Decision Theory: VE for Decision Networks, Sequential Decisions, Optimal Policies for Sequential Decisions

Alan Mackworth

UBC CS 322 - Decision Theory 3

April 3, 2013

Textbook §9.2.1, 9.3

Announcements (1)

- Assignment 4 was due today.
- The list of short questions for the final is online ... please use it!
- Please submit suggested review topics on Connect for review lecture(s).
- Previous final has been posted.
- Additional review lecture(s) and TA hours will be scheduled before the final, if needed.
- TA hours to continue as scheduled during exam period, unless as posted otherwise to Connect.
- Exercise 12, for single-stage Decision Networks, and Exercise 13, for multi-stage Decision Networks, have been posted on the home page along with Alspace auxiliary files.

Announcements (2)

- Teaching Evaluations are online
 - You should have received a message about them
 - Secure, confidential, mobile access
- Your feedback is important!
 - Allows us to assess and improve the course material
 - I use it to assess and improve my teaching methods
 - The department as a whole uses it to shape the curriculum
 - Teaching evaluation results are important for instructors
 - · Appointment, reappointment, tenure, promotion and merit, salary
 - UBC takes them very seriously (now)
 - Evaluations close at 11:59PM on April 9, 2013.
 - Before exam, but instructors can't see results until *after* we submit grades
 - Please do it!
- Take a few minutes and visit <u>https://eval.olt.ubc.ca/science</u>

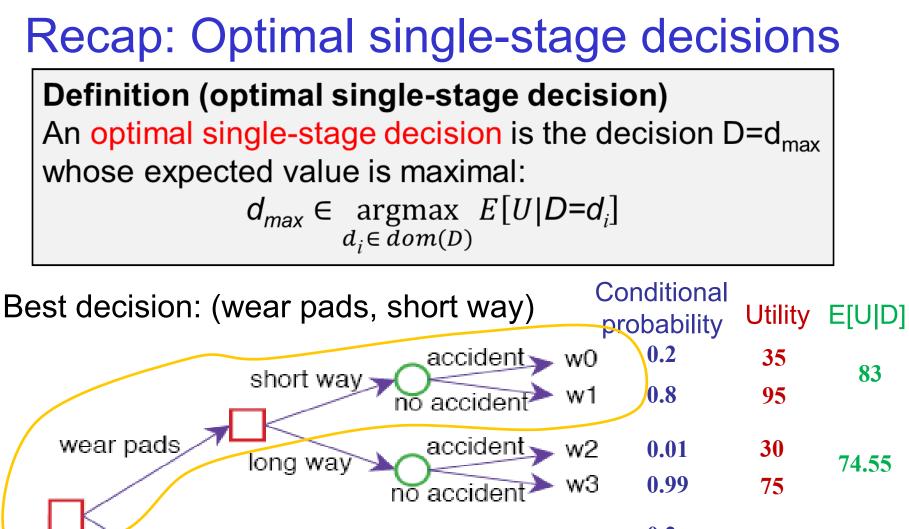
Lecture Overview

Recap: Single-Stage Decision Problems

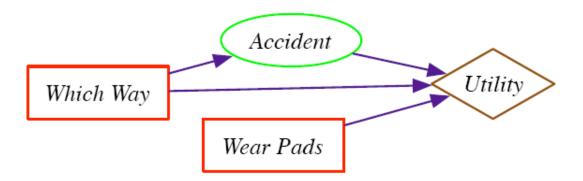
- Single-Stage decision networks
- Variable elimination (VE) for computing the optimal decision
- Sequential Decision Problems
 - General decision networks
 - Policies
- Expected Utility and Optimality of Policies
- Computing the Optimal Policy by Variable Elimination
- Summary & Perspectives

Recap: Single vs. Sequential Actions

- Single Action (aka One-Off Decisions)
 - One or more primitive decisions that can be treated as a single macro decision to be made before acting
- Sequence of Actions (Sequential Decisions)
 - Repeat:
 - observe
 - act
 - Agent has to take actions not knowing what the future brings

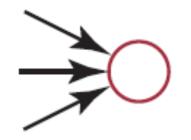


Recap: Single-Stage decision networks

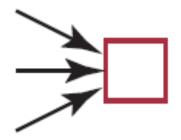


- Compact and explicit representation
 - Compact: each random/decision variable only occurs once
 - Explicit: dependences are made explicit
 - e.g., which variables affect the probability of an accident?
- Extension of Bayesian networks with
 - Decision variables
 - A single utility node

