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mathematics (e.g. theory of Diophantine equations, group theory) and manycelebrated conjectures of mathematics (e.g., Fermat's Last Theorem) deal withwhether certain constraints are satis�able.Constraints naturally enjoy several interesting properties. First, as remarkedabove, constraints may specify partial information { a constraint need notuniquely specify the value of its variables. Second, they are additive: givena constraint c1, say X + Y � Z, another constraint c2 can be added, sayX + Y � Z. The order of imposition of constraints does not matter; all thatmatters at the end is that the conjunction of constraints is in e�ect. Third,constraints are rarely independent; for instance, once c1 and c2 are imposed itis the case that the constraint X + Y = Z is entailed. Fourth, they are non-directional: typically a constraint on (say) three variables X;Y; Z can be usedto infer a constraint on X given constraints on Y and Z, or a constraint on Ygiven constraints on X and Z, and so on. Fifth, they are declarative: typicallythey specify what relationship must hold without specifying a computationalprocedure to enforce that relationship. Any computational system dealing withconstraints must fundamentally take these properties into account.Constraint programming (CP) is the study of computational systems basedon constraints. It represents a harnessing of the centuries old notions of anal-ysis and inference in mathematical structures with several modern concerns:general languages for computational representation, e�ciency of analysis andimplementation, tolerance for useful (albeit incomplete) algorithms (tied per-haps to \weak" methods such as search) | all in the service of design andimplementation of systems for programming, modeling and problem-solving indi�erent domains. As discussed in the next section, work in this area can betraced back to research in Arti�cial Intelligence and Computer Graphics in thesixties and seventies which focused on explicitly representing and manipulat-ing constraints in computational systems. Only in the last decade, however,has there emerged a growing realization that these ideas provide the basis fora powerful approach to programming, modeling and problem solving, and thatdi�erent e�orts to exploit these ideas can be uni�ed under a common conceptualand practical framework.The basic essence of this framework is the separation of concerns into twolevels. The �rst level is that of very generally de�ned constraint systems |systems of inference with pieces of partial information based on such fundamen-tal operations as constraint propagation, entailment, satisfaction, normalizationand optimization. In addition to the traditional constraint systems that havealready been investigated over centuries (such as over the real numbers, inte-gers modulo p), CP brings a focus on a wide variety of systems (arising oftenfrom application concerns) ranging from \unstructured" �nite domains to equa-tions over trees (\term-uni�cation") to temporal intervals. Increasing attentionis being paid to discovering e�cient techniques for performing these constraintoperations across wide classes of such constraint system, to discovering commonexploitable structure across constraint systems.2



Operating around this level is the second level of programming languagewhich allows the user to specify more information about which constraintsshould be generated, how they should be combined and processed etc. Perhapsunique to CP are modeling languages that exploit logic based control constructs(e.g., constraint logic programming (CLP) or concurrent constraint program-ming (CCP)). These languages interact with the �rst level purely via the basicconstraint operations. This provides the user with a very expressive framework(parametric in the underlying constraint system) for generating, manipulatingand testing constraints, while (in the case of the logic-based languages) pre-serving their declarative character. This realization of uni�ed frameworks hassimultaneously been accompanied by the implementation of several general sys-tems, which are �nding wide-spread use in applications as diverse as modelingphysical systems and controlling robots to scheduling container ships in harbors.This central organizational idea has many rami�cations. What emerges is ageneral declarative framework potentially more promising than either full �rst-order logic (which is expressive, but undecidable in theory and usually ine�cientin practice) or restricted versions such as the Horn clause subset that underlylogic programming (which are usually e�cient in practice, but not expressiveenough for many applications). For what is fundamentally acknowledged is thatdi�erent computational techniques (constraint-solving algorithms) will be use-ful in di�erent computational contexts | and a uniform scheme is provided forintegrating these techniques into a powerful computational framework. For thetheoretician meta-theorems can be proved (and analysis techniques invented)once and for all that apply to an in�nite family of systems; for the imple-menter di�erent constructs (backward chaining, backtracking, suspension) canbe implemented once and for all; for the user only one set of ideas needs tobe understood, though with rich (albeit disciplined) variation (via constraintsystems).1Today CP is contributing exciting new research directions in a number ofdistinct areas such as: arti�cial intelligence (natural language understanding,scheduling, planning, con�guration. . . ), concurrent computing, database sys-tems, graphical interfaces, hardware veri�cation, operations research and com-binatorial optimization, programming language design and implementation, re-active systems, symbolic computing algorithms and systems. The �eld is beingdriven both by a need for internal organization and structure, and by the de-mands of increasingly sophisticated real-world applications to which it is beingapplied.1From a methodological point of view, it is important to realize that not all researchers inCP work across both of these levels. Some prefer to exploit the unifying framework of con-straints while working purely within the �rst level of constraint systems, considering issuesaround programming to be orthogonal to their concerns. Others exploit the unifying frame-work of constraints to develop programming language notions, while not paying attention tothe properties of particular constraint systems. Some focus on fruitfully exploiting the synergyacross the boundary between the two levels. 3



The state of the art in CP is reported in international conference on Prin-ciples and Practice of Constraint Programming (PPCP) [99,38] and PracticalApplications of Constraint Technology (PACT), and in the recently establishedconstraints journal. Work continues to be reported in the conferences andjournals of related areas such as Arti�cial Intelligence, Logic Programming,Databases, and Operations Research. Interested readers may �nd related sur-veys in [61,40,69].The rest of this paper is organized as follows. First we develop some back-ground on the origin of constraint programming. The state of the art in theapplication of constraint ideas in various �elds is then discussed. Finally weidentify some key strategic directions for further development.2 The Origins of Constraint ProgrammingSome of the earliest ideas leading to CP may be found in the Arti�cial In-telligence (AI) area of constraint satisfaction, dating back to the sixties andseventies. The pioneering works on networks of constraints were motivatedmainly by problems arising in the �eld of picture processing [97,127]. In theseworks, constraints were explicitly represented as binary compatibility matricesand the goal was to develop e�cient polynomial algorithms that could discoverincompatibilities by looking at just a few constraints. This can greatly speedup the subsequent phase in which one or all solutions are to be found via back-tracking. In picture processing, these algorithms sometimes eliminated mostinfeasible picture interpretations, for example those that were allowed by eachconstraint alone, but not by a conjunction of a small subset. In some cases thisphase results in just one (the only one) alternative being left, thus eliminatingbacktracking completely [127]. The main algorithms developed in those yearswere related to achieving (variations of) arc- or path-consistency [97,89,87] (seeSection 3.1). The former �nds (and eliminates) values from variables' domainswhich are incompatible with some constraint concerning that variable, whilethe latter eliminates pairs of values which are allowed according to a given con-straint c but not if one looks at a chain (a path) of constraints which start andend at the same points as c. In other words, one can say that these algorithmspropagate the information given by one constraint to other constraints.In these systems, there was still no notion of constraint programming; ratherthe problem was modeled directly via sets of constraints which were solvedusing an algorithm. (Mention must also be made of the remarkably prescientsystems REF-ARF [34] and ALICE [82]. Both provided simple but very usefulconstraint languages for specifying search problems, and solved them used cus-tomized constraint solvers with embedded propagation and search techniques.)However, we will see later that many constraint-based computational frame-works counted on these algorithms and results to achieve simple and e�cientimplementations. 4



