COMPUTER GRAPHICS AND IMAGE PROCESSING 7, 105-119 (1978)

ANTICS: A System for Animating LISP Programs

Mark S. DioNNE AND ALaN K. MACKWORTH
Department of Computer Science, Unwversity of British Columbia, Vancouver, Canada

Received June 30, 1976; revised October 13, 1976 ; accepted October 22, 1976

A system, named ANTICS, has been developed for producing animated films, film
strips, or slides depicting the execution of LISP programs. The design, implementation,
and use of ANTICS are discussed and it is compared to existing systems. ANTICS
may be used by entering very simple commands which produce real-time animation.
The system may be “backed up” and manipulated interactively. Advanced commands
and a set of graphics primitives are available which permit an instructor or filmmaker
to control details and to add features not provided. ANTICS may therefore be used as
an interactive educational tool or as an animation system. It is inexpensive to use: a
3-min film showing the operation of the recursive function MEMBER was produced
for a total cost of $12.00. The implementation is dependent on specific hardware, but the
design, which is based on the organization of the LISP EVAT function, could be used on
other systems.

1. PROGRAM ANIMATION
1.1. Introduction

A system named ANTICS has been produced which animates programs written
in LISP [17]. The system is designed for use by an instructor in a programming
course, allowing him or her to make films which will demonstrate various features
of the LISP language and of algorithms programmed in LISP. The instructor
may control the parts of LISP which are animated and the amount of detail
which is shown. Also, the system is simple and inexpensive enough to be used as
an on-line interactive instructional aid.

1.2. Motivation

Teaching beginning computer science almost always has involved graphic tools.
Flowcharts, data structures, system organization diagrams, parsc trees, hardware
schematics, and graphic representations of certain algorithms each have an im-
portant place in the language of computer science. Many computer science con-
cepts, such as the stack, the linked list, and the array have an implicit graphie
language of their own which is invariably taught in beginning courses. Other more
dynamic concepts do not have well-established graphic representations, since
their actions are not easy to convey with fixed images. Examples of these are

105

0146-664X /78 /0071-0105%02.00/0
Copyright © 1978 by Academic Press, Inc.
All rights of reproduction in any form reserved.

106 DIONNE AND MACKWORTH

recursion, iteration, binding, and algorithms such as searching, sorting, and
parsing,.

The motive for animating computer programs is to provide new graphic expres-
stons for complex dynamie processes in the field of computer science. Correspond-
ing ideas in physics have been illustrated in several computer produced films
(2, p. 313].

An excellent appreciation of a system can be gained by hands-on experimenta-
tion. This is the motivation behind LOGO, a simple programming language which
teaches mathematical and programming skills by being ““‘played with’’ by children
[3]. In a similar way, the student could explore the LISP world visually and at
his or her own pace if the animation system were made interactive.

1.3. Relevant Literalure

Although computer animation has been fairly popular for a number of years,
few attempts have been made to produce animated computer science films. Until
recently, only one significant computer animated film related to computer science
[4] had been produced. This film was produced by a system which cost approxi-
mately $600 per minute of film [5].

Baecker and his students have done work in this area [6] which Baccker has
aptly named “program illustration” [7]. Two systems have been produced by
them. One system animates any program written in a subset of LOGO [7, p. 1607.
A fixed set of conventions determines how the exccution of statements and
evaluation of variables will be displayed visually. Optional parameter settings
may be added to the program to tailor the timing and spatial positioning of the
animation. The system has been used to animate a simple LOGO program which
reverses a character string, demonstrating features of the LLOGO language as well
as the concept of recursion. This system allows any LOGO program to be animated
without adding special commands. The system is too expensive for production
work, however.

The second system animates programs written in a subset of PL/I [7, p. 1617].
Pseudocomments, interspersed with the PL/I source code, call special funetions
which produce the animation. Producing a film with this system may take several
hours of programmer effort since the pseudocomments must be written for each
program to be animated. However, more detailed control of the animation is
possible than in the LOGO system. This system has been used to produce a film
illustrating a sorting algorithm; the film followed the execution of the PI./I
program without showing PL/I language features explicitly. The PL/I system
can produce film clips for $100 to $200 per minute.

Both of these systems produce key frames which are used by a computer
animation language to produce the final film. (See Section 1.5.) Neither system
can be used interactively.