Recap: Types of nodes in decision networks



- A random variable is drawn as an ellipse.
 - Parents pa(X): encode dependence
 Conditional probability p(X | pa(X))
 Random variable X is conditionally independent
 of its non-descendants given its parents
 - Domain: the values it can take at random



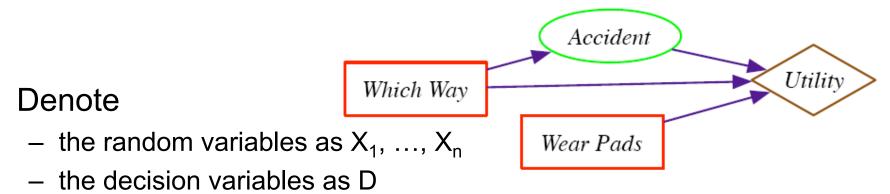
- A decision variable is drawn as an rectangle.
 - Parents pa(D)
 - information available when decision D is made
 - Single-stage: pa(D) only includes decision variables
 - Domain: the values the agents can choose (actions)

- A utility node is drawn as a diamond.
 - Parents pa(U): variables utility directly depends on
 - utility U(pa(U)) for each instantiation of its parents
 - Domain: does not have a domain!

Lecture Overview

- Recap: Single-Stage Decision Problems
 - Single-Stage decision networks
 - Variable elimination (VE) for computing the optimal decision
- Sequential Decision Problems
 - General decision networks
 - Policies
- Expected Utility and Optimality of Policies
- Computing the Optimal Policy by Variable Elimination
- Summary & Perspectives

Computing the optimal decision: we can use VE



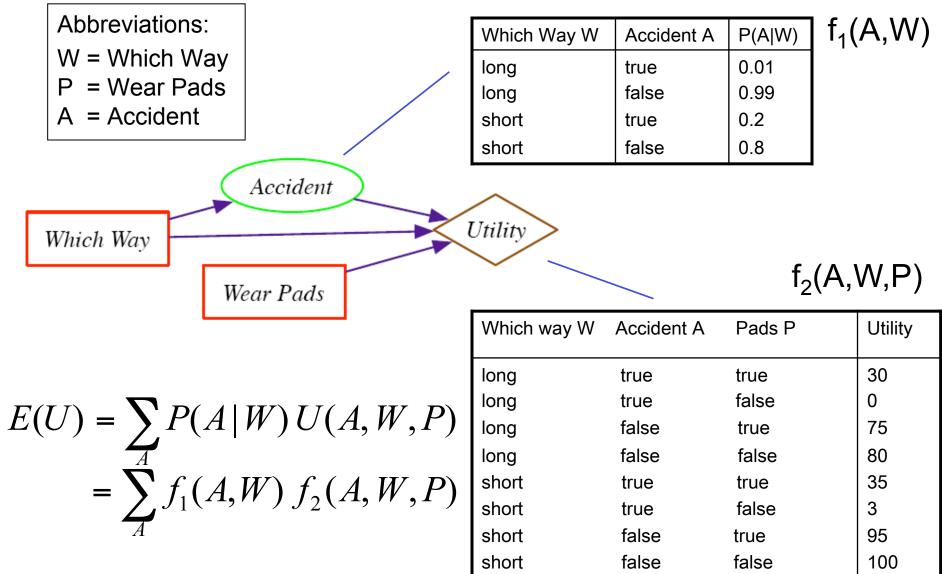
the parents of node N as pa(N)

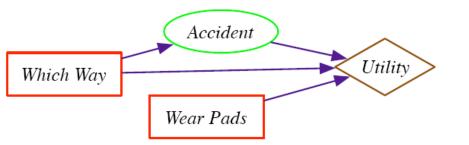
$$E(U) = \sum_{X_1, \dots, X_n} P(X_1, \dots, X_n \mid D) U(pa(U))$$

=
$$\sum_{X_1, \dots, X_n} \prod_{i=1}^n P(X_i \mid pa(X_i)) U(pa(U))$$

- To find the optimal decision we can use VE:
 - 1. Create a factor for each conditional probability and for the utility
 - 2. Sum out all random variables, one at a time
 - This creates a factor on D that gives the expected utility for each d_i
 - 3. Choose the d_i with the maximum value in the factor