Early application areas for constraints were interactive graphics and cir-cuit modeling and diagnosis. The �rst of these systems was Ivan Sutherland'sSketchpad [123], developed in the early 1960s. Sketchpad was an interactivegraphics application that allowed the user to draw and manipulate constrainedgeometric �gures on the computer's display. It included the concepts of a con-straint as a declarative relation, enforced by the computer; of local propagationconstraint solvers; and of multiple cooperating solvers. A subsequent (similar)system, ThingLab [8], included a facility for compiling constraint satisfactionplans, allowing constraints to be re-satis�ed rapidly for changing inputs. EL[121] was an early constraint-based circuit analysis program. The concepts de-veloped here led to a variety of other systems and languages, including Steele'sconstraint language [122], perhaps the �rst explicit e�ort at designing a pro-gramming language based on constraints.The main step towards modern constraint programming was achieved whenit was noted that logic programming was just a particular kind of constraintprogramming. Logic programming is based on a declarative computationalparadigm where a program is a logic theory and each computation step solvesa system of term equations via the uni�cation algorithm. Its declarative naturemade it already close to the idea of constraints, which indeed state what hasto be satis�ed but not how. Moreover, the use of a backtracking search to �ndthe answer to a given query is also very similar to the standard backtrackingprocedures usually used for solving constraint problems. However, what reallycounted was the observation that term equations are just constraints of a specialtype and that thus the uni�cation algorithm is just a special kind of constraintsolving algorithm [81]. This has led to the de�nition of a general framework,called Constraint Logic Programming (CLP) [68], which has all the features oflogic programming but is parametric with respect to the kind of constraintsused within the language. Moreover, it has also brought fundamental changesin areas that were extensively based on equational term rewriting, like Com-putational Logic, since researchers in that area realized that they could switchto a more powerful and expressive paradigm by moving from term equalities toconstraints [74].Although the CLP scheme immediately gave rise to languages like CLP(R)[71] and Prolog III [25], it took the practical experience of application-orientedresearch to link CLP to the propagation algorithms developed earlier in AI.The language CHIP [59,31] realized that extensive use of early ideas on prop-agation was necessary at both the language and the implementation level tomake CLP languages useful for solving large combinatorial problems (which isusually the task in constraint solving). Thus the language was equipped withthe possibility of de�ning a domain for each variable, and propagation algo-rithms (mainly achieving arc-consistency) were used to reduce the search for asolution. Facilities for controlling the generation of constraints (forward rules,conditionals, annotations) were provided, though without a clear declarativefoundation. This is even more so in recently developed languages such as cc(fd)5



[62], where constraint propagation methods can be speci�ed in the language. Inthis way, the underlying constraint solver can be tailored to the users' needs,achieving the so-called glass-box approach (Section 3.7.1).But constraints in CLP-like languages showed their power not only to modeland solve combinatorial problems, but also to prune the search during the com-putation and thus speed up the execution of a program. This also was a fun-damental point, since until then constraints were seen mostly as a knowledgerepresentation tool rather than as a way to guide computations and prune un-interesting branches.Another step towards a more general notion of constraint programming camefrom the area of concurrent logic programming. Concurrent logic programminghad already shown that it provided a beautiful, elegant and powerful notationfor concurrent programming, based on the so-called \process" reading of de�niteclause programs [116].2 However, the �eld was hampered in part by the lack ofa clear logical analysis of the synchronization mechanisms introduced into suchlanguages primarily via operational notions. Maher provided a breakthroughwith his analysis that entailment lay at the heart of the synchronization mecha-nisms [90]. On this basis, Saraswat developed the simple but general concurrentconstraint (CC) programming framework which views computation as arisingfrom the activities of agents that communicate via a shared set of variables onwhich they can either impose (\tell") or test (\ask") for the presence of someconstraints[112]. The decoupling of this notion of constraint-based computationfrom de�nite clause programming made possible the introduction of techniquesof process algebra for the further conceptual development of the framework (in-cluding the introduction of indeterminacy, etc.). On the one hand, CC programswithout asks (and with \angelic" nondeterminism) can be viewed as CLP pro-grams, and CC programs with constraints restricted to term equations are justconcurrent logic programs. On the other hand, CC provides a general declarativeframework for concurrency encompassing and extending data-ow languages,languages based on \residuation" [2], and concurrent functional languages. For,the CC paradigm was based on another fundamentally novel observation: thatconstraints can be used not only to state and solve combinatorial problems, butalso to specify process communication and synchronization in a general way.The de�nition of the CC framework also gave an important impulse to the de-velopment of new semantics for such languages, which exploit the coexistenceof constraints and concurrency in order to be more informative and prove moreinteresting properties. Examples are the semantics based on traces and closureoperators [7,114], and those based on truly concurrent models like Petri nets[98,52].Languages based directly upon the CC idea are Oz [117], AKL [57], and,partly, CIAO [64]. However, the CC framework has to be seen more as a the-2Another important thread feeding into the work on concurrency was the study of \delayprimitives" in languages such as Prolog-II and Mu/Nu-Prolog.6



oretical environment where new ideas and computational models are de�nedformally and their theoretical power understood, rather than as a real lan-guage. For example, the languages cc(fd) discussed above are based on the ideaof (partial) arc-consistency as closure operators, which arose from the study ofthe CC semantics.The two-level architecture of Constraint Programming is also suited for em-bedding constraints in more conventional languages, as demonstrated by the2LP system (which embeds a simplex-based solver into a C-like language), andILOG Solver, a successful commercial system that embeds many of the ideasand avor of CLP but as a C++ class library for �nite domain constraints.Among all the constraint languages that have been implemented, it is safe tosay that today the ones that are most widely used are those based on the CLPframework (but not necessarily using a CLP-like syntax). In fact, these haveproven to be successful in many application areas, such as resource manage-ment and resource allocation. In particular on benchmark Operations Research(OR) problems such as job-shop scheduling, these techniques have led to greatimprovements in performance.3 Constraint Programming TodayThis section contains an overview of the developments in constraint program-ming in various sub�elds, For each sub�eld, we discuss the main contributions,the applications and the open issues and directions. The overlap of interests invarious sub�elds will thereby be apparent; we shall also attempt to emphasizethe particular focii of interest that each sub�eld brings to the table.3.1 Constraint Programming in Arti�cial IntelligenceAI research has contributed to considerable progress in constraint-based reason-ing. Powerful algorithms perform orders of magnitude better than more naiveapproaches on di�cult combinatorial problems. Considerable attention has beenpaid to tractability issues: identifying easy classes of problems, and generatingdistributions of problem instances that are hard. Insights into problem structurehave supported and connected these research avenues.Growing interest in applications has motivated increasing interest in rep-resentation issues. For example, attention is being paid to overconstrainedsystems [72], where preferences must be expressed. Modeling is emerging asa major challenge: automating the formulation of real problems in a suitableform for e�cient algorithmic processing.The classic AI constraint paradigm is the constraint satisfaction problem(CSP). It consists of a set of problem variables, each associated with a domainof values, and a set of constraints. Each of the constraints is expressed asa relation, de�ned on some subset of variables, denoting the consistent value7