Hopgood has produced computer animated films illustrating hash table algo-
rithms [87]. His system applies various algorithms to examples which are too large
to be worked out easily by hand, thus giving students an appreciation for the
methods when applied to nontrivial problems. This is claimed to show the ad-

ANIMATING LISP PROGRAMS 107

vantage of certain algorithms more clearly than mathematical analysis or simple
examples.

1.4. Types of Animation

Four major areas in computer science are likely to benefit from animation. The
methods developed are likely to differ, and when “program animation” is men-
tioned, the exact type should also be specified. The areas are:

1. Animating algorithms, such as sorting, parsing, or scarching.

2. Animating programming language features, such as “DO” in FORTRAN
or “COND” in LISP.

3. Animating hardware operation. Animating movement of data between
registers, arithmetic units, memory, and channels.

4. Animating concepts in computer science, such as control structures and
data structures.

1.5. Animation Methods

Both hand animation and computer animation have made use of the key frame
animation technique. An image is first produced for every ‘“key” frame of the
finished movie, and then less skilled artists (or a computer) produce intermediate,
interpolated frames, resulting in the smooth movement of the figures from one key
frame to the next. In the case of computer key frame animation systems, the key
frames could be produced by an artist using a data tablet, or by another program.
This method has been used primarily to produce artistic films.

Computer animation also may be produced by taking advantage of the nature
of a particular graphics system. This is tentatively named “direct animation.”
The tools developed for interactive graphies are extended to produce a sequence of
animated displays. Many graphics systems provide mecans to displace, scale,
rotate, and change the intensity of sets of veetors. These facilities can be used to
produce movement and other animation effects. The details of producing anima-
tion in this way are more involved than in key frame animation: timing con-
siderations and display file organization may be difficult, and complex motions
of artistic figures may be impossible. On the other hand, since most of the detailed
animating is done at high speeds by the display processor, it is generally more
feasible to produce real-time “live” animation by this method. A frame can be set
up by the main computer and movement initiated. While the display processor is
producing the movement the main computer can be working on the next major
display change.

2. SYSTEM DESIGN

2.1. Display Design

The overall purpose of the ANTICS system is to impart some knowledge of
the basic operation of LISP to a beginning programmer. There are two funda-

108 DIONNE AND MACKWORTH

(DEFUN MEMBER (THING LIST !
(COND C{NULL LIST) NIL}
(CEQUAL THING (CAR LIST 14 LIal)
(T (MEMBER THING (COR LIST j3ii1:

MEMBER :

LAMBDA

THING LIST COND

N’[L [1 =
NULL LIST £ouAL Tring (] MEMBER THING 4?2}

CAR LIS5T COR LIST

Fia. 1. Display of CONS-cells.

mental concepts which form the foundation of LISP: the structure of S-expres-
sions, and the operation of EVAL,

Although S-expressions arc changed during the execution of a typical LISP
program, they generally specify “structure’” in some sense, and the first thing a
student must do is understand S-expressions as static data structures. ANTICS
provides the capability of displaying arbitrary S-expressions either in “pretty-
printed” form or as CONS-cells and pointers. Figure 1 shows a CONS-cell display
of a function definition. Figure 2 illustrates the actions of the destructive func-
tions, RPLACA and RPLACD. This figure was produced by a 25-line seript
which generated the structures in a timed sequence.

The operation of INVAL is complex, dynamic process. It consists of a precisely
ordered scquence of recursive operations on S-expressions, coordinated with the
binding and unbinding of variables on a stack or an association list of variables
and values (known as an a-list [17]). ANTICS bases its animation of LISP fune-
tions on the operation of EVAL, though it does not presume that the student has
any knowledge of EVAL itsclf. ANTICS’ animation simply reflects the various

1 - (SET@ Z '{(A) B)) 3 -~ (RPLACA {COR Z) (CAR Z))
= 7=
f a

2 - (RPLACD (CDR Z) Z} 4 - (RPLACD 2 23
= =

Fi1a. 2. The effects of RPLACA and RPLACD

ANIMATING LISP PROGRAMS 109

facets of EVAL as they are brought into operation, by displaying them in a
suitable fashion. The details of the design have centered on selecting the parts of
EVAL to display and devising suitable graphic representations for them.

The basic animation proceeds as follows (refer to Fig. 3):

1. The form which is being evaluated is printed on the display screen and,
after a short interval, a box is displayed containing the word “EVAL.” To sup-
press detail and save screen space, printing only descends a set number of levels
into the structure; any nonatomie structure at this level (level 3 in this example)
is represented by an “&”.