VE Example: Step 1, create initial factors

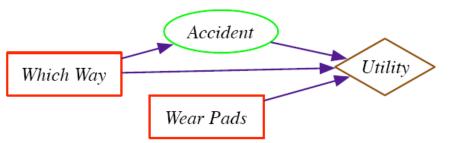




Step 2a: compute product $f_1(A,W) \times f_2(A,W,P)$

What is the right form for the product $f_1(A,W) \times f_2(A,W,P)$?

f(A,W) f(A,P) f(A) f(A,P,W)



Step 2a: compute product $f(A,W,P) = f_1(A,W) \times f_2(A,W,P)$

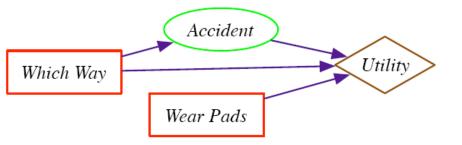
What is the right form for the product $f_1(A,W) \times f_2(A,W,P)$? •It is f(A,P,W):

the domain of the product is the union of the multiplicands' domains • $f(A,P,W) = f_1(A,W) \times f_2(A,W,P)$

- I.e., $f(A=a,P=p,W=w) = f_1(A=a,W=w) \times f_2(A=a,W=w,P=p)$

Which Way	Accider	nt	Utility		•	•	oute prod (,W) × f ₂ (
	Wear Pad	5	f(A=a,F	P=p,₩	$V=w) = f_1(A)$	=a,W=w)	× f ₂ (A=a,W=	=w,P=p)
Which way W	Accident A	f ₁ (A,W)						
long	true	0.01			Which way W	Accident A	Pads P	f(A,W,P)
long	false	0.99			long	true	true	0.01 * 30
short	true	0.2			long	true	false	0.01 00
short	false	0.8			long	false	true	
Which way W	Accident A	Pads P	f ₂ (A,W,P)]	long short	false true	false true	???
long	true	true	30		short	true	false	
long	true	false	0		short	false	true	
long	false	true	75		short	false	false	
long	false	false	80					ļ
short	true	true	35					
short	true	false	3		0.99 *	30 ().01 * 80	
short	false	true	95					
short	false	false	100		0.99	* 80 ().8 * 30	14

Which Way	Accider	nt	Utili	ty		•	•	ute prod ,W) × f ₂ (
	Wear Pad.	5	f(A	=a,F	P=p,V	$V=w) = f_1(A)$.=a,W=w) >	× f ₂ (A=a,W	=w,P=p)
Which way W	Accident A	f ₁ (A,W)							
long	true	0.01				Which way W	Accident A	Pads P	f(A,W,P)
long	false	0.99				long	true	true	0.01 * 30
short	true	0.2				long	true	false	0.01*0
short	false	0.8				long	false	true	0.99*75
Which way W	Accident A	Pads P	f ₂ (A,V	V,P)	1	long	false	false	0.99*80
						short	true	true	0.2*35
long	true	true	30			short	true	false	0.2*3
long	true	false	0			short	false	true	0.8*95
long	false	true	75			short	false	false	0.8*100
long	false	false	80						
short	true	true	35						
short	true	false	3						
short	false	true	95						
short	false	false	100						15



Step 2b: sum A out of the product f(A,W,P):

$$f_3(W,P) = \sum_A f(A,W,P)$$

Which way W	Pads P	f ₃ (W,P)
long long	true false	0.01*30+0.99*75=74.55
short	true	??
short	false	

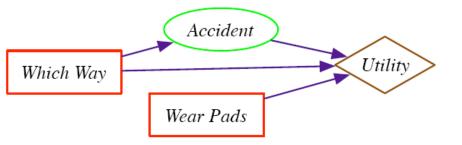
0.2*35 + 0.2*0.3

0.2*35 + 0.8*95

0.99*80 + 0.8*95

0.8 * 95 + 0.8*100

Which way W	Accident A	Pads P	f(A,W,P)
long	true	true	0.01 * 30
long	true	false	0.01*0
long	false	true	0.99*75
long	false	false	0.99*80
short	true	true	0.2*35
short	true	false	0.2*3
short	false	true	0.8*95
short	false	false	0.8*100



