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ABSTRACT
Motivation: Despite constant improvements in prediction
accuracy, gene-finding programs are still unable to pro-
vide automatic gene discovery with desired correctness.
The current programs can identify up to 75% of exons
correctly and less than 50% of predicted gene structures
correspond to actual genes. New approaches to computa-
tional gene-finding are clearly needed.
Results: In this paper we have explored the benefits of
combining predictions from already existing gene predic-
tion programs. We have introduced three novel methods
for combining predictions from programs Genscan and
HMMgene. The methods primarily aim to improve exon
level accuracy of gene-finding by identifying more proba-
ble exon boundaries and by eliminating false positive exon
predictions. This approach results in improved accuracy
at both the nucleotide and exon level, especially the latter,
where the average improvement on the newly assembled
dataset is 7.9% compared to the best result obtained by
Genscan and HMMgene. When tested on a long genomic
multi-gene sequence, our method that maintains reading
frame consistency improved nucleotide level specificity
by 21.0% and exon level specificity by 32.5% compared
to the best result obtained by either of the two programs
individually.
Availability: The scripts implementing our methods
are available from http://www.cs.ubc.ca/labs/beta/
genefinding/
Contact: rogic@cse.ucsc.edu

INTRODUCTION
In this era of intensive genomic sequencing, when millions
of nucleotides of genomic DNA are sequenced daily, tools
for interpreting the content of these genomes are more im-

∗To whom correspondence should be addressed.

portant than ever. The first step in deciphering the DNA
sequence information is finding all the genes contained
in a sequence and elucidating their structure. Although
many gene-finding programs have been developed in the
past 10 years and their prediction accuracy is constantly
improving, we are still far away from completely auto-
matic gene discovery with 100% accuracy. Current pro-
grams, although very good at discovering the majority of
coding nucleotides (more than 90% predicted correctly)
and moderately good in discovering exact exon boundaries
(70–75% of exons predicted correctly) are still weak when
it comes to predicting complete gene structures: less than
50% of predicted genes correspond exactly to the actual
genes (Rogic et al., 2001; Dunham et al., 1999). Conse-
quently, predictions given by these programs need to be
verified by other evidence such as similarity to a cDNA se-
quence or similarity to a known protein or EST sequence.
However, in many cases this additional evidence is not
available: it has been shown that only a fraction of newly
discovered genes have identifiable homologs in the current
databases (Dunham et al., 1999). Ab initio gene-finding re-
mains the only available computational approach for iden-
tifying novel genes that do not have detectable similarities
to known proteins and hence their predictions have signif-
icant effect on our understanding of the genomes and on
future experimental directions. Therefore, improving the
accuracy of these programs is essential and would lead to
faster, cheaper and, above all, more accurate interpretation
of sequenced genomes. In this paper we present a new ap-
proach to combining the prediction results of gene-finding
programs in order to obtain better prediction accuracy.

Current gene prediction programs are sophisticated
systems that integrate many different methods for identi-
fying elements of the genes. Content sensors are coding
statistics capable of distinguishing between coding and
non-coding regions. The one proven to be the most
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effective, in-frame hexamer measure (Ficket and Tung,
1992), has been used predominantly by the developers
of the programs. Other coding statistics incorporated
in gene–finding systems are codon usage, GC content
measure and position asymmetry measure. Signal sensors
attempt to mimic closely processes occurring within the
cell. They are intended to identify DNA sequence signals,
usually just several-nucleotides-long subsequences, which
are recognized by cell machinery and are initiators of
certain processes. The signals that are usually modeled
by gene-finding programs are promoter elements, start
codons, splice sites, stop codons and polyA sites. Content
and signal sensors are implemented by various statis-
tical and pattern recognition methods and integrated
in overall gene models usually using machine learning
techniques (hidden Markov models (HMM), neural
networks, decision trees) or discriminant functions (linear
or quadratic).

The set of methods used and the way they are inte-
grated differs among individual programs, as well as
the sequence training sets used to build signal models
and tune programs’ parameters. Being distinct in their
architecture and training, programs often give different
gene structure predictions for the same DNA sequence.
This characteristic of programs’ predictions has motivated
several authors to investigate the benefits of combining
several gene-finding programs.

Burset and Guigo (1996) investigated the correlation be-
tween six ab initio gene-finding programs that they evalu-
ated. The approximate correlation (AC) of the predictions
at the nucleotide level varied from 49% to 68% and the
average exon accuracy varied from 24% to 47%, when
predictions from two programs were compared, indicat-
ing that the programs are not tightly correlated especially
at the exon level. The exons predicted by all of the pro-
grams tested were correct in 99% of cases, suggesting that
an exon prediction, which is unanimous among the pro-
grams, is almost certainly guaranteed to be correct. On the
other hand, the proportion of exons completely missed by
any of the programs was 1%, showing that each program
can contribute to finding all annotated exons. These basic
‘and’ (intersection) and ‘or’ (union) approaches increase
only one component of exon accuracy, either specificity or
sensitivity, while the other one becomes significantly de-
creased. In order to improve overall accuracy sensitivity
and specificity have to be increased simultaneously.