assignments that satisfy the constraint. Often a problem is posed as a constraintnetwork, with variables corresponding to nodes and constraints correspondingto arcs connecting variables occurring in the same constraint.A solution is an assignment of a value to each variable such that all theconstraints are satis�ed. Typical tasks are to determine whether a solutionexists, to �nd one or all solutions, to �nd whether a partial instantiation can beextended to a full solution, and to �nd an optimal solution relative to a given costfunction. Constraints can be described by explicitly presenting the consistent orinconsistent value combinations, or by mathematical expressions or computableprocedures that specify these combinations. Often restrictions are placed onthe paradigm, e.g. �nite discrete domains or binary constraints (involving twovariables), but increasingly real-world problems are pushing towards extensions.Algorithms In general, the tasks posed in the constraint satisfaction prob-lem paradigm are computationally intractable (NP-hard). Over the last twodecades, a great deal of theoretical and experimental research has been focusedon developing algorithms for solving constraint satisfaction problems and onidentifying restricted subclasses that are tractable [27,86,125].Techniques for processing constraints can be classi�ed roughly as inferenceor search, and these approaches interact. Inference methods (such as the pathand arc-consistency techniques described below) enforce various forms of localconsistency that add inferred problem constraints, which can prune away in-consistent values and build up partial solutions. These methods are perhapsthe distinguishing contribution of AI to constraint reasoning. Search methodsdivide into two broad classes, those that traverse the space of partial solutions(or partial value assignments), and those that explore the space of completevalue assignments (to all the variables) stochastically.Consistency inference Consistency-enforcing or constraint propagation al-gorithms [97,89,35,87,29] transform a given constraint network into an equiva-lent, yet more explicit network by deducing new constraints to be added ontothe network. Intuitively, a consistency-enforcing algorithm will make any par-tial solution of a small subnetwork extensible to some surrounding network.For example, an arc-consistency algorithm (Section 2) ensures that any legalvalue in the domain of a single variable has a legal match in the domain ofany other single variable. Path-consistency ensures that any consistent solu-tion to a two-variable subnetwork is extensible to any third variable, and, ingeneral, i-consistency algorithms guarantee that any locally consistent instan-tiation of i � 1 variables is extensible to any ith variable. When a network ofn variables is n-consistent it is said to be globally consistent, meaning that asolution can be assembled in a backtrack-free manner in any variable ordering.Consistency-enforcing algorithms can be used to preprocess a problem to prunesubsequent search, or they can be applied during search. By themselves, these8



algorithms are, in essence, approximation algorithms that frequently can decideinconsistency.Systematic search The most common algorithm for performing systematicsearch is backtracking. Backtracking incrementally attempts to extend a partialsolution that speci�es consistent values for some of the variables, toward a com-plete solution, by repeatedly choosing a value for another variable consistentwith the values in the current partial solution. When extension is impossiblethe algorithm \backs up" to make alternative choices. Improvements of back-tracking algorithms have focused on the two phases of the algorithm: movingforward (look-ahead schemes) and backtracking (look-back schemes) [26,79].When moving forward, to extend a partial solution, some consistency infer-ence can be carried out to prune the remaining problem space and help decidewhich variable and value to choose next [56]. These methods, which vary inthe strength of constraint inference (propagation), try to �nd a cost e�ectivebalance between pruning and overhead.Look-back schemes are invoked when the algorithm encounters a dead end.These schemes perform two functions: One, decide how far to backtrack by an-alyzing the reasons for the dead end, a process often referred to as backjumping,[45]. Two, record the reasons for the dead end in the form of new constraintsso that the same conicts will not arise again. Terms used to describe this ideaare constraint recording and no-good learning [26,121].The order in which variables are instantiated (search order) can have anenormous e�ect on the cost of �nding a solution. An algorithm must choose inwhich order to process variables, values and constraints. Often some form ofthe \fail �rst principle" (which chooses the most constrained variable �rst) isemployed in an attempt to prune large portions of the search space by failinghigh up in the backtrack search tree (e.g., [56]).Stochastic search In the last few years, greedy local search strategies havebeen reintroduced into the satis�ability and constraint satisfaction literature.These algorithms incrementally alter inconsistent value assignments to all thevariables. They use a \repair" or \hill climbing" metaphor to move towardsmore and more complete solutions [96]. To avoid getting stuck at \local max-ima" they are equipped with various heuristics for randomizing the search orfor dynamically changing the guiding criterion function by constraint weighting.While these methods can often be spectacularly successful, their stochastic na-ture generally voids the guarantee of \completeness" provided by the systematicmethods, and thus, in particular, prevents a proof of unsatis�ability or optimal-ity. Analyzing the power of these methods and understanding how to integratethem into a general CP framework are challenging research topics.
9



Structure-driven algorithms Problem structure can be characterized andexploited at the micro level (the structure of the constraints), and the macrolevel (the structure of the constraint network) [27,37].Many structure-driven techniques emerged from the topological characteri-zation of tractable problems described in the next section. Various graph-basedtechniques whose complexities are tied to graph parameters were identi�ed.Even when the macro structure of the original problem does not have a char-acterized tractable structure, e.g. a tree structure, we may still take advantageof tractability results. For example, tree-clustering transforms a problem intoa tree-structured meta-problem whose variables are subproblems of the originalproblem, and the cycle cutset method extracts a tree-structured subproblemfrom the original problem [27]. The micro structure can be exploited by, for ex-ample, developing speci�c consistency enforcing algorithms for speci�c classesof constraints, or removing values that are redundant because they participatein the same solutions (e.g., see Section 3.7.1).Structure-driven algorithms such as variable elimination, clustering, and con-ditioning can be applied across many areas of reasoning such as satis�ability, so-lution of linear inequalities, belief assessment and belief maximization in Bayes'networks, combinatorial optimization, and planning under uncertainity [30].Tractability The identi�cation of polynomially recognizable restrictions thatare su�cient to ensure tractability is important from both the theoretical andthe practical points of view and has been extensively studied over the lasttwo decades. Most tractable classes were recognized by realizing that enforc-ing low-level consistency (in polynomial time) guarantees global consistency, orbacktrack-free search (e.g., [36,29]).The basic network structure that supports tractability is a generalized treestructure. This has been observed repeatedly from di�erent perspectives, inconstraint theory [88,27], complexity theory and database theory. In particular,enforcing arc consistency in a network having a tree structure ensures globalconsistency along some ordering.Tractable classes characterized at the micro level have exploited ideas suchas tight domains and tight constraints, row-convex networks, implicational con-straints and max-ordered constraints. These classes justify the intuition thatproblems having large domains and higher arity constraints are generally harder.The investigation of classes of constraints that ensure tractability in whicheverway they are combined has related tractability to algebraic closure propertiesof the constraints [73].Finally, special classes of constraints associated with temporal reasoninghave received much attention in the last decade. Tractable classses includesubsets of Allen's (qualitative) interval algebra [3], as well as quantitative binarylinear inequalities over the reals, of the form X � Y � a [28]. The focus in theAI community, (in contrast to OR), is on handling new types of queries and on10