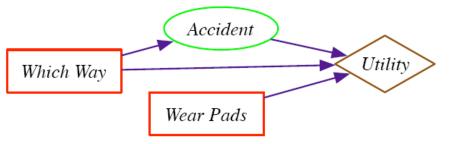
Step 2b: sum A out of the product f(A,W,P):

$$f_3(W,P) = \sum_A f(A,W,P)$$

Which way W	Pads P	f ₃ (W,P)
long	true	0.01*30+0.99*75=74.55
long	false	0.01*0+0.99*80=79.2
short	true	0.2*35+0.8*95=83
short	false	0.2*3+0.8*100=80.6

Which way W	Accident A	Pads P	f(A,W,P)
long	true	true	0.01 * 30
long	true	false	0.01*0
long	false	true	0.99*75
long	false	false	0.99*80
short	true	true	0.2*35
short	true	false	0.2*3
short	false	true	0.8*95
short	false	false	0.8*100

VE example: step 3, choose decision with max E(U)



Step 2b: sum A out of the product f(A,W,P):

$$f_3(W,P) = \sum_A f(A,W,P)$$

Which way W	Pads P	f ₃ (W,P)
long	true	0.01*30+0.99*75=74.55
long	false	0.01*0+0.99*80=79.2
short	true	0.2*35+0.8*95=83
short	false	0.2*3+0.8*100=80.6

Which way W	Accident A	Pads P	f(A,W,P)
long	true	true	0.01 * 30
long	true	false	0.01*0
long	false	true	0.99*75
long	false	false	0.99*80
short	true	true	0.2*35
short	true	false	0.2*3
short	false	true	0.8*95
short	false	false	0.8*100

The final factor encodes the expected utility of each decision

Thus, taking the short way but wearing pads is the best choice, with an expected utility of 83

Variable Elimination for Single-Stage Decision Networks: Summary

- 1. Create a factor for each conditional probability and for the utility
- 2. Sum out all random variables, one at a time
 - This creates a factor on D that gives the expected utility for each d_i
- 3. Choose the d_i with the maximum value in the factor

This is Algorithm OptimizeSSDN, in P&M, Section 9.2.1, p.387

Learning Goals So Far For Decisions

- Compare and contrast stochastic single-stage (one-off) decisions vs. multistage (sequential) decisions
- Define a Utility Function on possible worlds
- Define and compute optimal one-off decisions
- Represent one-off decisions as single stage decision networks
- Compute optimal decisions by Variable Elimination

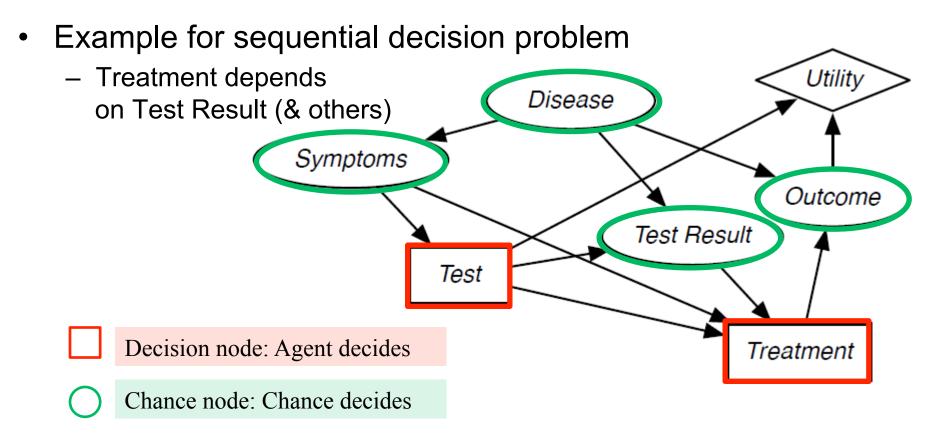
Lecture Overview

- Recap: Single-Stage Decision Problems
 - Single-Stage decision networks
 - Variable elimination (VE) for computing the optimal decision
 - **Sequential Decision Problems**
 - General decision networks
 - Policies
- Expected Utility and Optimality of Policies
- Computing the Optimal Policy by Variable Elimination
- Summary & Perspectives