9. If the form contains arguments which must be evaluated, then their
evaluation is recursively animated to the right of the present display and the
returned values arc moved into a column below the present EVAL box. After
these EVLIS values have all been returned, their bindings to the dummy variables
of the LAMBDA-expression are optionally displayed and the old values of the
dummy variables are placed on the stack.

3. If the function being evaluated is part of the LISP system (a SUBR, a
function written in assembly language) the returned value is displayed after re-
moving the original form from the sereen. If a user-defined function is being
evaluated, the expressions which constitute the body of its definition are evaluated
in turn. Expressions which are conditions in a COND or SELECT function are
animated to the right of the current EVAL box, while all other expressions are
animated so as to appear directly below it.

4. Throughout the animation, the definition of a function may be displayed
at the top of the screen, and the portion of it that is currently being animated will
be intensified.

5. The LISP stack or association list optionally may be displayed on the
sereen, as well as current variable bindings. Changes in these are shown as they
oceur.

6. Whenever the FVAT animation or the stack display encounters the border
of the display arca, part of the display is “rolled off”’ the screen and disappears,
thus freeing space on the display screen. When the evaluation is exiting the
rolled portions reappear on the serecn.

2.2. Single-Frame vs Real-Time Animalion

A computer system to produce general-purpose, high quality animation
probably would have to produce one frame at a time, given the present state of
the development of computer graphies systems. A high priority in the design of
ANTICS was that the system be able to produce animation in real time. There
were several reasons for this:

1. The implementation of ANTICS would be very difficult if all testing had
to be done by filming one frame at a time.

2. The production of properly timed films for classroom use also would be
very difficult,

110 DIONNE AND MACKWORTH

3. A rcal-time gsystem also could be made interactive, and this would provide
an extremely versatile, though perhaps expensive, teaching tool.

4. Many animation systems have produced one frame at a time. It would
be valuable to help to demonstrate that this is not always necessary.

5. A real-time system easily can be made to display one frame at a time if
this is needed to produce high quality film.

The goal of producing a real-time system caused some implementation difficul-
ties, but these were considered minor in light of the first two reasons given above.
In addition, single-frame animation is much more complicated or impossible if
the sean time of the display screen is longer than the longest camera shutter time,
and this was the case with ANTICS and the available equipment.

2.3. Script Design

It was assumed that a person making a film with ANTICS would be a relatively
sophisticated LISP user (a course instructor or assistant), and that the instruc-
tions necessary to produce a film (called the seript) would not need to be especially
simplified. On the other hand, since the system would also be interactive, a rela-
tively naive LISP programmer should be able to produce instructive animation
with only a line or two of input. The result was the following design:

1. A single command, #EVALQ, will animate the evaluation of any
expression.

2. Several simple commands control the other basic displays.

3. Additional commands provide more elaborate control over details of the
animation,
m# 4. A sophisticated user may insert “breakpoints” into the definitions of the
functions to be evaluated, thereby changing minor details in the animation.

5. A gencral-purpose graphics language is available to build special displays.

The types of commands that are allowed in the seript can be broken down into
several groups: one group controls the major displays, a second group controls
details of the animation, and a third group is concerned with details of producing
films, such as timing and camera control.

2.4. Graphics Primitives

In order to provide flexibility to the user of ANTICS, a general purpose graphics
language was provided. The user would most likely want to produce titles, dia-
grams, and explanatory text. He or she also may want to highlight portions of the
animation by adding special effects such as pointers or outlining boxes. It should
be possible to include figures sketched with the light pen or data tablet.

An obvious choice was to base the graphics language on a subset of GLISP, a
LISP based graphics language [9]. GLISP has a useful set of primitive functions
for drawing lines and text. It also allows the user to sketch figures with the light
pen or data tablet and to adjust their size and position on the display screen, and
also to save figures in a library. Furthermore, GLISP is casy to learn, supported,
and well documented.