combining such constraints with qualitative constraints.Generating hard instances Another theme that has received great interestrecently is locating the \really hard" problems [19]. It turns out that whenproblems are generated randomly, most of them are very easy. Consequently,special care is needed in selecting the random generator if non-trivial problemsare to be produced. It has recently been demonstrated that most random gen-erators have a phase transition from easy to hard, where hard distributions arelocated wherever only few solutions exist.Applications The algorithms described above serve as general-purpose infer-ence engines for accomplishing tasks modeled as constraint satisfaction prob-lems. Many tasks are naturally so modeled.� Reasoning tasks including default reasoning, abduction, causal reasoning,diagnostic reasoning, temporal reasoning, spatial reasoning.� Cognitive tasks including machine vision, natural language processing,planning.� Task domains including scheduling, resource allocation, con�guration, de-sign.3.2 Constraint Programming in DatabasesThe importance of constraints in the context of databases has been recognizedfor a long time. For instance, in SQL/92, the current standard for SQL, simplearithmetic constraints can be used in de�ning queries and assertions (whichare a form of \integrity constraint", that is, conditions that must be satis�edby a database instance). The use of arithmetic constraints for semantic queryoptimization and optimization of SQL queries involving constraints has beenextensively investigated.The area of constraint databases (CDBs), in which constraints are integratedas a basic data-type, has emerged recently, prompted by the seminal work of [76].Constraint databases naturally extend relational, deductive or object-orienteddatabases by making feasible the use of constraints to represent possibly in�nite,but �nitely representable complex data. This has turned out to be naturalfor many application domains, since constraints possess great modeling power.Constraints serve as a highly uniform data type for conceptual representationof heterogeneous data, including spatial and temporal behavior, complex designrequirements and partial and incomplete information.For example, arithmetic constraints over real variables within a subset of �rstorder logic can describe a wide variety of data, including 2- or 3-D geographicmaps; geometric modeling objects for CAD/CAM; �elds of vision of sensors; 4-D11



(3 + 1 for time) trajectories of objects moving in 3-D space, based on the move-ments equations; translation of di�erent systems of coordinates; operations re-search type models such as manufacturing patterns describing interconnectionsbetween quantities of manufactured products and resource materials.The notion of constraint data relies on a simple and fundamental duality: aconstraint (formula) � in free variables x1; : : : ; xn is interpreted as a set of tuples(a1; : : : ; an) over the scheme x1; : : : ; xn that satisfy �. Conversely, a �nitelyrepresentable relation over the scheme (x1; : : : ; xn) can be viewed as a constraint.For example, a constraint (�4 � w � 4) ^ (�1 � z � 2) with variables rangingover reals is interpreted as the set f(w; z)j(�4 � w � 4) ^ (�1 � z � 2)gand describes, say, the rectangle shape of a desk given in its local system ofcoordinates (w; z). Users can intuitively think of a constraint as an objectin space (i.e. space of points) or as a symbolic expression, interchangeably,depending on the application and context of its use. We will use a generic nameconstraint object in the context of databases.A constraint object is usually represented by a collection of atomic con-straints, such as real polynomial, linear, or dense order, and their logical com-binations. Constraint objects are manipulated by means of a constraint cal-culus/algebra involving logical operations such as quanti�cation, conjunction,disjunction, negation and implication. If we only use linear constraint over realswithin �rst-order logic we can express any linear transformation such as rota-tion, translation and stretch; check convexity, discreteness and boundedness;compute convex hull, augment objects, change coordinate systems; etc.Thus constraint objects can be manipulated by a very expressive and general-purpose language, as opposed to using separate custom operators for each spe-ci�c type of transformations (as done typically in extensible or spatial databasesystems). For many useful constraint domains, query languages manipulat-ing constraint objects are highly optimizable, in terms of indexing and �ltering(e.g., [13,77,118], and constraint algebra algorithms and global optimization(e.g., [12,47]). Examples of implemented constraint databases are [49,16].While the use of constraints as data is a central feature in constraint databases,an important contribution of the �eld is the technology that has been devel-oped with regard to the use of constraints for optimizing evaluation of databasequeries. The idea of storing constraints as tuples in the database (so-called\magic template" tuples) and using this information to prune the search duringdatabase query evaluation was �rst proposed in [106]. The idea was re�ned in[4,100] to allow constraint propagation without actually storing constraints inthe database, for the case of non-recursive SQL queries, by careful repositioningof the constraints in a query. This prompted a series of work on the reposi-tioning of constraints in (recursive and non-recursive) database queries for thepurpose of optimization, such as pushing constraint selections in [119,83] or�nding redundant parts of evaluation trees using query constraints in [84].The promise of the emerging constraint database work is that it will providea uniform framework for the declarative and e�cient querying of symbolically12



represented data. Developing custom tools for speci�c applications usually re-quires considerable programming e�ort, and yields products that are not easyto change, and may not perform overall optimizations that interleave database,mathematical programming and computational geometry manipulation tech-niques. Existing DBMS do not handle constraints as stored data; and CLPimplementation techniques need to be developed to deal with large amounts ofpersistent data.The work [55] considered polynomial equality constraints as rules, takingadvantage of their adirectionality. [76] proposed a framework for integratingabstract constraints into database query languages by providing a number ofdesign principles, and studied, mostly in terms of expressiveness and complex-ity, a number of speci�c instances. A restricted form of linear constraints, calledlinear repeating points, was used to model in�nite sequences of time points (e.g.,[75]). More recent works on deductive databases (e.g., [100]) considered manip-ulation and repositioning of constraints for optimizing recursion. Algorithmsfor constraint algebra operators such as constraint joins, and generic globaloptimization were studied in [12]. The work [77] proposed an e�cient datastructure for secondary storage suitable for indexing constraints, that achievesnot only the optimal space and time complexity as priority search trees, butalso full clustering. The work [13] proposed an approach to achieve the optimalquality of constraint and spatial �ltering. A number of works consider specialconstraint domains: integer order constraints [107]; set constraints [108]; dense-order constraints [50]. Linear constraints over reals have drawn special attention[1,12,51,126]. The use of constraints in spatial database queries was addressedin [105]. The work [120] used constraints to describe incomplete information.Constraint aggregation was studied in [80].3.3 Constraint Programming in User InterfacesConstraint programming has a long history of use in graphics and user interfaces,beginning with Sketchpad system [123]. Common applications of constraints inuser interface construction include layout and other kinds of geometric con-straints, maintaining consistency between application data and a view on thatdata, keeping multiple views consistent, animation, and providing semantic feed-back.Supporting interactive user interfaces places a number of demands on con-straint satisfaction algorithms that may not arise in other application areas. Thealgorithms must be fast | in a typical interactive application, the constraintsmust be re-satis�ed each time the screen is refreshed while moving some part.State and state change are also fundamental in these applications, as geometricobjects are moved on the screen, windows are reshaped, and so forth. We typ-ically also require the algorithm to provide speci�c values for variables ratherthan symbolic solutions, since the graphical elements must be shown in somelocation. 13