Sequential Decision Problems

- An intelligent agent doesn't make a multi-step decision and carry it out blindly
 - It would take new observations it makes into account
- A more typical scenario:
 - The agent observes, acts, observes, acts, ...
- Subsequent actions can depend on what is observed
 - What is observed often depends on previous actions
 - Often the sole reason for carrying out an action is to provide information for future actions
 - For example: diagnostic tests, spying
- General Decision networks:
 - Just like single-stage decision networks, with one exception: the parents of decision nodes can include random variables

Sequential Decision Problems: Example



- Each decision D_i has an information set of variables pa(D_i), whose value will be known at the time decision D_i is made
 - pa(Test) = {Symptoms}
 - pa(Treatment) = {Test, Symptoms, TestResult}

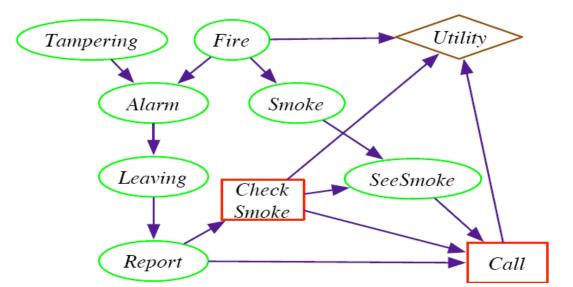
Sequential Decision Problems: Example

• Another example for sequential decision problems



Sequential Decision Problems

- What should an agent do?
 - What an agent should do depends on what it will do in the future
 - E.g. agent only needs to check for smoke if that will affect whether it calls
 - What an agent does in the future depends on what it did before
 - E.g. when making the decision it needs to know whether it checked for smoke
 - We will get around this problem as follows
 - The agent has a conditional plan of what it will do in the future
 - We will formalize this conditional plan as a policy



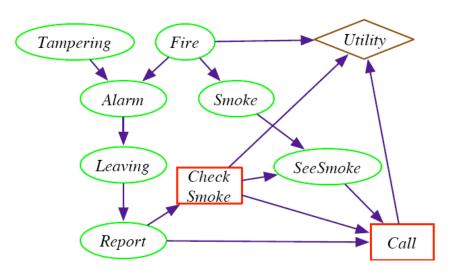
Policies for Sequential Decision Problems

Definition (Policy)

A policy is a sequence of $\delta_1, \ldots, \delta_n$ decision functions

 δ_i : dom($pa(D_i)$) \rightarrow dom(D_i)

This policy means that when the agent has observed $o \in \text{dom}(pa(D_i))$, it will do $\delta_i(o)$



There are $2^2=4$ possible decision functions δ_{cs} for Check Smoke:

•Decision function needs to specify a value for each instantiation of parents

CheckSmoke

Report	<i>δ_{cs}</i> 1	δ _{cs} 2	δ _{cs} 3	δ _{cs} 4
т	Т	Т	F	F
F	Т	F	Т	F

Policies for Sequential Decision Problems

Definition (Policy) A policy π is a sequence of $\delta_1, \ldots, \delta_n$ decision functions $\delta_i : \operatorname{dom}(pa(D_i)) \to \operatorname{dom}(D_i)$

I.e., when the agent has observed $o \in \text{dom}(pD_i)$, it will do $\delta_i(o)$

There are 2^8 =256 possible decision functions δ_{cs} for Call:

	R=t, CS=t, SS=t	R=t, CS=t, SS=f	R=t, CS=f, SS=t	R=t, CS=f, SS=f	R=f, CS=t, SS=t	R=f, CS=t, SS=f	R=f, CS=f, SS=t	R=f, CS=f, SS=f
δ_{call} 1(R)	Т	Т	Т	Т	Т	Т	Т	Т
δ_{call} 2(R)	Т	Т	Т	Т	Т	Т	Т	F
δ_{call} 3(R)	Т	Т	Т	Т	Т	Т	F	Т
δ_{call} 4(R)	Т	Т	Т	Т	Т	Т	F	F
δ_{call} 5(R)	Т	Т	Т	Т	Т	F	Т	Т
δ_{call} 256(R)	F	F	F	F	F	F	F	F

• If a decision D has k binary parents, how many assignments of values to the parents are there?