ANIMATING TISP PROGRAMS 111

MEMBER:
(LAMBDA (THING LIST
(COND ((NULL LJST 1 NIL}
(LEOURL THING (CAR LIST)1 LIST}
(T (MEMBER THING (COR LIST1til)

{MEMBER A "(C A T} I THING = XUNDEFX

s = ek
a

MEMBER =

(LAMBOA (THING LIJST}
(COND C((NULL LIST) NIL!
((EQUAL THING (CAR LIST)1 LISTH
(T {MEMBER THING (COR LISTJi11)

[MEMBER ‘A "(C A TI} I THING ©— XUNDEFX
1LIST = NUNDEFX
HEV"L G AT LT L
EVAL
b
MEMBER:

(LAMBDA (THING LIST1
(COND C(NULL LIST I NILD
((EQUAL THING (CAR LIST 1D LIST)
{7 {MEMBER THING (COR LISTI1i11

(MEMBER "R “(C A TI}) ITHING = A
il st

[COND {(NULL LIST) NIL)
Eﬂj {(EQUAL THING &) LIST)
EVAL| (1 (MEMBER THING K111

LIST = XUNDEFX
c THING = XUNDETX

Fia. 3 (a—c),

@

DIONNE AND MACKWORTH

MEMBER :
(LAMBDA (THING LIST 3
LCOND ((NULL LIST 1 NIL}
C(EQUAL THING (CAR LIST 1) LIST
(T (MEMBER THING (COR LISt 11111

IMEMBER A "(C A T ITHING = A
ILIST= (AT

(COND ((NULL LiST) NIL)
((EQUAL THING &) LIST)
(T (MEMBER THING &11)

{EQUAL. THING (CAR LIST))

(CAR LIST 1
iz
EVAL
LIST = XUNDEFx
d THING = xUNDEFX

MEMBER:
(LAMBDA (THING LIST 1
(COND ((NULL LIST 3} NIL D
((EQURL THING (CRR LIST 11 LIST)
(T (MEMBER THING (CDR LIST 1111

(MEMBER 'R "(C R T11l ITHING = R
ILIST = (R Ty

(COND CINULL LIST 1 NIL)
FL ((EQUAL TMING &) LIST)
LEYRLL (1 (MEMBER THING &)1

MEMBER TMING (CDR LIST 11

ICOND [INULL LIST 1 NIL)
{ (EQUAL THING &) LIST)
(T (MEMBER THING &1)1

LIST = Cc AR 1)
THING = R

LIST = XUNDEF¥
THING = XUNDEF%

Fia. 3 (d-e).

ANIMATING LISP PROGRAMS 113

MEMBER:
(LAMBOA (THING LIST
(COND ((NULL LIST) NIL)
((EQURL THING (CAR LIJST 13 LIST!
(T (MEMBER THING (CDR LIST 1)1}

*ACIC R T ITHING = R

(COND [(NULL LIST§ NILI
{(EGUAL THING &} LIST
(T (MEMBER THING %11

IMEMBER THING (COR LIST 1}
EVRL

ICOND LINULL LIST ¢ NIL)
{(EQURL THING &3 LIST)
{T (MEMBER THING L)1}

4

[EQUAL THING (CRR LIST 71

few] L e = e
A

E-HﬁG = R
LIST = XUNDEFX
THING = XUNDEF%

-

MEMBER:
(LAMBDA (THING LIST)
(CONO CINULL LIST) NILD
C(EQUAL THING (CHR LIST)) LIST)
(T (MEMBER THING {(CDR LIST 1111}

IMEMBER ‘'R “(C R T} ITHING = &

Ists W

{COND (INULL LIST | NIL}

[(EGUAL THING &) LIST)
(T (MEMBER THING &)1
(MENBER THING (COR LIST)1

{COND TINULL LIST | NIL)
{LEQUAL THING &) LIST)
IT {MEMSER THING L)1}

mT e e e =
LIST= (CRA T
THING = &
LIST = XUNDEFX
9 THING = XUNDEFX
MEMBER*

(LAMBOR (THING LIST)
(COND (C(NULL LIST) NILY
((EQUAL THING (CRR LIST 11 LIST!
(T (MEMBER THING (COR LIST 11Dt
AT ITHING = HUNDEFX
ILIST = MUNDEFX

F1c. 3. Snapshots of animation of LISP form evaluation (typical timing is indicated) : (a)—0:00,
(b)—0:16, (c)—0:24, (d)—1:00, (e)—1:52, (f)—2:36, (g)—2:48, (h)—3:04.

114 - DIONNE AND MACKWORTH

2.56. Human Factors AfJecting Design

Since ANTICS is an educational tool, human factors considerations were im-
portant in its design. At onc level, the graphic representation of concepts falls
under this category. At another level, the timing and sequencing of the animation
were considered. Because ANTICS is also an interactive graphics system, response
time and interaction methods were taken into account.