A more comprehensive study of methods for combining
gene-finding programs was done by Murakami and Takagi
(1998). They used five different methods to combine four
gene-finding programs: FEXN (Solovyev et al., 1994),
GeneParser3 (Snyder and Stormo, 1995), Genscan (Burge
and Karlin, 1997) and Grail2 (Uberbacher and Mural,
1991). The methods they tested were: the AND-based
method, the OR-based method, the HIGHEST method,

the RULE method and the BOUNDARY method. The first
two methods are similar to Burset and Guigo’s approach
of accepting only regions predicted as coding by all of
the programs (AND-based method) or accepting regions
predicted by at least one of the programs (OR-based
method). The other three methods use estimated exon
probabilities to decide on the exon candidates. While
approximate correlation was significantly improved when
FEXN, GeneParser3 and Grail2 were combined by some
of the methods (up to 10%), improvements were more
marginal when Genscan was used because it was more
difficult to outperform Genscan’s high prediction accu-
racy. The best result of this analysis was a 4.7% increase
of AC and a 2.5% increase of average exon accuracy
comparing to the best individual program (Genscan).

Here, we present three different methods for combining
the predictions from gene-finding programs. The methods
integrate previously described ‘and’ and ‘or’ approaches
using the exon scores given by the programs. Rather then
combining several gene-finding programs including those
with generally low prediction accuracy we decided to
combine only two programs with high accuracy using
their prediction scores. Relying on the results of a compre-
hensive evaluation of recently developed programs (Rogic
et al., 2001), Genscan and HMMgene (Krogh, 1997) were
chosen for their high prediction accuracy and their reliable
estimate of the correctness of the exon prediction. The
methods developed improve prediction accuracy at both
nucleotide and exon levels, with some tradeoffs when
tested on a long genomic sequence. The improvements are
generally higher at the exon level, where a 7.9% increase
of average exon accuracy was achieved when only the
best results obtained by the combination methods and the
two gene-finding programs were compared. Although our
methods yielded improvements in both exon sensitivity
and specificity, the latter was more significantly improved
(11.7% compared to HMMgene and 22.9% compared to
Genscan). When tested on a long genomic multi-gene
sequence, our method that maintains reading frame con-
sistency improved nucleotide level specificity by 21.0%
and exon level specificity by 32.5% compared to the best
result obtained by any program.

SYSTEM AND METHODS
The previous experience with combining predictions from
different gene-finding programs has shown that the simple
OR- and AND-based methods can significantly improve
one aspect of prediction accuracy. The OR-based method,
which returns regions predicted by any of the programs
used, will assure more sensitive prediction, i.e. will
identify more exons than any single program. However,
it will have decreased specificity since many low-quality
exons without support from multiple programs will also
be accepted. Analogously, the AND-based method, which
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returns regions predicted by more than one program
will increase specificity by eliminating low-quality, low-
support predictions, but it will also miss many valid
predictions made by only one program.

It seems that having a reliable estimate of predicted exon
accuracy would help us improve these two approaches:
doing the union only on the predicted regions of the
higher quality and doing the intersection for low-quality
regions. In order to test this new combined approach it
is necessary to use gene-finding programs that have high
prediction accuracy and, even more importantly, reliable
accuracy estimates for their predictions. Relying on the
results of our recent evaluation of gene-finding programs
(Rogic et al., 2001) we have chosen programs Genscan
and HMMgene, which have the best overall prediction
accuracy and are the only two that have reliable exon
scores.

Characteristics of the selected programs
Both Genscan and HMMgene model the structure of ge-
nomic sequence as an explicit state duration HMM (Ra-
biner, 1989), which is also known as a generalized HMM
(Kulp et al., 1996). In this type of probabilistic model each
state of the model has an associated arbitrary length dis-
tribution. In the case of DNA sequences, the states of the
HMM model functional elements of the genes or genomic
regions: intergenic region, promoter, 5′ and 3′ untranslated
regions, exons and introns and polyA site. The states in
Genscan and HMMgene HMMs are probabilistic models
themselves. Both programs use different types of HMMs
to model coding and non-coding regions. For signal detec-
tion Genscan uses the weight matrix method, the weight
array method (WAM), windowed WAM and maximal de-
pendence decomposition. The details of signal modeling
in HMMgene are not available.

Although both Genscan and HMMgene use the same
underlying model, the training procedure they employ is
different: while Genscan uses the traditional maximum
likelihood approach to train the HMM, HMMgene uses
a criterion called conditional maximum likelihood, which
maximizes the probability of correct prediction.

Both programs were trained using human single- and
multi-exon genes collected by D. Kulp and M. Reese (the
dataset can be found at http://www.fruitfly.org/sequence/
human-datasets.html) but Genscan’s training set for cod-
ing region model was supplemented with a set of complete
human cDNA sequences.

The programs are capable of predicting any number of
single- or multi-exon genes, which can be complete or
partial. The output of both programs contains information
about exon location and type, their probabilistic score and
reading frame.

In our analysis we used version 1.0 of Genscan with
the HumanIso.smat parameter file and version 1.1d of
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Fig. 1. Reliability of Genscan and HMMgene proportion of
correctly predicted exons versus exon probability scores.