- If a decision D has k binary parents, how many assignments of values to the parents are there?
 - 2^k
- If there are b possible value for a decision variable, how many different decision functions are there for it if it has k binary parents?

$$2^{kp} b^{*}2^{k} b^{2^{k}} 2^{k^{b}}$$

- If a decision D has k binary parents, how many assignments of values to the parents are there?
 - 2^k
- If there are b possible value for a decision variable, how many different decision functions are there for it if it has k binary parents?
 - b^{2^k}, because there are 2^k possible instantiations for the parents and for every instantiation of those parents, the decision function could pick any of b values
- If there are *d* decision variables, each with *k* binary parents and *b* possible actions, how many policies are there?

- If a decision D has k binary parents, how many assignments of values to the parents are there?
 - 2^k
- If there are b possible value for a decision variable, how many different decision functions are there for it if it has k binary parents?
 - b^{2^k}, because there are 2^k possible instantiations for the parents and for every instantiation of those parents, the decision function could pick any of b values
- If there are d decision variables, each with k binary parents and b possible actions, how many policies are there?
 - (b^{2^k})^d, because there are b^{2^k} possible decision functions for each decision, and a policy is a combination of d such decision functions

Lecture Overview

- Recap: Single-Stage Decision Problems
 - Single-Stage decision networks
 - Variable elimination (VE) for computing the optimal decision
- Sequential Decision Problems
 - General decision networks
 - Policies

Expected Utility and Optimality of Policies

- Computing the Optimal Policy by Variable Elimination
- Summary & Perspectives

Possible worlds satisfying a policy

Definition (Satisfaction of a policy)

A possible world w satisfies a policy π , written w $\models \pi$, if the value of each decision variable in w is the value selected by its decision function in policy π (when applied to w)

- Consider our previous example policy:
 - Check smoke (i.e. set CheckSmoke=true) if and only if Report=true
 - Call if and only if Report=true, CheckSmoke=true, SeeSmoke=true
- Does the following possible world satisfy this policy?

 tampering, fire, alarm, leaving, report, smoke, checkSmoke, seeSmoke, call

Possible worlds satisfying a policy

Definition (Satisfaction of a policy)

A possible world w satisfies a policy π , written w $\models \pi$, if the value of each decision variable in w is the value selected by its decision function in policy π (when applied to w)

- Consider our previous example policy:
 - Check smoke (i.e. set CheckSmoke=true) if and only if Report=true
 - Call if and only if Report=true, CheckSmoke=true, SeeSmoke=true
- Do the following possible worlds satisfy this policy?
 ¬tampering, fire, alarm, leaving, report, smoke, checkSmoke, seeSmoke, call
 - Yes! Conditions are satisfied for each of the policy's decision functions

-tampering, fire, alarm, leaving, report, smoke, checkSmoke, seeSmoke, -call

Possible worlds satisfying a policy

Definition (Satisfaction of a policy)

A possible world w satisfies a policy π , written w $\models \pi$, if the value of each decision variable in w is the value selected by its decision function in policy π (when applied to w)

• Consider our previous example policy:

Yes

No

- Check smoke (i.e. set CheckSmoke=true) if and only if Report=true
- Call if and only if Report=true, CheckSmoke=true, SeeSmoke=true
- Do the following possible worlds satisfy this policy?

 tampering, fire, alarm, leaving, report, smoke, checkSmoke, seeSmoke, call
 - Yes! Conditions are satisfied for each of the policy's decision functions

-tampering, fire, alarm, leaving, report, smoke, checkSmoke, seeSmoke, -call

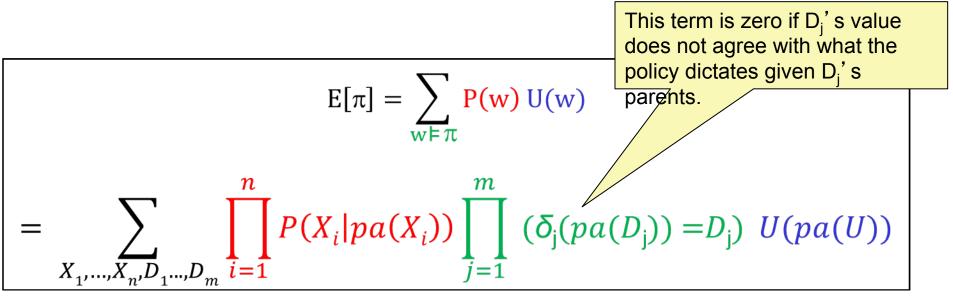
• No! The policy says to call if Report and CheckSmoke and SeeSmoke all true