Two classes of algorithms in common use for User Interface (UI) applicationsare one-way constraint algorithms, and multi-way local propagation algorithms.In a one-way algorithm, each constraint has a distinguished output variable,which the solver can set to satisfy that constraint; the other variables are onlyreferenced by the constraint. For example, if c is the output variable in theconstraint a + b = c, the solver can update c to satisfy the constraint if a orb changes. A multi-way local propagation constraint includes a collection ofmethods for satisfying that constraint. For example, the a + b = c constraintwould have three methods: a  c � b, b  c � a, and c  a + b, which canbe used to �nd a value for a, b, or c that will satisfy the constraint. Examplesof user interface toolkits using one-way constraints include Amulet [101] andits predecessor Garnet. Examples of multi-way local propagation algorithmsinclude DeltaBlue [111], SkyBlue [110], and QuickPlan [129]. (These multi-wayalgorithms all also support constraint hierarchies [11,72], which allow for bothrequired and preferential constraints. Constraint hierarchies are useful in suchcommon User Interface (UI) tasks as specifying which parts of a �gure we wouldprefer to leave �xed while moving some other part.)Some algorithms allow for cycles of constraints (e.g. simultaneous equations)and inequalities, neither of which is supported by traditional local propagationalgorithms. Examples include QOCA [58], which solves simultaneous linearequation and inequality constraints while optimizing a quadratic expression,Bramble [46] and Juno-2 [65] which use numerical solvers, Indigo [9], an intervalpropagation algorithm for inequality constraints, and DETAIL [67] and Ultravi-olet [10], both of which are hybrid algorithms supporting both local propagationand cycle solvers.3.4 Constraint Programming in Operations ResearchOperations Research is a vast �eld represented by departments in major univer-sities and industrial settings around the world. The �eld of OR has signi�cantoverlap with AI, branch-and-bound search being a classic example, tabu searchand simulated annealing being somewhat more recent examples. CP is a muchsmaller but emergent discipline which is situated at the conuence of ComputerScience (CS), AI and OR.A principal area of intersection of CP with OR is the �eld of NP-Hard com-binatorial problems. What most distinguishes OR approaches to these problemsis the consistent use of continuous methods based on linear programming. Withthis (very successful) method, known as mixed integer programming, an appli-cation is modeled as a system of linear constraints on real and integer variables.To assist in the solution process, the model is enhanced with constraints knownas cuts that tighten the linear relaxation of the model [102]. This is often criticalin limiting the amount of search that is required to �nd a solution. Generat-ing the right cuts for a given application is a demanding craft which exploitsthe mathematical structure of the problem. The problem solving process also14



requires a linear programming and/or mixed integer programming library.On the other hand, in CP the emphasis has been less on the mathematicalstructure of the particular application and more on higher level modeling andsolution methods and tools, and the integration of ideas from many di�erentconstraint systems. This has led to languages based on �nite domain solversand linear programming solvers, phase transition analysis of problem di�culty,algorithmic advances, etc. It has also led to the expansion of the OR arsenal withconstraint solving libraries other than linear and mixed integer programminglibraries.A classic shared interest of CP and OR is declarative programming. In fact,in terms of languages, the interaction between CP and OR goes back at leastto [82]. The formulation of a mixed integer program is quintessentially declara-tive. Moreover, the algebraic modeling languages of OR (such as GAMS, AMPL,AIMMS) provide an example of a very pure form of declarative programmingsystem. This programming paradigm is in evolution and might well be converg-ing with developments in the CP world, as declarative programming systemsbecome more open to integrating other paradigms. A case in point is the 2LPlanguage (\Linear Programming and Logic Programming") which is designedto encapsulate a part of the practice of OR, namely mixed integer programmingand extensions [93].Work in OR on discrete optimization has also contributed to developmentsin CP. Indeed, some of the recent success in CP on scheduling problems cantrace back to [17] on the Job Shop Problem. Conversely, the CP work hasled to new algorithms for these and related applications and to the creation ofsoftware tools to facilitate exploitation of these techniques.As computational sciences such as OR develop more complex methods to dealwith more challenging applications, a role to be played by CP is to furnish soft-ware tools and concepts to organize the construction of these systems. To thise�ort CP brings some new ideas and facility with program and language designwhich will help bring OR technology to a much larger audience. CP systems arebeing used commercially in many application areas, where they bring competi-tive advantage to users over traditional approaches in terms that often includeapplication development ease, quality of solution, and speed at obtaining thissolution. Such applications are typically in the areas of scheduling (disjunctiveconstraints, task intervals), resource control (cumulative, bottlenecks), trans-portation (cycle constraints, labelling heuristics), personnel rostering (sequenceconstraints), workforce scheduling (constraint cooperation), circuit veri�cation(Boolean constraints), electro-mechanical systems (constraints and �nite statemachines, safety and fairness properties). Some of these applications are de-scribed in the proceedings of the conferences on \Practical Applications of Con-straint Technology - PACT".
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3.5 Constraint Programming in ConcurrencyAs noted in Section 2, the use of constraints as a convenient mechanisms forprocess communication and synchronization in a concurrent environment ledto the development of the CC paradigm, where processes interact by postingand asking constraints over a shared set of variables. This very general andelegant computational paradigm received a lot of both theoretical and imple-mentational attention since its conception in 1989. In fact, the literature showsmany semantics e�orts that try to adapt either the interleaving models of pro-cess description algebras to CC [112,7] or the truly concurrent ones of Petri netsand event structures [98,109]. Other theoretical e�orts focus on the possibilityof analyzing CC-like programs at compile-time and thus derive properties to beused at run-time. This holds, for example, for the works on abstract interpreta-tion [128,22] which execute CC programs on an abstract constraint domain withthe hope to derive some useful knowledge for program simpli�cation, for thoseon suspension analysis [20], whose aim is to understand the conditions underwhich CC program deadlock, and for those on relating CC and CLP languages[15], which try to parallelize CLP programs using CC-based techniques or tosequentialize CC programs via an analysis of their inherent concurrency.Languages like AKL [57], Oz [117], and CIAO [64] are essentially based on theCC ideas, although they add many features mainly because of application needsand of e�ciency reasons. For example, AKL employs a model of computationbased on the so-called Andorra principles, which basically leads to executingall deterministic steps �rst. Oz is a lexically scoped language with �rst-classprocedures, state, and encapsulated search. CIAO is an extensible constraintlanguage supporting CC-style concurrency and synchronization primitives incombination with standard CLP programming, as well as several control rules.3.6 Constraint Programming in Robotics and Control The-oryA major challenge facing the constraint research community is to develop use-ful theoretical and practical tools for the constraint-based design of embeddedintelligent systems. An archetypal example of an application in this class is thedesign of controllers for sensory-based robotsIf we examine this problem we see that many of the tools developed to date inthe CSP and CP paradigms are not adequate for the task, despite the super�cialattraction of the constraint-based approach.The fundamental di�culty is that, for the most part, the CSP and CPparadigms presume an o�-line model of computation. But intelligent systemsembedded as controllers in real physical systems must be designed in an on-linemodel. Moreover, the on-line model must be based on various time structures:continuous, discrete and event-based. The requisite on-line computations, ortransductions, are to be performed over various type structures including con-16