HMMgene. Programs were run locally on a SUN Ultra 60
workstation, under the Solaris 5.6 operating system.

Exon probability scores
In our earlier study of gene-finders (Rogic et al., 2001),
which involved seven recently developed programs:
FGENES (Solovyev et al., 1995), GeneMark.hmm
(Lukashin and Borodovsky, 1998), Genie (Kulp et al.,
1996), Genscan, HMMgene, Morgan (Salzberg et al.,
1998) and MZEF (Zhang, 1997), we also examined the
reliability of the prediction scores given by a program.
Each of the programs evaluated in this study, except
GeneMark.hmm, has a scoring scheme for its exon
prediction. However, our analysis has shown that only
the Genscan and HMMgene exon probability scores,
which give the quantitative measure of the likelihood that
the given exon is correct, are meaningful and reliable.
Figure 1 shows the relationship between Genscan and
HMMgene exon probability scores and the proportion
of exactly predicted exons. We can see that there is an
approximate linear dependence between these two vari-
ables for both programs and that the proportion of exactly
predicted exons monotonically increases with the increase
of exon probability score (disregarding a small anomaly
for Genscan). This means that the exons with the higher
scores are usually more accurate then the exons with
lower scores and in the case of HMMgene the likelihood
of correct prediction is almost perfectly estimated with the
exon score. This characteristic of Genscan and HMMgene
exon probability scores makes them very useful guides in
deciding on the correctness of a predicted exon.

Correlation between the programs
Even though it appears that Genscan and HMMgene are
good candidates for the suggested combination approach
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Table 1. Exon predictions by a pair of programs—For each pair of the
programs we calculated the number of exons predicted correctly by at least
one of the two programs. In parenthesis are the number correct predictions
that are identical between two programs and the number of false positive
exons that overlap. The numbers on the diagonal are the results for individual
programs (the number of false positive exons is in parenthesis). The analysis
was done for the HMR195 dataset, which has 948 annotated exons.

FGENES GeneMark.hmm Genie Genscan HMMgene

FGENES 697
(154)

GeneMark.hmm 799 625
(523; 38) (120)

Genie 824 773 651
(524; 33) (503; 31) (126)

Genscan 840 796 807 735
(592; 33) (564; 42) (579; 34) (104)

HMMgene 825 811 793 826 715
(587; 29) (529; 34) (573; 31) (624; 32) (81)

it is also necessary to investigate how correlated their
predictions are. For our purposes correlation between
predictions is good as long as they are correct predictions.
However, in order for our approach to be successful it is
necessary that each of the programs has a set of correctly
predicted exons that were not identified by the other
program. It is also important that their wrong exons, i.e.
exons that do not overlap any real exon, do not coincide.

We have carried out this analysis for five of the seven
programs evaluated in our previous study. For each pair
of programs we calculated the number of exons predicted
exactly (both exon boundaries predicted correctly) by
at least one of the programs. The results are given in
Table 1. The numbers on the diagonal are for individual
programs. Comparing these numbers with the numbers off
the diagonal it is apparent that any pair of programs can
predict more exons correctly than any single program. The
most successful pair in this respect is Genscan/FGENES,
followed by Genscan/HMMgene.

The table also shows the number of correct predictions
that are identical between two programs and the number
of wrong exons that overlap. We can see that Genscan and
HMMgene have the most coinciding correct predictions,
but the number of their overlapping wrong exons is not any
higher than for the other pairs. Thus, although Genscan
and HMMgene exon predictions are highly correlated,
as one could have conjectured from similarity of their
architectures and training datasets, it appears that they
agree when they are right and rarely when they are wrong.
For the purposes of a proposed combination method this
is very acceptable behavior, because according to Figure 1
wrong exons tend to have lower exon probability scores

and thus would be accepted only if they were predicted by
both programs.

The only pair of programs that surpasses Gen-
scan/HMMgene in the number of correctly predicted
exons is Genscan/FGENES. FGENES uses dynamic
programming to find the optimal combination of exons,
promoters, and polyA sites detected by a pattern recogni-
tion algorithm. Considering that their underlying models
are different and the fact that different datasets were used
for their training it can be suspected that Genscan and
FGENES will tend to produce less correlated predictions.
Thus, testing the accuracy of our methods using Genscan
and FGENES appears very appealing. Unfortunately, as
discussed in Rogic et al. (2001), FGENES’s scores are
not very informative and thus FGENES does not meet the
most basic requirement for our prediction combination
approach.

Sequence datasets used
The HMR195 sequence dataset described in Rogic et
al. (2001), which contains 195 human, mouse and rat
sequences, was used to develop and test methods for com-
bining Genscan and HMMgene predictions. To ensure
independent testing of the methods’ performance two ad-
ditional control datasets were also used: the Burset/Guigo
dataset and a Drosophila melanogaster Adh region used
in the Genome Annotation Assessment Project (GASP)
(Reese et al., 2000).

The dataset assembled by Burset and Guigo (1996)
consists of 570 vertebrate genomic sequences con-
taining exactly one multi-exon gene. Similarly to the
HMR195 dataset it has been filtered to exclude anomalous
sequences.