The graphic representation of S-expressions is a well-established standard form,
and there was not much latitude in its design. However, the method of animating
EVAL is not standard; it is based on a blackboard method used in a course on
LISP, C.Sec. 509, taught by Raymond Reiter at the University of British Colum-
bia. The well-defined nature of EVAL tends to limit the possibility of radically
different graphic representations. The recal choices lie in the complexity of the
functions animated and the amount of detail shown, and ANTICS provides the
instructor/animator the ability to match these choices to the level of her students.

The timing and sequencing of animation were important considerations in the
design of ANTICS. Early versions of the program produced animation that was
difficult to follow because the action moved from one side of the display screen to
the other without warning. The idea of a “follower” was developed: a moving
figure on the screen naturally catches the eye and directs the viewer’s attention
to a new area of the screen. Movement was found to be very compelling visually—
in fact, any movement on the screen seems to lock the viewer's attention. Because
of this, the rule for lengthening ANTICS’ animation gives priority to making the
static portions of the film longer, since these sections allow the student to absorb
the meaning of the animation sequence. Movement is a dominating clement in
entertainment animation, but its use in instructional animation must be con-
sidered carefully [2, p. 66].

The overall speed of the ammation must be slow enough for the viewers to
follow, and this speed is not easy to define. No exact speeds can be recommended,
but the following points were considered :

1. Viewers gain skill at following the animation as they become more familiar
with the form of representation used in the animation.

2. For naive LISP programmers, ‘“‘the slower the better” i1s perhaps a very
realistic rule for the speed of animation. (On the other hand, an authoritative
source claims, “It has been proved by experience that the shorter the film the
more effective the instruction is likely to be, because of the intense concentration
which the student must give” [2, p. 136].)

3. A short film can be shown several times consecutively and different facets
of LISP can be emphasized each time by the instructor.

4. A suitable projector can stop the animation while the instructor makes
detailed explanations.

The speed of animation can be adjusted with the # RATE command or, inter-
actively, using a dial.

ANIMATING LISP PROGRAMS 115

3. USE OF THE SYSTEM
3.1. The ANTICS Script

The input to ANTICS is a series of LISP forms called a script. When a movie is
being produced this seript must be entirely in a file so that it can be read without
interruptions, which would confuse the timing of the movie; however, the seript
may be entered onc line at a time when the system is being used interactively or
while experimenting with ideas. A script may consist of several lines to produce
an animation of a single LISP evaluation, or it may contain a hundred or more
lines to produce a complete movie with titles and explanatory text. The following
script produces a rudimentary animation:

(#START)
(DEFUN MEMBER (THING LIST)
(COND ((NULL LIST NIL)

((EQUAL THING (CAR LIST)) LIST)
(T (MEMBER THING (CDR LIST)))))

(# DISPLAY THING LIST)

(# WAIT 5)

(# EVALQ (MEMBER'A ’(C A T)))

#START initializes some parameters and blanks the display screen. DEFUN
simply defines the function of interest in the usual way. # DISPLAY causes the
names and values of the atoms THING and LIST to be displayed on the screen.
They will remain until the screen is blanked, and the display will be changed
whenever their values change. # WAIT causes a 5-see pause before the next line
of the script is executed. # EVALQ causes a complete animation sequence, lasting
perhaps several minutes, of the EVALuation of the given form. During this
animation the values of the atoms specified by the # DISPLAY command are
updated constantly.

There are two additional major commands which could be added to the above
seript anywhere before the # EVALQ command:

(#STACK THING LIST)
(#3TAR MEMBER)

#STACK causes a stack to be displayed during animation showing the bindings
of the atoms THING and LIST. No display is produced when the #STACK
command is given—the display is shown during the animation produced by
#EVALQ. #S8TAR causes the definition of MEMBER to be shown immediately
at the top of the display screen. During the animation produced by # EVALQ
the portion of this “star” function currently being evaluated will be intensified.

These commands are the basic high-level animation features of ANTICS. The
user can obtain a great deal of variety, however, by using other more specialized
commands, selecting options, changing parameters, and producing additional
graphical displays with the graphics primitives included with ANTICS. It is
possible to abbreviate certain features of the animation after they have been dis-
played a set number of times.

