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Introduction

The concept of local consistency plays a central role in con-
straint satisfaction. Given a constraint satisfaction problem
(CSP), local consistency can be characterized as deriving
new, possibly tighter, constraints based on local informa-
tion. The derived constraints simplify the representationof
the original CSP without the loss of solutions. This can be
seen as a preprocessing procedure. Based on arc consis-
tency (Mackworth. 1977a) for classic CSPs and soft arc
consistency (Cooper & Schiex 2004; Bistarelli 2004) for
soft CSPs, we presented a weaker condition using a com-
mutative semiring structure to abstract generalized arc con-
sistency (Mackworth 1977b) to handle constraint-based in-
ference (CBI) problems beyond classic and soft CSPs. The
weaker condition proposed in (Chang & Mackworth 2005)
has also been relaxed to fit generalized approximate prepro-
cessing schemes.

We propose in (Chang & Mackworth 2006) a new fam-
ily of generalized local consistency concepts for the junc-
tion graph representation of CBI problems. Here we pro-
vide an extended summary. These concepts are based on
a general condition that depends only on the existence and
property of the multiplicative absorbing element and does
not depend on other semiring properties of CBI problems
(Chang & Mackworth 2005). We present several local con-
sistency enforcing algorithms with various levels of enforce-
ment and corresponding theoretic and empirical complexity
analyses. Some of these algorithms can be seen as gener-
alized versions of well-known local consistency enforcing
techniques in CSPs and can be exported to other domains.
Other abstract local consistency concepts are novel to the
constraint programming community and provide more ef-
ficient preprocessing results. We also discuss the relation-
ship between these local consistency concepts and message
passing schemes such as junction tree algorithms and loopy
message propagation. Local consistencies can be achieved
along with message propagation and improve the efficiency
of message passing schemes.
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A CBI Framework and Junction Graph
Constraint-Based Inference (CBI) is an umbrella term for
a class of various superficially different problems includ-
ing probabilistic inference, decision-making under uncer-
tainty, CSPs, SATs, decoding problems, and possibility in-
ference. We abstract these problems into a single formal
framework (Chang 2005) using an algebraic semiring struc-
ture S = 〈A,⊕,⊗〉 where constraint combination is rep-
resented by the abstract multiplicative operator⊗ and con-
straint marginalization is represented by the abstract additive
operator⊕. A CBI problemP in this framework is a tuple
(X,D,S,F), whereX is a set of variables,D is a set of fi-
nite domains for each variable,S = 〈A,⊕,⊗〉 is a commu-
tative semiring, andF is a set of constraints. Each constraint
is a function that maps value assignments of a subset of vari-
ables to values inA. Given a CBI problem, the inference
task is defined as computinggCBI(Z) =

⊕
Y

⊗
f∈F

f . If
⊕ is idempotent, the allocation task is defined as comput-
ing y = arg

⊕
Y

⊗
f∈F

f , wherearg is a prefix of operator
⊕. We generalize various exact and approximate inference
algorithms (Chang 2005) from different fields based on the
CBI framework. Our local consistency concepts proposed
in this paper are also based on this CBI framework and ap-
ply to CBI problems with commutative semirings that are
eliminative. Furthermore, if an eliminative semiring is also
monotonic, these concepts can be modified to fit generalized
approximate preprocessing schemes. Details on eliminative
and monotonic semirings can be found in (Chang & Mack-
worth 2005).

A junction graphJ = (C,S) of a CBI problemP =
(X,D,S,F) is defined as follows:C = {C1, · · · , Cn} is
a set of clusters, each clusterCi is an aggregation of vari-
ables that is a subset ofX and has attached initially a local
constraintφCi

= 1 (1 is the multiplicative identity element
s.t. 1 ⊗ a = a,∀a ∈ A); S = {Sij |Ci, Cj ∈ C} is a set
of separators betweenCi andCj if Ci ∩ Cj 6= ∅ andSij

is an aggregation of variables that consists of the intersec-
tion of Ci andCj . A junction graph satisfies the condition
that for any constraintf ∈ F, there exists a clusterCi ∈ C
s.t. Scope(f) ⊆ Ci. The definition of junction graph en-
sures that the subgraph induced by any variable is connected.
We say a junction graph isinitialized if for each constraint
f ∈ F, we choose a clusterCi s.t. Scope(f) ⊆ Ci and
updateφCi

by φCi
⊗ f .