The Drosophila melanogaster Adh region is 2.9 Mb
long and has been extensively studied for the last 20 years
(Ashburner, 2000). For the GASP experiment two differ-
ent annotation sets were used to evaluate the gene-finding
programs’ predictions: st1 and st3. The first set, called st1,
contained only highly accurate annotations, confirmed
by aligning full-length cDNA sequences from this region
with the high-quality genomic sequences. This approach
left out many potential genes that did not have a matching
cDNA. st1 originally contained annotation for 43 tran-
scripts, but after some incorrect sequences were removed,
the number of genes is 38. The second and more complete
annotation set, st3, containing 222 gene structures, was
compiled by biology experts using information from
various sources: BLAST results, PFAM alignments, high
scoring Genscan and Genefinder predictions, ORFFinder
results, full-length cDNA alignments and alignments with
genes from GenBank. Out of 222 annotated genes only
40 were based solely on strong Genscan and Genefinder
predictions.
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Combining the programs’ predictions
In this section we describe methods for integrating Gen-
scan and HMMgene predictions. Our goal was to provide
computationally straightforward techniques for combining
the output from these two programs. On the assumption
that they can be considered partially independent sources
of evidence for gene structure, it should be possible to use
output from the programs as follows: when either program
is quite confident of its exon prediction use it regardless;
in the cases where both programs are less certain of their
exon prediction use it if they both agree.

Both Genscan and HMMgene produce output files for
each DNA sequence submitted. The output files give the
details of the gene structure predictions made by the
programs. Each file contains enumerated exons with their
location, type and probability score. Exons are labeled
according to the gene they belong to. The methods that
we describe below use this information to decide on the
candidate exons. We present three different algorithms
EUI (Exon Union–Intersection), GI (Gene Intersection)
and EUI frame (Exon Union–Intersection with Reading
Frame Consistency):

Algorithm EUI (Exon Union–Intersection)
(1) Consider all the Genscan and HMMgene exons that

have exon probability score greater or equal to a
threshold pth. The regions predicted by at least one
of the programs are labeled as EUI exons (exon
union—see Figure 2).

(2) Consider all the Genscan and HMMgene exons
that have exon probability score less than pth. The
regions predicted by both programs are labeled as
EUI exons (exon intersection—see Figure 2).

Consequently, a Genscan or HMMgene exon that does
not overlap any exon predicted by the other program will
be accepted if its exon probability is greater or equal to pth
and refused otherwise.

There is one exception for step 1: if Genscan’s inter-
nal exon has the same right boundary (donor site) as HM-
Mgene’s initial exon (both exons have the score � pth)

choose HMMgene’s exon prediction as an EUI exon. This
‘initial exon rule’ was incorporated into the EUI method
after our analysis showed that Genscan often predicts ini-
tial exons as internal, which have the correct donor site but
false acceptor site preceding the true ATG codon. HM-
Mgene’s predictions of the initial exons are shown to be
more accurate.

Algorithm GI (Gene Intersection)
(1) For each program’s prediction select regions pre-

dicted as genes (genes are treated as continuous
sequence from the beginning of the first predicted
exon in the gene to the end of the last predicted

exon). Regions predicted by both programs are la-
beled as GI genes (gene intersection—see Figure 2).

(2) Apply the EUI method to those exons that com-
pletely belong to GI genes (where both exon
boundaries are within a GI gene).

This approach is primarily designed for identification
of genes in long genomic regions where another level of
constraints, namely considering only exons that belong
to regions predicted as genes by both programs, helps
further eliminate numerous wrong exons typical for ab
initio predictions in the long sequences.

Algorithm EUI frame (Exon Union–Intersection
with Reading Frame Consistency)
This method applies the EUI method to Genscan and
HMMgene predictions while maintaining reading frame
consistency:

(1) For each program’s prediction determine the gene
boundaries and to each gene assign a gene proba-
bility calculated as the average of exon probability
scores for all the exons contained in that gene. For
each predicted exon determine the positions of ac-
ceptor and donor site in a reading frame of a gene it
belongs to.

(2) If the gene predicted by Genscan overlaps the gene
predicted by HMMgene, choose the one with the
higher gene probability to impose the reading frame.
Apply the EUI method to the exons belonging to the
selected genes accepting EUI exons only if they are
in the chosen reading frame.

The threshold value pth that is used in all three methods
has been empirically derived using the HMR195 dataset.
The optimal value is pth = 0.775. However, the methods’
accuracy results show very low sensitivity to the threshold
variation, as can be observed in Figure 3. The average exon
accuracy varies from 0.78 to 0.81 for EUI method and
0.79 to 0.82 for the GI method when the threshold value
changes from 0.45 to 0.95. For both methods (E Sn +
E Sp)/2 peaks when pth is between 0.75 and 0.80, and
accordingly the average of these two values is chosen to
be the threshold value.

The scripts implementing the EUI, GI and EUI frame
methods are available from http://www.cs.ubc.ca/labs/
beta/genefinding/. We are also developing a web based
annotation tool that will apply our methods, as well as
Genscan and HMMgene programs, to a query sequence
and return results in GFF (gene-finding format) and
graphical formats.

