adjacent 
targets that is scattered by the atmosphere back to the target. The 
component of sky radiance due to adjacent targets is small in 
areas of low albedo, but may become significant for areas of 
high albedo and in rugged terrain. 

Path radiance includes radiation scattered to the sensor from 
the direct solar beam and radiation scattered to the sensor from 

ADJACENT 
TARGET 

TARGET 

FIG. 5. Components of scene radiance. A target receives both direct 
solar and diffuse sky radiance. The sky component includes scattered 
solar radiation and radiation from adjacent targets that is reflected 
directly or scattered back to the target. The sensor receives radiance 
that includes an additional path component not originating from the 
target. Path radiance includes radiation scattered to the sensor from the 
solar beam and from radiation reflected from adjacent targets. 

light reflected by adjacent target areas. The component of path 
radiance due to adjacent targets is small in areas of low albedo, 
but may become significant as the albedo of the ground 
increases (Otterman et al.  1980). Thus, adjacent targets can 
increase both path radiance and skylight at the target. These two 
effects are difficult to separate (Dozier and Frew 1981). 

A general solution requires a solution to the radiative transfer 
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problem for the ambient radiation field (Turner and Spencer 
1972). This further couples all atmospheric effects together and 
makes 3 difficult to treat them separately. A complete treatment 
is beyond the current state of the art. It is useful, however, to 
summarize the assumptions that have been made in the model 
presented here. 

1. The atmosphere is assumed to be an optically thin, 
horizontally homogeneous layer; and the scene is assumed to 
have a narrow range of elevations. This allows atmospheric 
parameters to be absorbed into the constants A, B .  and C of [9]. 

2. Radiation arising from adjacent targets, including clouds, 
is not considered. 

3.  The sensor views the target from directly overhead. 
4. The sky is assumed to be a uniform hemispherical source. 
5 .  Ground cover is assumed to be lambertian with BRDF 

fr = p/n, where p is the albedo of the surface material. 
Assumptions 1 and 2 are the most restrictive in that they allow 

scene radiance to be defined as a local function of the gradient 
( p ,  4). Adding a dependence of atmospheric parameters on 
elevation is a simple extension, since scene radiance remains a 
locally computable function. This extension is warranted when 
there is significant relief change in the scene (Woodham 1980; 
Sjoberg and Horn 1983; Woodham and Lee 1985). A full 
generalization of assumptions 1 and 2 would necessitate analy- 
sis over extended spatial contexts. Assumption 3 simplifies the 
coordinate transformations required, but is otherwise not re- 
strictive. The results can easily be extended to off-nadir sensors. 
Assumptions 4 and 5 are straightforward to relax should better 
models become available. A scene radiance equation can be 
derived for any distribution of sky radiance and for any given 
BRDF (Horn and Sjoberg 1979). 

The assumption that natural surfaces behave like lambertian 
reflectors has been questioned in the remote sensing literature 
(Smith et al. 1980; Justice et af. 1981; Teillet et al. 1982). One 
approach is to assume scene radiance is given by [ 131, where A 
and C are constants and p is the albedo. Constants A and C are 
estimated by a linear regression of brightness and cos i, 
assuming some average value for p. An albedo map is then 
produced by solving [ 131 locally for p. That is, 

L, - c 
p = m  

This approach has been found to “overcorrect” in areas of steep 
terrain, particularly in the shorter wavelength bands. This 
subjective observation is supported by a more objective mea- 
sure. That is, correction based on this method does not lead to 
improved accuracy in spectral classification. 

In retrospect, this result should not be surprising. Sky 
radiance is significant and cannot be ignored, particularly in the 
shorter wavelength bands. Steep terrain tends also to correspond 
to terrain approaching the grazing angle of incident solar 
radiation. Here, sky radiance dominates and any method that 
does not explicitly take it into account will necessarily overcor- 
rect. Sky radiance varies with slope and aspect, and cannot be 
absorbed into the constant C. Thus, this method to estimate 
albedo would fail with the same symptoms, even if the surface 
were lambertian. 

The lambertian assumption has been retained here for three 
reasons: ( 1 )  The lambertian assumption leads to a simple 
phenomenological model for scene radiance that is easy to deal 
with computationally; ( 2 )  the lambertian model is the only 
BRDF that allows an intrinsic albedo to be computed from an 
image as a scalar, independent of viewer position; and (3) when 

atmospheric parameters are explicitly modeled, sensitivity 
analysis shows that the scene radiance [9] is influenced more by 
errors in the estimate of optical depth than by potential 
deviations from the assumption of ideal lambertian reflectance 
(Sjoberg and Horn 1983). 