-tampering,fire,alarm,leaving,-report,-smoke,-checkSmoke,-seeSmoke,-call

• Yes! Policy says to neither check smoke nor call when there is no report

Expected utility of a policy

Definition (expected utility of a policy) The expected utility $E[\pi]$ of a policy π is: $E[\pi] = \sum_{w \models \pi} P(w) U(w)$



Optimality of a policy

Definition (expected utility of a policy) The expected utility $E[\pi]$ of a policy π is: $E[\pi] = \sum_{w \models \pi} P(w) U(w)$

Definition (optimal policy) An optimal policy π_{max} is a policy whose expected utility is maximal among all possible policies \prod : $\pi_{max} \in \operatorname*{argmax}_{\pi \in \prod} E[\pi]$ $\pi \in \prod$

Lecture Overview

- Recap: Single-Stage Decision Problems
 - Single-Stage decision networks
 - Variable elimination (VE) for computing the optimal decision
- Sequential Decision Problems
 - General decision networks
 - Policies
- Expected Utility and Optimality of Policies

Computing the Optimal Policy by Variable Elimination

• Summary & Perspectives

One last operation on factors: maxing out a variable

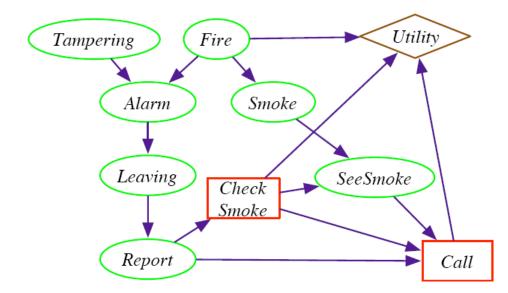
- Maxing out a variable is similar to marginalization
 - But instead of taking the sum of some values, we take the max

One last operation on factors: maxing out a variable

- Maxing out a variable is similar to marginalization
 - But instead of taking the sum of some values, we take the max

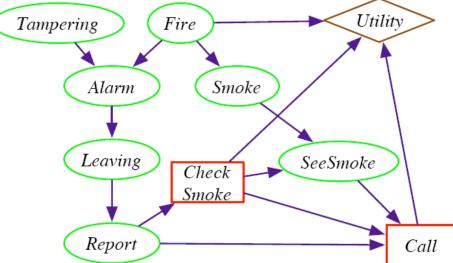
The no-forgetting property

- A decision network has the no-forgetting property if
 - Decision variables are totally ordered: $D_1, ..., D_m$
 - If a decision D_i comes before D_j , then
 - D_i is a parent of D_j
 - any parent of D_i is a parent of D_i



Idea for finding optimal policies with VE

- Idea for finding optimal policies with variable elimination (VE): Dynamic programming: precompute optimal future decisions
 - Consider the last decision D to be made
 - Find optimal decision D=d for each instantiation of D's parents
 - For each instantiation of D's parents, this is just a single-stage decision problem
 - Create a factor of these maximum values: max out D
 - I.e., for each instantiation of the parents, what is the best utility I can achieve by making this last decision optimally?
 - Recurse to find optimal policy for reduced network (now one less decision)

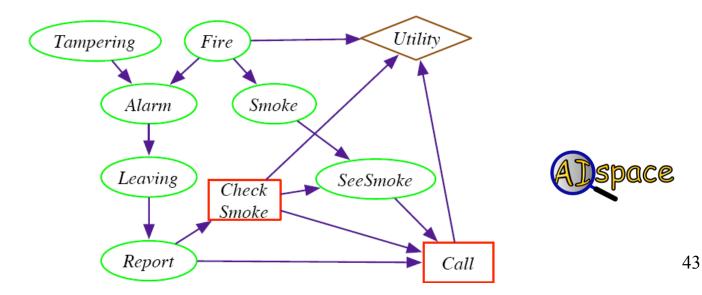


Finding optimal policies with VE

- 1. Create a factor for each CPT and a factor for the utility
- 2. While there are still decision variables
 - 2a: Sum out random variables that are not parents of a decision node.
 - E.g Tampering, Fire, Alarm, Smoke, Leaving
 - 2b: Max out last decision variable D in the total ordering
 - Keep track of decision function
- 3. Sum out any remaining variable:

this is the expected utility of the optimal policy.