RESULTS
Accuracy measures for the three methods as well as for
Genscan and HMMgene on the HMR195 dataset are given
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Fig. 2. Graphical representations of EUI and GI methods. The dotted lines mark the boundaries of the GI genes and the solid lines mark the
boundaries of EUI exons. The labels on the EUI exons indicate which part of EUI algorithm was used to determine the exon.
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in Table 2. The numbers in bold indicate an improvement
when compared to either of the two programs. It can be
observed that each of the methods outperforms Genscan
and HMMgene in all categories except for nucleotide level
sensitivity and proportion of missed exons. The results
in Table 2 suggest that each of three methods improve
specificity more than sensitivity at both the nucleotide
and exon levels. While sensitivity is decreased at the
nucleotide level from 0.95 for Genscan to 0.91–0.94
for the methods, specificity is increased from 0.93 for
HMMgene to 0.96 for GI method (3.2% increase) and
0.95 for EUI and EUI frame methods (2.2% increase).
At the exon level, sensitivity increased from 0.76 for
HMMgene to 0.78 for all the methods (2.6% increase),
while specificity increased from 0.77 for HMMgene to
0.86 for GI (11.7% increase), 0.83 for EUI frame (7.8%
increase) and 0.82 for EUI method (6.5% increase). These
numbers also imply that improvements are substantially
better at the exon level than at the nucleotide level, which

is also supported by an increase of 2.2% in AC and an
increase of 7.9% in (E Sn + E Sp)/2, when comparing
only the highest accuracy values for the programs and
the methods. While the number of missed exons was not
improved by either of the methods, the number of wrong
exons was substantially decreased: Genscan predicted 104
wrong exons, HMMgene 81 and the GI method only 44.

Results for the Burset/Guigo control set are summarized
in Table 3. Bold numbers in Table 3 have the same
pattern of appearance as in Table 2, which indicates that
improvements are accomplished in the same categories.
Similarly to the results in Table 2 improvements are
better for specificity at both levels and generally better for
exon level measures than for nucleotide level measures.
The increases in accuracy values for this dataset were
somewhat lower than for the HMR195 dataset.

The results on the 3 Mb Adh Drosophila region are
shown in Table 4. The values for Sn, ESn and ME are
calculated using annotation set st1 and the values for Sp,
ESp and WE are calculated using st3. The rationale for
this lies in the way these sets are built: st1 contains a
subset of all genes in the Adh region that are correct in
the details, while the st3 dataset is believed to be complete
but the confidence in its correctness is not as high as for
the st1 dataset. Thus, sensitivity, which is the measure of
how well a program can predict the real coding features
in a sequence, is more accurately estimated from st1
because we are sure that these annotations are correct.
On the other hand, specificity, which is the measure of
how well a program avoids false positive predictions, is
better estimated from st3, which is thought to be complete.
Similarly to the results for the previous two datasets,
the three introduced methods have improved specificity
more than sensitivity. At the nucleotide level specificity
increased from 0.62 for Genscan to 0.75 for the GI and
EUI frame methods (21.0% increase) and 0.69 for the EUI
method (11.3% increase), while the sensitivity values for
the methods were less than or equal to the ones for the
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Table 2. Results for HMR195—For each sequence in the HMR195 test set, the forward (+) strand exons in the default outputs of the programs tested were
compared to the annotated exons. The standard measures of predictive accuracy on nucleotide and exon level were calculated for each sequence and averaged
over all sequences for which they were defined: Sn—sensitivity on nucleotide level; Sp—specificity, AC—approximate correlation; ESn—exon level sensitivity;
ESp—exon level specificity; ME—proportion of real exons that were not predicted by a program; WE—proportion of predicted exons that do not overlap with
any of the actual exons. The second column gives the number of sequences where no prediction was made. The numbers in parenthesis in the last two columns
are actual numbers of missed and wrong exons, respectively.

Methods # no Nucleotide accuracy Exon accuracy

prediction Sn Sp AC E Sn E Sp (E Sn + Esp)/2 M E W E

Genscan 3 0.95 0.90 0.91 0.70 0.70 0.70 0.08 0.09
(76) (104)

HMMgene 5 0.93 0.93 0.91 0.76 0.77 0.76 0.12 0.07
(128) (81)

EUI 3 0.94 0.95 0.93 0.78 0.82 0.80 0.10 0.04
(104) (55)

GI 15 0.91 0.96 0.92 0.78 0.86 0.82 0.19 0.03
(149) (43)

EUI frame 3 0.93 0.95 0.93 0.78 0.83 0.80 0.11 0.03
(115) (46)

Table 3. Results for Burset/Guigo dataset—For each sequence in the Burset/Guigo test set, the forward (+) strand exons in the default outputs of the programs
tested were compared to the annotated exons and the standard measures of accuracy calculated.