tinuous and discrete domains. These hybrid systems require new models ofcomputation, constraint satisfaction and constraint programming. For exam-ple, Zhang and Mackworth [130] de�ned constraint satisfaction as a dynamicsystem process that approaches asymptotically the solution set of the given,possibly time-varying, constraints. Under this view, constraint programmingis the creation of a dynamic system with the required property. Many robotscan be designed as on-line constraint-satisfying devices [104,131]. A robot inthis restricted scheme can be veri�ed more easily. Moreover, given a constraint-based speci�cation and a model of the plant and the environment, automaticsynthesis of a correct constraint-satisfying controller becomes feasible, as shownfor a simple ball-chasing robot in [132].Another approach has been developed recently in [113,53] for modeling timedreactive systems. Reactive systems are those that react continuously with theirenvironment at a rate controlled by the environment. Execution in a reactivesystem proceeds in bursts of activity. In each phase, the environment stimu-lates the system with an input, obtains a response in bounded time, and maythen be inactive (with respect to the system) for an arbitrary period of timebefore initiating the next burst. Examples of reactive systems are controllersand signal-processing systems. The Timed concurrent constraint programming(TCC) framework extends CCP by adopting the synchrony hypothesis of lan-guages such as Esterel: Program control constructs are determinate primitivesthat respond instantaneously to input signals. At any instant the presence andthe absence of signals can be detected. This is accomplished by augmentingCCP with two constructs: �rst, hence A requires that the program A be ex-ecuted at every time instant from the next time onwards. Next, a constructif c else A is added which requires A to be triggered if the constraint c is notenforced now or through quiescence. This \non-monotonic" control constructis motivated by Reiter's Default Logic and provides a very powerful and sim-ple way to formalize the elaborate synchrony constructs of languages such asESTEREL, and LUSTRE. The same ideas have been used to extend CCP tocontinuous time, by introducing the notion of autonomous activity (constraintsof the form (d=dt)(X) = k which allow a variable to vary continuously withreal time, independent of stimulus from the environment), and changing theunderlying model of time from the integers to the reals. The resulting frame-work is quite simple mathematically and a very powerful basis for compositionalmodeling [54].The modeling and design of robotics systems and embedded control systemspresents a serious challenge and opportunity for constraint-based theories ofcomputation.3.7 Constraint Systems and Programming ToolsDespite the youth of the �eld, a good number of tools for developing constraintprograms have become available, and a substantial set of techniques has been17



developed to support the e�cient implementation of such programs.3.7.1 Constraint Domains and Solving TechniquesA relatively small number of constraint systems (with their associated solutiontechniques) have been used as a basis for several concrete implementations. Thefour most important domains, other than rational trees, are Boolean constraints,Finite Domains, real intervals and linear constraints; other examples include listsand �nite sets.Boolean constraints are either treated by a specialized constraint solver, asin CHIP or Prolog III, or seen as a specialized case of �nite domain constraints.In the latter, a Boolean is considered as an integer between 0 (false) and 1(true), as in CLP(BNR), Prolog IV, clp(FD), or ILOG Solver. There has alsobeen work on constraint solving over more general Boolean algebras.Finite domain constraints are constraints on integer valued variables. Theseconstraints are useful in many application areas. They are usually solved bycombining propagation techniques (such as arc-consistency) with backtrackingsearch. Each variable is associated with a �nite set of possible values (possi-ble starting time for an activity, possible component for an assembly, possiblecoworkers for a team member, and so on). This set is called the domain of avariable. Inconsistent values are removed from the domain of variables duringpropagation, and then search tries to assign a value to each variable.The propagation phase is built on a very simple idea: remove inconsistentvalues from the domain of the variables. For instance assume that x, y, andz are three variables with integer values in the closed interval [1; 10], with theconstraint y < z. We can see that the value of y will be at least 1. Since theconstraint states that z must be greater than y, z = 1 is no longer possible.For that reason, 1 is removed from the domain of z. which becomes [2; 10].Similarly, the domain of y becomes [1; 9]. The domain of x remains unchangedsince no constraints involve x at this point. Let's assume now that we addanother constraint, say, x = y + z. Now the minimal possible value for y is 1,and the minimal possible value for z is 2, so x has to be at least 3. The domainof x is then reduced to [3; 10]. Furthermore, as the maximal possible value forx is 10 and the minimal value of y is 1, z, which is equal to x � y must be atmost 8. Similarly, y, which is equal to x� z must be smaller than 8.Real interval constraints are the analog of �nite domains when reals areconsidered instead of integers. As it is impossible to explicitly represent the setof reals that a variable can take, the domain of a real variable is an interval whosebounds are oating point numbers. The techniques for removing inconsistentvalues are either similar to �nite domain techniques (e.g. in CLP(BNR), Prolog18



IV and ILOG Solver), or they are based on mathematical techniques such as au-tomatic di�erentiation and Taylor series, as in Newton and Helios. Real intervalconstraints usually include trigonometric and other non linear constraints.Linear constraints are constraints posted on real variables which have aspecial form: they only involve weighted sums of variables (no product or morecomplex expressions). For such constraints, very e�cient constraint solvers havebeen implemented using the Simplex algorithm as a starting point. Some linearconstraint solvers use in�nite precision (rational numbers), some other use oat-ing point computations. The former is more accurate, while the latter is moree�cient. Interior point methods have been introduced in linear programminglibraries but have not impacted constraint programming more generally.\Global" constraints The removal of inconsistent values can be tricky formore complex constraints. An important line of work aims to de�ne good prop-agation algorithm for more complex constraints. This is sometime referred toas global constraints. In this context, scheduling constraints, all-di�erent (a setof variables takes on values that are all di�erent), and cardinality constraints(the number of constraints within a set that must be satis�ed is required tobe within given lower and upper bounds), and spatial constraints have beenstudied in detail in the literature. The use of global constraints is often the keyfor a successful application. For instance, in scheduling, some constraints canbe used to state that a given resource has a �nite capacity, which limits thenumber of tasks that can require the resource at any time. The propagationof such a constraint requires sophisticated algorithm adapted from OperationsResearch.User-De�ned Constraints. One of the lessons learned so far from the ap-plication of CP tools in practice is that domain speci�c constraints are oftenneeded. In other words, the user of these systems often needs to extend theconstraint system with some constraints that are speci�c to the application inhand. Several proposal have been made for making it possible for the user toadd domain speci�c constraints to the system and to tailor the underlying con-straint solver (or program a new, speci�c solver) to these speci�c constraints.This is called the glass-box approach, in contrast with the original CLP idea ofthe constraint solver as a black box.Building on progress in the area of Concurrent Constraint Programmingsome languages provide constructs for de�ning the propagation of a constraintwithin the language (examples are cc(fd) [62] and clp(fd) [23]). Some otherspropose to view a constraint as a Boolean expression. The Boolean variable istrue if the constraint is necessarily true (entailed by the other constraints). TheBoolean variable is false if the negation of the constraint is entailed by the otherconstraints. This enables the combination of constraints with logical operators19