Of course, this is not to say the natural surfaces are 
lambertian. It is sufficient to point out that the rejection of the 
lambertian assumption is premature. More work needs to be 
done to deal with sky radiance, path radiance, and adjacent 
targets before a definitive conclusion can be given. 

The simple model presented here has, in fact, performed well 
for the Shawnigan Lake study site. For example, method H, 
applied to the January image, accounts for a significant 
component of the total variance observed in the real image. 
Specifically, the model accounts for 35% of the total variance in 
band 4,40% in band 5, and 58% in band 7. 

The remaining variance combines components due to (1) 
errors in sensor calibration; (2) errors in the DTM and ground 
cover knowledge base; (3) systematic errors in the model; and 
(4) natural variability in the world not accounted for in the 
model. It is assumed that the transfer characteristics of the 
sensor are known, so that scene radiance can be determined 
from image irradiance. This is a reasonable assumption, in 
general, although there were some difficulties in calibrating the 
Landsat 1 multispectral scanner. One would expect some 
variance due to errors in the DTM and in the ground cover map. 
Careful scrutiny of the two Landsat images, for example, 
reveals that additional logging activity has occurred between 
January 8, 1973 and August 12, 1973. Thus, the ground cover 
map is inaccurate for at least one of the two dates. One 
application of the ideas presented here is to note image regions 
that deviate from the values predicted by the synthetic image. 
This can be the basis for automatic map verification and update. 
Systematic errors in the model arise to the degree that the real 
world violates any of the assumptions listed above. It remains an 
open question to determine whether the models that now exist 
are sufficiently robust to be useful in practice. Finally, it is not 
likely that a single albedo term pk is adequate to model each 
class in a ground cover map, even if the earth’s surface were 
locally lambertian. There is bound to be variability in each cover 
class not accounted for by a single scalar P k .  The simple model 
presented literally attempts to account for each pixel in the 
image. Synthetic images can be augmented by adding noise 
components appropriate to each cover class. While these 
augmented synthetic images may look more realistic, the 
comparison between real and synthetic image, as measured by 
correlation, would, of course, degrade. 

5. Conclusions 
To the extent that the laws of physical optics are adequately 

represented, a scene radiance equation must, of necessity, be 
correct. It determines the image as a function of the scene. But, 
vision is the inverse problem. The task in vision is to determine 
the scene as a function of the image. Existence, uniqueness, and 
stability of the solution to the inverse problem cannot be assured 
without additional constraint. 

The application to remote sensing described here assumes 
surface material to be lambertian and derives scene radiance for 
both collimated and hemispherical uniform source illumination. 
Path radiance is also considered. The model presented is simple 
and no doubt the real world is more complex. Nevertheless, the 
fundamental difficulty has been clearly demonstrated. The 
problem of determining surface properties from image proper- 
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ties is underconstrained. Equation [9] gives scene radiance as a 
function of local scene properties ( p ,  q )  and pk and constants A ,  
B ,  and C. Clearly, there are different combinations of ( p ,  q )  and 
pk that can give rise to the same scene radiance. Further 
confounding occurs if parameters A,  B ,  and C also vary 
spatially. 

In computational vision, there are two strategies to follow. 
One strategy seeks additional constraint from a priori restric- 
tions on the scene. This has led to progress in industrial 
applications where the environment can be controlled and where 
the visual task is often simple and well defined. It is also leading 
to progress in remote sensing when additional knowledge of the 
scene is available in the form of a DTM and a ground cover map. 
The second strategy imposes additional constraint on the 
perceiver, independent of the scene. Constraints on the per- 
ceiver may result in a unique solution, even though the physical 
optics of the problem does not. Of course, in such circumstances 
the solution will occasionally be incorrect. Nevertheless, it 
seems that this second strategy must apply in human vision. 

A scene radiance equation is a useful tool because it 
establishes how the world determines what we see. It provides a 
theory of the problem of vision and helps to make computational 
vision a theoretical science as well as an experimental one. This 
paper has demonstrated the use of image synthesis as a tool for 
image analysis. Image synthesis has been viewed as a domain 
mapping. Synthesis maps scene knowledge into a common 
representation, namely the image, to facilitate the analysis of 
what is seen. 
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