116 DIONNE AND MACKWORTH

The gencral purpose graphies language available to the user of ANTICS con-
tains both graphics primitives and special funetions for displaying LISP struc-
tures. It can be used within special breakpoints which may be inserted into a
function whose evaluation is being animated. By using these breakpoints, which
are invisible to the viewer of the movie, the user of ANTICS may tailor the evalua-
tion animation by omitting unnecessary detail and displaying explanatory mes-
sages and figures at key points in the animation.

Figures 3a through 3h are snapshots of the animation produced by the above
seript. The “starred” function is at the top of the display, the current variable
bindings are in the upper right, and the stack is in the lower right corner. I'igure 3h
shows the end of the animation: the stack is empty and the value returned by the
function call is all that is left.

3.2. Using the System Interactively

Although ANTICS is designed primarily for making movies, it is fast enough
to support interactive use. Interaction is by means of the light pen and function
buttons. An overlay card labels the functions of the various buttons. Whenever
ANTICS is waiting, both of these devices are active. During animation, #WAIT
is called before and after evaluating each form.

There are two modes of interactive operation, STEPMODE and AUTOmatic,
STEPMODE is selected by pressing the STEPMODE button or by using the
light pen in any way. While in STEPMODE, the function # WAIT always waits
until either the STEP button is pushed or the STEP light button is selected with
the light pen. In AUTO mode, the # WAIT function waits the specified time,
unless the STEP button is pushed first. AUTO mode is selected by pressing the
AUTO button or by pointing the light pen at the AUTO light button.

The light pen has two other functions as well. At any time it may be pointed
at any variable in the list created by # DISPLAY, and a new value for the atom
may be entered through the keyboard. The light pen also may be pointed to any
part of the evaluation display, and the animation will back up to that point and
restart.

There are several other buttons which may be used at any time. These can
terminate or “backup’” the animation, activate the camera, change the rate of
animation, or plot the contents of the display screen.

4, IMPLEMENTATION
4.1. System Organization

The implementation of ANTICS is dependent on a unique environmment of
hardware and software. This is unavoidable due to the interactive nature of
ANTICS: interactive graphics systems tend to be hardware dependent. The
general organization of the implementation environment is fairly typical of
graphics systems, however, and it may be possible to modify ANTICS to work
on other systems without undue effort.

The ANTICS system is implemented on a Model 10 Adage Graphics Terminal
which communicates with an IBM 370/168 computer operating under the

ANIMATING LISP PROGRAMS 117

Michigan Terminal System, MTS, ANTICS is written in LISP/MTS, an interpre-
ter similar to LISP 1.5 [1]. LISP/MTS uses an internal stack rather than an
a-list as do LISP 1.5 and several other LISP systems. The animation which is
produced reflects this aspect of LISP/MTS and several other minor details, but
since ANTICS contains its own EVAL function these details could be changed
easily, LISP/MTS communicates with the graphies terminal through a simple
interface.

4.2. Display File Organization

The organization of the contents of the Adage Graphics Terminal buffer,
referred to hercafter as the display file, was altered several times in the course of
the development of ANTICS, and was a major part of the implementation effort.
The actual display file stayed fairly far from the ideal due to hardware and
software limitations and design considerations. All of the display file organization
was implemented at the LISP level of the system. For more implementation
details see [10].

4.3. Methods Used in the Program

The heart of ANTICS is a set of LISP functions constituting a version of the
LISP EVAL function. This version of EVAL is interspersed with calls to anima-
tion routines, and this is how all animation is produced. The stack, variable, and
‘“‘star”’ displays are also driven by ANTICS EVAL, and user breakpoints are
detected and processed by it. As a result, the animation naturally follows the
execution of EVAL and ANTICS has a simple underlying structure.

The routine which displays CONS-cells also uses some novel methods. When
given a list it draws a CONS box, and then calls itself recursively with the CAR
of the list. The return value is a pair of dimensions indicating the physical size of
the display which was generated. These dimensions are used to locate the display
of the CDR which is generated by a second recursive call. A preliminary pass
detects circular lists, such as those in Fig. 2.

4.4. Cost and Fxecution Time

It was originally assumed that ANTICS would be expensive to use since it
combined two relatively expensive items in terms of computer charges : interpreted
LISP and graphics. Development and debugging costs were not particularly low,
but the cost of producing animated films has turned out to be surprisingly low.
A 3-min 20-sec film illustrating the execution of the recursive function MEMBER
was produced for a total computation cost of $4.23 using 5.4 sec of central proces-
sor time. The cost of film and processing was $7.50. The example could have been
slowed down two or three times to make it easier to follow. This would only add a
slight additional computation charge, as only the elapsed time and virtual memory
usage would increase.