(or, not, and), as well as some more complex constructs such as cardinality (usedfor example in CLP(BNR), Prolog IV, and ILOG Solver). A related approachis to de�ne constraints using a rewrite system, as in the Constraint HandlingRules solution [39]. The promise of such a special-purpose language for de�ningconstraint systems is that properties of a constraint-solver such as terminationand conuence can be tackled independently of a particular constraint system.Yet another approach is to provide hooks in the parameter passing mech-anism of the language (e.g., within uni�cation, for CLP systems) through at-tributed variables or meta-terms [103,66]. This approach is used extensively inthe implementation of constraint solvers in systems such as ECLiPSe[32], SIC-Stus, and CIAO [64]. A last approach is motivated by the need for addingsupport for global constraints. In that case the de�nition of the constraint isdone in an imperative language and linked with the CP system using an objectoriented protocol (used in CHARME, ILOG Solver, Oz, CHIP). This approachwas called the \No Box" approach of Puget and Leconte, and potentially yieldsthe most e�cient implementations, although implying a higher programmingload.3.7.2 Constraint Programming ToolsThe constraint systems discussed above have been integrated into di�erent pro-gramming languages, ranging from subsets of �rst order logic to imperativelanguages such as C++, or even specialized languages. One of the most popu-lar approaches is to use Horn clauses as a basis (as in Prolog), and then extendthis with one or more constraint systems, in addition to uni�cation over Her-brand terms. This Constraint Logic Programming approach has led to manyimportant tools, including CLP(R) (linear constraints), Prolog III (Booleans,linear constraints and lists), CHIP (Booleans, linear constraints, �nite domains),clp(fd) (�nite domains, Booleans), ECLiPSe (�nite domains, linear constraints),CAL, GDCC, etc.Another popular approach is to embed CLP techniques in a di�erent hostlanguage, leading to another set of tools which includes the following (for eachof them we indicate both the underlying programming language together withthe constraint domains supported):� CHARME: specialized language with C-like syntax and �nite domains.� 2LP: C-based language with linear constraints.� ILOG Solver: C++ library with Booleans, �nite domains, real intervals,and linear constraints.� HELIOS: specialized modeling language with real intervals.Finally, a number of systems o�er a concurrent language as the underlyingprogramming component (concurrent constraint languages):20



� AKL: non-deterministic concurrent constraint language with �nite do-mains. Supports both CC and CLP programming styles. Supports parallelexecution.� Oz: specialized concurrent multiparadigm language (object oriented, higher-order functional, search) with �nite domains. Support for distributed ex-ecution.� CIAO: extensible concurrent constraint logic language with linear con-straints. Supports CC-style programming within CLP, parallel and dis-tributed execution, several control rules, functions.In addition to these and other relatively general-purpose tools, also toolswhich are speci�cally tailored to certain problem classes have been proposed.For example, ILOG Schedule is a tool built using ILOG Solver functionality, andis speci�cally tailored to solving scheduling problems while o�ering a simple,graphical user interface.3.7.3 Debugging and visualization tools.The development of industrial applications using early CP systems has pointedout the need for studying CP speci�c debugging techniques beyond those tra-ditionally used for imperative or logic programming systems on which they arebased. Applying traditional methods, which include standard program tracing,as well as declarative debugging approaches [115], often su�ce for developingcorrect programs, but understanding the performance of CP programs oftenrequires additional tools. Proposed solutions include both compile-time andrun-time techniques. A compile-time technique which has received some atten-tion is the static generation and/or checking of assertions. Such assertions canbe seen as a generalization of type systems in which relatively general precondi-tions and postconditions expressed as constraints can be declared for procedures.Assertions can be provided by the user and/or checked by the compiler (whenpossible) via global analysis. Alternatively they can be generated by the com-piler and the user can inspect them for errors. In both cases global analysistechniques and systems similar to those used by the compiler for optimizationpurposes, discussed later in this section, can be used for these purposes (e.g.,[42]), as well as, perhaps, other proof techniques previously used in logic pro-gramming (e.g., based on induction assertion). A run-time technique which iscurrently receiving much attention is the use of visualization, both of the searchspace and of the constraint store at di�erent points of execution [94].
21



3.8 Constraint Programming Language ImplementationTechniquesCompilers and abstract machines. The programming component that CPo�ers as an essential addition to the constraint solving capabilities is imple-mented in an e�cient way in most current CP programming systems via com-pilation. In the case of \library systems", built on top of conventional program-ming languages (such as, for example, ILOG, built on top of C++) the com-pilation of the control component is provided by the host language compiler.In the case of systems which o�er a programming language the programmingcomponent is, as mentioned before, very often o�ered by a logic programmingbased language. Compilation is then generally based, at least conceptually, ona translation to an abstract machine instruction set (e.g., [70,62,31,23]. Thetarget abstract machines used are most often generalization of the Warren Ab-stract Machine, which has proven extremely successful in the context of logicprogramming. The WAM approach essentially provides a view of the compila-tion of these languages as a generalization of the standard techniques used inconventional languages, allowing most of the conventional optimizations.Global Analysis. As a result of the compilation-based approach the perfor-mance of current systems is quite acceptable when running code where general-purpose constraint solving is performed. On the other hand, this approach alonecannot always provide performance in the control component that is competi-tive with other languages. In particular, their performance often does not reachthat of traditional logic programming systems in symbolic applications and isgenerally far from that of traditional imperative programming languages in (nonconstraint related) numerical applications. The most generally accepted solutionto this has been to develop advanced compilation technology capable of detect-ing the cases where limited or no constraint solving is involved and compilingthose cases in the most e�cient way. Some signi�cant progress has already beenmade in practical global analysis and optimization of constraint logic program-ming systems. Results on the possible speedups obtainable with global analysisinformation have been studied (e.g., [92,41]), practical frameworks for globalanalysis developed (e.g., [42]), and some CP systems have been reported whichperform global analysis based optimization [78,41]. Such global analysis hasalso been applied to concurrent CP systems, where one of the most importantobjectives is to reduce suspension and resumption of goals and synchroniza-tion overhead [21,33,91,15,44]. Finally, recent progress in incremental globalanalysis (e.g., [63]) has the potential to solve most remaining problems relatedto supporting large programs and the use of global analysis in the interactiveprogram development environment that is common in constraint programmingsystems. However, the application of extensive optimization in commercial orwidely used public domain systems still remains a goal to be achieved. Also,much research remains to be done in �nding accurate abstraction techniques for22