Methods # no Nucleotide accuracy Exon accuracy

prediction Sn Sp AC E Sn E Sp (E Sn + Esp)/2 M E W E

Genscan 8 0.94 0.93 0.92 0.78 0.81 0.80 0.09 0.05
(203) (188)

HMMgene 38 0.93 0.94 0.92 0.81 0.83 0.82 0.14 0.04
(308) (139)

EUI 20 0.94 0.96 0.93 0.83 0.88 0.85 0.12 0.03
(250) (98)

GI 43 0.91 0.97 0.93 0.82 0.90 0.86 0.18 0.02
(386) (67)

EUI frame 27 0.93 0.96 0.93 0.83 0.88 0.85 0.13 0.03
(286) (87)

programs. At the exon level specificity increased from
0.40 for Genscan to 0.49 for GI (22.5% increase) and
0.53 for EUI frame (32.5% increase), while sensitivity
increased by 6.8%, (from 0.59 to 0.63) for EUI method
and slightly decreased for the rest two methods when
compared to the programs’ best sensitivity result E Sn =
0.59. The EUI method has the lowest M E among the
programs and the methods, while GI and EUI-frame have
missed six and five more exons than Genscan, respectively.
The last column in Table 4, showing the proportion of
the wrong exons, illustrates the most important advantage
of our methods over Genscan and HMMgene when used

on a long genomic region: the number of false positive
exons decreased from 873 for Genscan and 1379 for
HMMgene to 631 for EUI, 366 for the GI and 318
for EUI frame methods. The overall high numbers for
W E are the result of a known shortcoming of gene-
finding programs: overpredicting exons and genes in long
stretches of genomic sequences (Dunham et al., 1999).

The results for HMMgene shown in Table 4 differ from
those shown in Reese et al. (2000) and Krogh (2000) for
two reasons: first, the results that we report are only for
ab initio gene-finding without using any of the additional
sources of evidence, which has been incorporated in
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Table 4. Results for Drosophila Adh region—Sn, ESn and ME are reported for st1 annotation set and Sp, ESp and WE are reported for st3 annotation set. All
the methods are tested on the both strands of Adh region.

Methods # of Nucleotide accuracy Exon accuracy

predicted Sn Sp E Sn E Sp M E W E
exons

Genscan 1696 0.96 0.62 0.59 0.40 0.14 0.51
(15) (873)

HMMgene 2101 0.95 0.61 0.49 0.19 0.14 0.66
(16) (1379)

EUI 1376 0.96 0.69 0.62 0.40 0.13 0.46
(14) (632)

GI 1043 0.92 0.75 0.56 0.49 0.19 0.35
(21) (366)

EUI frame 912 0.83 0.75 0.55 0.53 0.23 0.35
(25) (318)

HMMgene for GASP purposes (Krogh, 2000) and second,
the st1 standard set that we used is a refined version of the
set used for the original GASP evaluation.

DISCUSSION
Our analysis in Rogic et al. (2001) shows that the
weakest component of the current gene-finding programs
is signal detection, especially the detection of initiation
and termination codons, which lowers the exon level
prediction accuracy. Considering that the exon level
sensitivity (E Sn) is defined as a proportion of true exons
(exactly predicted exons) to actual exons and specificity
(E Sp) as a proportion of true exons to predicted exons,
it is obvious that the number of true exons is directly
proportional to E Sn and E Sp. Therefore, if the correct
splice site is missed, even by just a couple of nucleotides,
the predicted exon will not be counted as a ‘true’ exon,
which simultaneously decreases E Sn and E Sp. Thus, the
exon prediction accuracy could be improved in two ways:
identifying the correct exon boundaries would increase
the number of ‘true’ exons, at the same time increasing
both the exon sensitivity and specificity, and reducing
the number of predicted exons (PE) would increase
exon specificity. Of course, only the dismissal of the
falsely predicted exons would be beneficial for the overall
increase in E Sp.

The EUI method, which is also incorporated in the
other two methods introduced above, attempts to simul-
taneously find more probable exon boundaries and to
discard the low-confidence exons. As shown in Burset
and Guigo (1996) and Murakami and Takagi (1998), se-
lecting the union of the exons predicted by two programs
(OR-method) would result in increased sensitivity but
decreased specificity and analogously, the intersection

of the exons (AND-method) would increase specificity
but decrease sensitivity. The EUI method integrates these
two approaches by using them selectively depending on
the confidence in exon correctness. When the probability
scores for the two overlapping predicted exons are high
(greater than or equal to pth) the coding region predicted
by either of the programs is chosen to be a resulting EUI
exon. This potentially increases the sensitivity of the
prediction, which is already supposed to be specific ac-
cording to Figure 1 (proportion of the correctly predicted
exons is almost equivalent to the specificity). When the
exon scores for the two overlapping exons are low (less
than pth), the region predicted to be coding by both of
the programs is selected to be the resulting exon, which
potentially improves the specificity of the prediction. A
‘stand-alone’ exon that does not overlap with any exon
predicted by the other program will be accepted only if
it has an exon score greater or equal to pth. This further
improves exon specificity by eliminating low-probability
exons that have a high chance of being wrong.

