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Abstract. Substantial progress has been achieved using the standard Constraint Satisfaction Problem framework.
However, there is a major unsolved challenge confronting the constraint research community: the constraint-based
design of embedded intelligent systems. This requires a new online model of constraint satisfaction and new
computational tools for specifying, modeling, verifying and implementing constraint-based, hybrid, intelligent
systems, such as robots. The Constraint Net model of Zhang andMackworth allows the design of hybrid intelligent
systems as situated robots: modeling the robot and the environment symmetrically as dynamic systems. If the
robot’s perceptual and control systems are designed as constraint-satisfying devices then the total robotic system,
consisting of the robot symmetrically coupled to the environment, can be proven correct. Some theoretical and
practical advances based on this model are described, including experiments with the constraint-based design of
robot soccer players.
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1. Introduction

The Constraint Satisfaction Problem (CSP) paradigm has evolved and matured over the last
two decades. The algorithms developed in the CSP paradigmweremademore available and
more useful when they were incorporated into the Constraint Programming (CP) language
paradigm. This success should be celebrated and more needs to be done in both paradigms.

2. Embedded Intelligent Systems

Despite this success, however, a major challenge still facing the constraint research com-
munity is to develop useful theoretical and practical tools for the constraint-based design
of embedded intelligent systems. An archetypal example of an application in this class is
the design of controllers for sensory-based robots [6, 4]. If we examine this problem we
see that almost all the tools developed to date in the CSP and CP paradigms are inadequate
for the task, despite the superficial attraction of the constraint-based approach.
The fundamental difficulty is that, for the most part, the CSP and CP paradigms presume

an offline model of computation. But intelligent systems embedded as controllers in real
physical systems must be designed in an online model. Moreover, the online model must
be based on various time structures: continuous, discrete and event-based. The requisite
online computations, or transductions, are to be performed over various type structures
including continuous and discrete domains. These hybrid systems require new models of
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computation, constraint satisfaction and constraint programming. To this end, Zhang and
Mackworth [5] defined constraint satisfaction as a dynamic system process that approaches
asymptotically the solution set of the given, possibly time-varying, constraints. Under
this view, constraint programming is the creation of a dynamic system with the required
property.
In the classic ‘knowledge-based’GoodOld-FashionedArtificial Intelligence andRobotics

(GOFAIR) paradigm, robot architectures are based on offline perception and reasoning [3].
This approach has failed to make substantial progress for several reasons. One difficulty is
the engineering problem of building robots by integrating offline perception and reasoning
systems with online control-based motor systems; this integration is difficult, ugly and
inefficient. Because of such objections, some in the AI-robotics community have rejected
the knowledge-based approach, adopting instead an ad hoc Gibsonian situated approach to
perception that exploits regularities of the particular environmental niche of the robot [2].
However, with a radical re-interpretation of ‘knowledge-based’, we can design, build and
verify quick and clean knowledge-based situated robot systems.

3. The Constraint Net Model

The Constraint Net (CN) framework [7] is a formal and practical model for building hybrid
intelligent systems as situated agents [6]. In CN, a robotic system is modeled formally
as a symmetrical coupling of a robot with its environment. Even though a robotic system
is, typically, a hybrid dynamic system, its CN model is unitary. Most other robot design
methodologies use hybrid models of hybrid systems, awkwardly combining offline com-
putational models of high-level perception, reasoning and planning with online models of
low-level sensing and control.
CN is a model for robotic systems software implemented as modules with I/O ports. A

module performs a transduction from its input traces to its output traces, subject to the
principle of causality: an output value at any time can depend only on the input values
before, or at, that time. The model has a formal semantics based on the least fixpoint of sets
of equations [7]. In applying it to a robot operating in a given environment, one separately
models the dynamics of the robot plant, the robot control program, and the environment.
The total system may then be shown to have various properties, such as safety and liveness,
based on provable properties of its subsystems. This approach allows one to specify and
verify models of embedded control systems. Our goal is to develop it as a practical tool for
building real, complex, sensor-based robots.
Although CN can carry out traditional symbolic computation online, such as solving

Constraint Satisfaction Problems and path planning, notice that much of the symbolic
reasoning and theorem-proving may be outside the agent, in the mind of the designer.
GOFAIR does not make this distinction, assuming that such symbolic reasoning occurs
explicitly in, and only in, the mind of the agent.
In CN the modeling language and the specification language are totally distinct since

they have very different requirements. The modeling language is a generalized dynamical
system language. Two versions of the specification language, TimedLinear Temporal Logic
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[9] and Timed ∀-automata [5], have been developed with appropriate theorem-proving and
model-checking techniques for verifying systems.

4. Constraint-Based Robots

Many robots can be designed as online constraint-satisfying devices [5, 8, 9]. A robot
in this restricted scheme can be verified more easily. Moreover, given a constraint-based
specification and a model of the plant and the environment, automatic synthesis of a correct
constraint-satisfying controller becomes feasible, as shown for a simple ball-chasing robot
in [9].
Theory is vacuous without an appropriate application to drive designs, experiments and

implementations. These ideas are being tested by their application to the task of designing,
building and verifying perception, communication and planning systems for robot soccer
players with off-board or on-board vision systems.
In the Dynamo Project in our laboratory, we are experimenting with multiple mobile

robots under visual control. The Dynamite testbed consists of a fleet of radio-controlled
vehicles that receive commands from a remote computer. Using our custom hardware and
a distributed MIMD environment, vision programs are able to monitor the position and
orientation of each robot at 60 Hz; planning and control programs generate and send motor
commands at the same rate. This approach allows umbilical-free behavior and very rapid,
lightweight fully autonomous robots. Using this testbed we have demonstrated various
robot tasks [1], including playing soccer [4].

5. Conclusion

Using situated robots as one of our target applications we are developing the framework
of a new approach to the problem of constraint-based design of embedded intelligent sys-
tems. This is a benchmark problem posed as a challenge for constraint-based theories of
computation.
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