standard constraint systems.Parallelization. A program optimization which has shown signi�cant speedupsin the context of logic programs is automatic parallelization [18]. Exploita-tion of parallelism in the search (or-parallelism) is comparatively easy and hasbeen shown to provide speedups in several industrial applications containingextensive search [60,32,85]. On the other hand comparatively little work hasbeen devoted so far to exploiting parallelism within a given path of the search(and-parallelism) and in the solver itself. Although traditional concepts of in-dependence used in imperative programming (e.g., the \Bernstein conditions")or even those of logic programming, do not apply in the context of CP [43],notions of independence appropriate for (concurrent) CP have been recentlyproposed [43,14]. Based on this, parallelizing compilers as well as and-parallelabstract machines for CP languages have recently become available, and initialperformance results are encouraging [41].4 Promising DirectionsConstraint programming has by now shown that constraints can be used not onlyto represent knowledge but also as a way to guide search, prune useless branches,�lter queries, and describe process communication and synchronization. Withthis is mind, we may identify several directions for research that are promisingfor systems, programming environments, models and application packages.More realistic constraint systems and languages. We need to developmore automatic and systematic ways to acquire and model domain-speci�c andproblem-speci�c knowledge, developing a richer paradigm to cope with the prop-erties and uncertainties of real-world information. Of course, representation andreasoning are always two sides of the same coin. As we consider new classes ofconstraints, we must also consider new methods to compute with them; au-tomating the modeling process will itself require capturing some very sophisti-cated reasoning skills. Moreover, better theoretical and empirical understandingis needed of the relationship between real-world problem parameters and searchmethods. An important issue is that of over-constrained constraint problems[72], since most real-life problems are indeed over-constrained. Thus either theconstraint domain, or the language itself, should be exible enough to be ableto deal with such situations and solve them in some satisfactory way. For exam-ple, the constraints and constraint solving algorithms could take into accountthe presence of preferences of some sort [6,11,48], and/or the language couldallow for user-guided constraint retraction [24,5] and intelligible explanationsfor failure. This of course would bring the constraint satisfaction and program-ming tasks closer to the issues present in optimization problems, since in thepresence of preferences one has to decide the best way to choose and/or retract23



constraints. Thus special attention has to be paid to the interrelation betweenAI and OR techniques for such tasks. In particular, we must take advantageof the coexistence, in the constraint satisfaction world, of di�erent methods(e.g. systematic and stochastic search) and di�erent disciplines (e.g. arti�cialintelligence and operations research).E�cient modeling. Constraint satisfaction knowledge can be representedvery declaratively, without regard to how it is to be used. However, modelinga speci�c problem is not a trivial task, especially since how it is modeled candramatically a�ect how well our algorithms perform. We need to automate theprocess of moving from problem descriptions natural to the problem domain toproblem descriptions designed for e�cient solution. A variety of problem-solvingtechniques are now available to us, but synthesizing appropriate algorithms forspeci�c tasks should be automated [95]. In addition, robust constraint compu-tation must cope with change in the world and in models, and with noise (e.g.,in data), and uncertainity (e.g., in parameter values).Towards constraint-based distributed systems. Another challenge forconstraint programming systems is related to the role of such systems in network-wide programming. This type of programming is likely to be of growing impor-tance given the fact that the recent wider di�usion of the Internet and thepopularity of the \World Wide Web" (WWW) protocols are e�ectively provid-ing a new platform that is standard and ubiquitous, and allows a new class ofhighly sophisticated distributed applications. Features of constraints like theability of describing intra- and inter-process communication and synchroniza-tion are more and more important in practical applications which consist ofdistributed environments where both local problem solving and global synchro-nization and coordination is needed. This is added to the fact that many CPsystems already o�er many other characteristics that make them well suitedin this context. These include dynamic memory management, well behavedstructure and pointer manipulation, robustness, dynamic compilation to archi-tecture independent bytecode, dynamic databases, search facilities, grammars,code motion, and sophisticated meta-programming. A number of distributedconcurrent constraint systems are currently being worked on, application de-velopment libraries are being o�ered, and network and WWW applications arebeing reported [124]. It appears that CP is a promising foundation for most as-pects of the next generation of distributed systems, where all the advantages ofconstraints may coexist and thus lead to simple, elegant and practically usableenvironments.Another interesting related application domain is 3D graphics and VirtualReality. Many interactions between objects (e.g. attachments, minimal dis-tances, non-collision, etc) or general integrity rules (such as energy conservationlaws) can be considered as constraints, and implemented e�ciently as such. This24



generalizes in an obvious way 2D geometrical constraints. Basically, constraintscan be used to enforce hidden relations between objects and thus make surethat the simulated virtual world does not depart too much from our real one.Towards faster, more e�cient systems. While the performance and com-puting resource economy of current CP systems has proved to be adequate in sig-ni�cant industrial applications, competing very favorably with other techniquesand approaches, it appears that there still remain many avenues for improve-ment, which would make the technology even more competitive. It is expectedthat improving execution speed and reducing further resource consumption canimprove the acceptance of the approach for general purpose programming as wellas encouraging the inclusion of constraint programming techniques, constructs,and libraries in conventional languages. Interesting techniques to be further ex-plored include advanced compilation based on global analysis and (automatic)program and solver parallelization. In fact, parallelization is becoming more andmore interesting since multiprocessing hardware is starting to be in many casesthe default installation platform (for example, for departmental servers wheremultiprocessors using fast, inexpensive, o�-the-shelf processors are often replac-ing mainframes at a fraction of their cost). Also, multiprocessor workstationsare not unusual any more. It appears likely that this trend towards increaseduse of parallelism will continue as multiprocessor architectures are better un-derstood, interconnection network performance increases with new technologies(specially if the promise of optical interconnect is �nally delivered), and featuresize diminishes allowing placement of several processors on the same chip.Constraint databases. Many challenges in constraint databases are yet tobe addressed. Speci�c directions of work include: constraint modeling, canonicalforms and algebras; data models and query languages; indexing and approximation-based �ltering; constraint algebra algorithms and global optimization; systemsand case studies. In addition robust widely available implementations of theseideas need to be developed.User interfaces. In user interface applications, there is a constant need fornew constraint satisfaction algorithms that can handle a wider range of con-straints that arise in such applications, and algorithms and data structureswith improved space and time e�ciency.The development of better (performance) debugging techniques and moreuseful visualization paradigms for several constraint domains and solving al-gorithms also o�ers an interesting research direction. Currently, at least oneEuropean project has started working on the development of both assertion-based and visualization based debugging techniques for CLP systems.Among the issues that should be addressed are ways of describing the desiredconstraints at a higher level of abstraction (closer to the domain of interest);25
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