The relationship between Genscan and HMMgene pre-
diction scores is shown in Figure 4. Each exon predicted
by either of the two programs is represented by a data point
in the graph. If two exons overlap they are represented by
one dot whose coordinates correspond to the Genscan and
HMMgene exon scores. The dots on the x- and y-axes rep-
resent exons predicted only by one program. We can dis-
tinguish three classes of exons from this scatter plot: the
exons on the axes of the graph, which are ‘stand-alone’
exons, the exons predicted by both programs (they do not
have to be identical exactly) with very high score, and the
exons predicted by both programs whose scores from the
two programs are not tightly correlated. This graph fur-
ther emphasizes the non-correlation hypothesis for the two
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Fig. 4. Probability scores of all exons predicted by Genscan and
HMMgene—Each exon predicted by either of the two programs
is represented by a dot in the graph. If two exons overlap they
are represented by one dot whose coordinates correspond to the
Genscan and HMMgene exon scores. The dots on the x- and y-axes
represent exons predicted only by one program.
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Fig. 5. Probability scores of all false positive exons predicted by
Genscan and HMMgene.

programs: first, there are many exons predicted by only
one program, as shown in Table 1, and also even if the two
predictions overlap, very often their scores do not agree
closely.

Figure 5 presents all the false positive exon predictions
made by either program. The exons are represented in the
same way as in Figure 4. Figure 5 clearly shows that most

of the wrong exons predicted by one program were not
predicted by the other—only 55 of 447 dots in the graph
are not found on the axes. Comparing Figures 4 and 5, we
can see that the false exons predicted by both programs
are buried among numerous true predictions and it appears
to be impossible to distinguish them using solely the exon
scores. However, the exons plotted on the axes of the graph
in Figure 5 can be easily excluded if we choose to keep
only the exon predicted by both programs. This is exactly
what the EUI algorithm is doing, except that it also retains
all the ‘stand-alone’ exons with the probability greater
than the threshold pth. Figure 5 shows that dense clusters
of dots on the axes of the graph are terminated around pth
and there are fewer false positives with a score higher than
pth. The value for pth determines the trade-off between
sensitivity and specificity and by choosing pth = 0.775
we are making them as balanced as possible.

The EUI method was primarily designed to improve
prediction accuracy on the relatively short sequences
containing only one gene, which resemble the sequences
used for training of gene prediction programs. Genscan
and HMMgene do rather well when predicting genes
in these sequences: the majority of the actual exons is
identified, at least partially, and the fraction of false
positive exons is only around 5%. Although this results in
fairly high accuracy measures at the nucleotide level, the
exon level accuracy is affected by weakness of the signal
detection, which often misses exact exon boundaries. In
order to improve the prediction accuracy EUI attempts to
correct exon boundaries using the union and intersection
of exons; only a very small number of exons get discarded
due to low exon scores. This approach gives more
correctly predicted exons than any other method resulting
in the highest exon sensitivity for each of the test datasets.

On the other hand, GI was designed for longer genomic
sequences containing more than one gene, for which
gene-finding programs generally make more false positive
predictions. To reduce the high rate of wrong exons GI
first chooses gene candidates to be those regions predicted
as genes by both programs. In this algorithmic step many
genes that are predicted by just one program and many
exons that do not belong completely to the newly selected
GI gene get eliminated. In the next step the EUI method
is applied to the resulting GI genes. These two rounds
of exon elimination get rid of many falsely predicted
exons resulting in considerably higher specificity than
both programs and the EUI method.

As can be inferred from the definition of the methods,
EUI or GI exons that belong to the same gene are
not guaranteed to be in the same reading frame. Frame
consistency is lost when exon boundaries are changed by
applying the EUI algorithm. In order to investigate the
effect of frame consistency on EUI method we designed
the EUI frame method that uses the EUI algorithm to
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combine the predictions from Genscan and HMMgene,
while maintaining a single reading frame. The program
with the highest average exon score dictates the reading
frame of the final prediction: exons whose boundaries
are modified by the EUI method or high scoring ‘stand-
alone’ exons (score � pth) will be accepted in the final
prediction only if they do not disrupt the chosen reading
frame. Surprisingly, this method gave almost identical
results to those of EUI on HMR195 and Burset/Guigo
datasets. After the analysis of the results we found that
EUI frame missed some of the exons that were correctly
predicted by EUI and at the same time eliminated some
of the wrong exons predicted by EUI. These differences
were proportionally too small to change the overall
prediction accuracy except for the slight decrease in the
sensitivity. Being trained on sequences similar to those
from HMR195 and Burset/Guigo datasets, Genscan and
HMMgene predictions on these two datasets are fairly
accurate and similar: overlapping exons are usually in the
same reading frame and there are not many false positive
predictions that could disrupt the reading frame. This is
why EUI and EUI frame have almost identical results on
the first two datasets. However, the Adh region sequence
is much longer than any of the training sequences and
contains a couple of hundred of genes, which presents a
serious challenge for any gene-finding program. Genscan
and HMMgene prediction accuracy for this region is
substantially weaker than for the other two datasets:
while most of the coding nucleotides have been identified
correctly in many cases exact exon boundaries are missed
resulting in much lower exon sensitivity and specificity.
The major problem is the large number of wrong exons,
which results in the drastic decrease in the specificity
at both levels. These characteristics of Genscan and
HMMgene predictions resulted in many reading frame
disruptions in the EUI genes and thus caused elimination
of more than 400 of exons when EUI frame was applied.
Most of the dismissed exons were false positives, but a few
of the ‘true’ exons were also sacrificed. The discrepancy
between the EUI and EUI frame results is notable: due
to the twofold decrease in the number of wrong exons
EUI frame has substantially higher specificity at both
levels than EUI, but at the same time sensitivity was
decreased, especially at the nucleotide level owing to the
exceptionally large size of exons missed by EUI frame
method.