118 DIONNE AND MACKWORTH

5. CONCLUSIONS
5.1. Comparison with Existing Systems

Few program animation systems have been developed, and it is difficult to
compare ANTICS to those that exist. ANTICS’ strong points, its cheapness and
interactive capability, are not found in any other systems. Also, existing systems
have been designed to present subject areas quite different from ANTICS’. One
thing that can be said is that ANTICS is not a general system in the same sense
as the PL/I animation system described by Baecker [7]. ANTICS’ primary use
is to teach features of LISP. After LISP is mastercd and students are familiar with
the style of ANTICS’ presentation, the system can be used to illustrate general
properties of algorithms. The intimate details of the process of evaluating a LISP
form have been illustrated with ANTICS by animating the application of an
a-list version of the funetion EVAL, written in LISP, to a simple form.

5.2. Producing Films

Simply filming the display screen with a movie camera running at normal speed
will not produce an acceptable film because of stroboscopic effects. Automatically
tripping the shutter at the start of each display frame is not totally satisfactory
either. The shutter should stay open at least as long as the time required to display
the most complex frame on the graphics terminal. Most movie cameras have a
maximum shutter time of 1/40 second, which is casily exceeded. This problem
could possibly be avoided if the ecamera were capable of double exposing single
frames, However, 35-mm slides have produced excellent results; they may, in
fact, be better for pedagogical purposes. A set of 50 slides, suitable for classroom
presentation, is available at cost from the authors.

5.3. Future Directions

The success of ANTICS has inspired us to continue with its development. Next
we intend to adapt it as far as possible to ordinary display terminals to make it
more widely available to students, and to explore the possibility of producing
videotapes directly. Far more ambitiously, we are considering the problem of
automating an introductory LISP course. How should we organize our knowledge
of LISP programming to communicate it using a graphies-based, computer-aided
learning system? Ideally, such a system would have, in addition, many of the
attributes of Winograd’s proposed programmer’s assistant [117]. Before proceed-
ing with such automation one must ask if there exists a need and a role for such
a system. In our opinion it should not, and probably could not, supplant the
traditional forms of instruetion. Finally, as various groups approach the concept
of a LISP machine we should consider designing into such machines facilities that
will allow the development of systems like ANTICS.

REFERENCES

1. J. McCarthy, M. 1. Levin, P. W. Abrahams, D. J. Edwards, and T. P, Hunt, LISP 1.5 Pro-
grammer’s Manual, M.L.T. Press, Cambridge, Mass, 1962.

'

Do

ANIMATING LISP PROGRAMS 119

. J. Halas and R. Manvell, The Technigue of Film Animation, Communication Arts Books,
New York, 1971,

. 8. Papert, Teaching children thinking, in Papers of the IFIP World Conference on Computer
Education, pp. 1/73-1/78, Science Associates International, New York, 1970.

. K. C. Knowlton, L6: Bell Telephone Laboratories’ Low Level Linked list Language, Two black
and white sound films, Bell Telephone Laboratories, Murray Hill, N.J., 1966.

. K. C. Knowlton, Computer produced movies, Science 150, 1965, 1116.

. R. M. Baecker, Towards animating computer programs: A first progress report, in Proc. Third
National Research Council Man—Computer Communications Seminar, pp. 4.1-4.10, National
Research Council, Ottawa, 1973.

. R. M. Baecker, Two systems which produce animated representations of the execution of
computer programs, SIGCSE Bull. 7, 1, 1975, 158-167.

. F. R. A. Hopgood, Computer animation used as a tool in teaching computer science, in Proc.
1974 IFIP Conf., pp. 889-892, North-Holland, Amsterdam.

. W. Hall, B. Jervis, and J. Jervis, GLISP—A LISP Bascd Graphic Language, University of
British Columbia, Department of Computer Science, 1973.

. M. 8. Dionne, ANTICS—A System for Animating LISP Programs, M.Sc. Thesis, University
of British Columbia, Department of Computer Science, 1975.

. T. Winograd, Breaking the complexity barrier again, SIGPLAN Not. 10, 1, 1975, 13-22,