Local Consistency for CBI Problems
We present here novel local consistency concepts for initial-
ized junction graphs of a CBI problem with an eliminative
semiring. If a semiring is both eliminative and monotonic, it
is straightforward to modify these concepts as approximate
local consistencies using an elementǫ ∈ A to approximate
the multiplicative absorbing elementα⊗ that is equal to the
additive identity element0 for an eliminative semiring, and
using≤S to replace6= in the following definitions. The fun-
damental concept of local consistency for an initialized junc-
tion graph of a CBI problem issingle cluster consistency.

Definition 1 (Single Cluster Consistency (SCC))A clus-
ter Ci of an initialized junction graph is locally consistent
if ∀X ∈ Scope(φCi

), ∀x ∈ DX , ∃w, a value assignment
of variablesScope(φCi

)
−X , s.t. φCi

(x,w) 6= α⊗. An ini-
tialized junction graph of a CBI problem is SCC if all the
clusters are locally consistent.

Single cluster consistency covers the definition of Gener-
alization of Generalized Arc Consistency (GGAC) (Chang
& Mackworth 2005), which abstracts generalized arc con-
sistency in constraint programming. If the junction graph is
primal, SCC is identical to GGAC. If the junction graph is
constructed without satisfying this special structural require-
ment, SCC is stronger than GGAC in general. We also intro-
duce two other stronger local consistencies: Directional and
Neighborhood Cluster Consistencies. Details of the corre-
sponding exact and approximate cluster consistency enforc-
ing algorithms can be found in (Chang & Mackworth 2006).

Definition 2 (Directional Cluster Consistency (DCC))
Given a total orderingOC of the clusters and a clusterCi,
let Sij be a separator between clusterCj andCi andL(Ci)
be a subset of clusters that consist of lower order neighbor
clusters ofCi. Letgi = φCi

⊗
⊗

Cj∈L(Ci)
(
⊕

Cj−Sij
φCj

).
We sayCi is directional consistent if∀X ∈ Scope(gi),
∀x ∈ DX , ∃w, a value assignment of variables
Scope(gi)−X , s.t. gi(x,w) 6= α⊗. An initialized
junction graph of a CBI problem is directional cluster
consistent w.r.t.OC if all clusters are directional consistent.

Definition 3 (Neighborhood Cluster Consistency (NCC))
Given a clusterCi of an initialized junction graph, Let
N(Ci) be a subset of clusters that are neighbor clusters of
Ci. Letgi = φCi

⊗
⊗

Cj∈N(Ci)
(
⊕

Cj−Sij
φCj

). We sayCi

is neighborhood consistent if∀X ∈ Scope(gi), ∀x ∈ DX ,
∃w, a value assignment of variablesScope(gi)−X , s.t.
gi(x,w) 6= α⊗. An initialized junction graph of a CBI
problem is neighborhood cluster consistent if all clusters
are neighborhood consistent.

Complexities and Discussion
The worst case space complexities of all three local consis-
tency enforcing algorithms are the same: linear in the num-
ber of clusters in the junction graph and exponential in the
maximal cluster size. The worst case time complexities are
also linear in the size of the junction graph and exponen-
tial in maximal cluster size. We compare their upper bounds
for time and space in Table 1. All of them use the same

SCC DCC NCC
Time |C|dk+1 (|S| + |C|)dk+1 (2|S| + |C|)dk+1

Space |C|dk+1 |C|dk+1 |C|dk+1

Table 1:Time and space upper bound comparison among various
local consistency enforcing algorithms for a junction graphJ =
(C,S) of a given CBI problem, whered = maxDi∈D |Di| and
k = maxCi∈C |Ci|.

space, though achieving SCC uses the least time, followed
by DCC, and then NCC. We show the experimental results
of applying the approximate variants of these algorithms to
both Weighted CSPs and Probability Assessment problems
in (Chang & Mackworth 2006).

Given the identical message representation and updating
scheme in the junction tree (JT) algorithm (Shenoy & Shafer
1990) and DCC enforcing, it is straightforward to show that
DCC can be achieved along with the inward message pass-
ing in the JT algorithm. Loopy message propagation (LMP)
(Murphy, Weiss, & Jordan 1999) is another widely stud-
ied approximate inference approach based on the junction
graph representation in probability inferences. NCC can be
achieved along with each message updating step in the LMP
without additional computational cost except invalid value
detection at each cluster. The time and space complexities
of both JT and LPM are reduced after the preprocessing fol-
lowing DCC and NCC enforcement, respectively. Detailed
discussion can be found in (Chang & Mackworth 2006).
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