By selecting more probable exon boundaries exon level
accuracy is directly improved. This does not have to
affect the nucleotide level accuracy significantly since the
correct splice site could have been missed by just a couple
of nucleotides and the correction will just slightly change
Sn, Sp and AC . This explains why exon level accuracy is
more improved than nucleotide level accuracy, as observed
in Tables 2–4. Another phenomenon, observable for all

three datasets, is that specificity is improved more than
sensitivity at both levels. Since it is impossible for the
EUI and GI methods to predict an exon that was initially
missed by both programs, which would directly improve
sensitivity of the prediction, our methods attempt to
improve the accuracy of the predictions by correcting the
exon boundaries and eliminating potentially wrong exons.
The effect of this is that EUI and GI have approximately
one half as many wrong exons as the individual programs,
which primarily improves Sp and E Sp.

Although Tables 2-4 show that the methods introduced
have improved accuracy measures for all three datasets
they were tested on, the level of improvement varies
among them. The results on the Burset/Guigo dataset
show the lowest increase in the accuracy measures. This
dataset has been available since 1996 and it contained the
vast majority of available vertebrate genomic sequences
at the time it was assembled. It is realistic to assume that,
in many cases, the training sets of gene-finding programs
developed afterwards overlap with the Burset/Guigo
dataset and this is probably the case with the training
datasets of Genscan and HMMgene. This assumption is
supported by the programs’ high accuracy results on this
dataset, shown in Table 3. Since the programs have been
trained on at least a subset of Burset/Guigo dataset, their
predictions are often correct and identical. Consequently,
the combination of their predictions does not improve
prediction accuracy as much as for the new HMR195
dataset.

The highest increase in prediction specificity is achieved
on the Adh region. In this region the GI and EUI frame
methods have 21% higher specificity at nucleotide level,
while at the exon level GI has 22.5% and EUI frame
32.5% higher specificity when compared to Genscan’s ac-
curacy results. This unusually high increase in specificity
is a direct result of decreased number of false positive
predictions. In long genomic sequences, such as the
sequence of the Adh region, gene-finding programs make
many false exon predictions, which lowers specificity at
both levels. The effect of this shortcoming is also observ-
able in our tables: the specificity values for Genscan and
HMMgene at both levels are substantially lower for the
Adh region than for the other two datasets. Each of our
methods succeeded in eliminating many of the wrong
exons predicted by Genscan and HMMgene, EUI frame
being the most successful by having approximately one
quarter of the false positive exon predictions of HMM-
gene. However, this substantially increased specificity
was also coupled with decreased sensitivity for the GI
and EUI frame methods. The decrease was marginal at
the exon level since GI and EUI frame had just a few
correctly predicted exons less than Genscan, but more
substantial at the nucleotide level due to the unusually
large size of the exons completely missed by the methods.
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Since Genscan was used to build the st3 annotation
set, it is evident that the values in Sp, E Sp and W E
columns are not truly independent results of Genscan’s
and our methods’ performance in the long genomic
regions. Although only 40 of 222 annotated genes in st3
did not have any additional evidence except for strong
Genscan and Genefinder prediction, it is very likely that
the authors of st3 were also relying on Genscan’s exon
boundaries when other evidence were available. This can
be inferred from the significantly higher E Sp (and lower
W E) for Genscan than for HMMgene, which cannot
be observed for other datasets. However, our goal is to
show the performance of our methods, rather than to give
an independent evaluation of the programs on the Adh
region and for that purpose the results in Table 4 are
useful, showing that even though st3 was tailored using
Genscan’s predictions our methods have higher accuracy
than Genscan.

CONCLUSION
We have presented three methods, EUI, GI and
EUI frame, for combining exon predictions from two
gene-finding programs, Genscan and HMMgene, which
successfully improve prediction accuracy, especially on
long genomic sequences. The improvements have been
obtained at both the nucleotide and exon levels and for
all three datasets used for testing. The major advantage
of our methods is the elimination of many false positive
exon predictions, which directly improves the specificity
at both levels.

While other sources of evidence, such as database hits
to known proteins or EST matches, are indispensable in
the search for genes it is definitely worthwhile improving
accuracy of ab initio gene prediction, which is essential
when other evidence is not available. Our study demon-
strates that the accuracy of computational gene-finding can
be improved, exploiting only currently available methods.
Using Genscan and HMMgene predictions as two partially
independent sources of evidence we succeeded in correct-
ing the exon boundaries, getting more exactly predicted
exons, and in eliminating many false positive exons. The
three methods that we developed have different strengths
and are suitable for different purposes, depending whether
sensitivity, specificity or reading frame consistency is the
more valued characteristic of the predictions. Or on a prac-
tical application, EUI would be best applied to shorter se-
quences (where only one gene is expected), whereas the
GI and EUI frame methods are best applied to longer ones
(where more than one gene is expected). The methods are
not only limited to Genscan and HMMgene, but can be
applied to other pairs of gene-finding programs, as long as
they offer reliable exon scores.
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