This is Algorithm VE_DN in P&M, Section 9.3.3, p. 393



Computational complexity of VE for finding optimal policies

• We saw:

For *d* decision variables (each with *k* binary parents and *b* possible actions), there are $(b^{2^k})^d$ policies

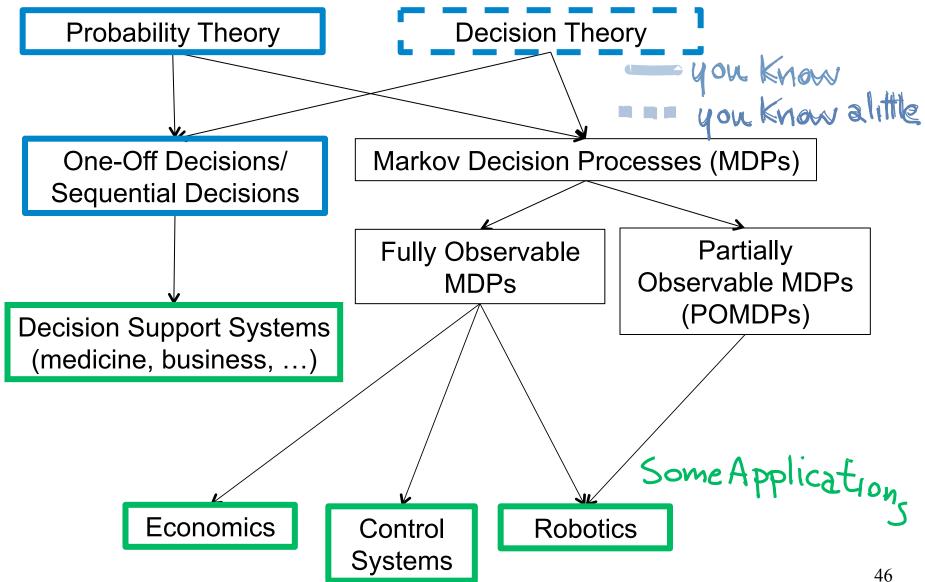
- All combinations of (b^{2^k}) decision functions per decision
- Variable elimination saves the final exponent:
 - Dynamic programming: consider each decision functions only once
 - Resulting complexity: $O(d * b^{2^k})$
 - Much faster than enumerating policies (or search in policy space), but still doubly exponential
 - CS422: approximation algorithms for finding optimal policies

Lecture Overview

- Recap: Single-Stage Decision Problems
 - Single-Stage decision networks
 - Variable elimination (VE) for computing the optimal decision
- Sequential Decision Problems
 - General decision networks
 - Policies
- Expected Utility and Optimality of Policies
- Computing the Optimal Policy by Variable Elimination

Summary & Perspectives

Big Picture: Planning under Uncertainty



Decision Theory: Decision Support Systems

E.g., Computational Sustainability

- New interdisciplinary field, AI is a key component
 - Models and methods for decision making concerning the management and allocation of resources
 - to solve most challenging problems related to sustainability
- Often constraint optimization problems. E.g.
 - Energy: when are where to produce green energy most economically?
 - Which parcels of land to purchase to protect endangered species?
 - Urban planning: how to use budget for best development in 30 years?

Source: http://www.computational-sustainability.org/ 47

Planning Under Uncertainty

- Learning and Using POMDP models of Patient-Caregiver Interactions During Activities of Daily Living
- Goal: Help older adults living with cognitive disabilities (such as Alzheimer's) when they:
 - forget the proper sequence of tasks that need to be completed
 - lose track of the steps that they have already completed

Source: Jesse Hoey UofT 2007

Planning Under Uncertainty

Helicopter control: MDP, reinforcement learning

(states: all possible positions, orientations, velocities and angular velocities)

Source: Andrew Ng

Planning Under Uncertainty

Autonomous driving: DARPA Urban Challenge - Stanford's Junior

Source: Sebastian Thrun

Learning Goals For Today's Class

- Sequential decision networks
 - Represent sequential decision problems as decision networks
 - Explain the non forgetting property
- Policies
 - Verify whether a possible world satisfies a policy
 - Define the expected utility of a policy
 - Compute the number of policies for a decision problem
 - Compute the optimal policy by Variable Elimination