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Announcements (1) 
•  Assignment 4 was due today. 
•  The list of short questions for the final is online … please 

use it! 
•  Please submit suggested review topics on Connect for 

review lecture(s). 
•  Previous final has been posted. 
•  Additional review lecture(s) and TA hours will be scheduled 

before the final, if needed.  
•  TA hours to continue as scheduled during exam period, 

unless as posted otherwise to Connect. 
•  Exercise 12, for single-stage Decision Networks,  and 

Exercise 13, for multi-stage Decision Networks, have been 
posted on the home page along with AIspace auxiliary 
files. 



Announcements (2)  
 
•  Teaching Evaluations are online 

–  You should have received a message about them 
–  Secure, confidential, mobile access 

•  Your feedback is important! 
–  Allows us to assess and improve the course material 
–  I use it to assess and improve my teaching methods 
–  The department as a whole uses it to shape the curriculum 
–  Teaching evaluation results are important for instructors 

•  Appointment, reappointment, tenure, promotion and merit, salary 
–  UBC takes them very seriously (now) 
–  Evaluations close at 11:59PM on April 9, 2013. 

•  Before exam, but instructors can’t see results until after we submit grades 
–  Please do it! 

•  Take a few minutes and visit https://eval.olt.ubc.ca/science 
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Lecture Overview 

•  Recap: Single-Stage Decision Problems 
–  Single-Stage decision networks 
–  Variable elimination (VE) for computing the optimal decision 

•  Sequential Decision Problems 
–  General decision networks 
–  Policies 

 

•  Expected Utility and Optimality of Policies 

•  Computing the Optimal Policy by Variable Elimination 

•  Summary & Perspectives 
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Recap: Single vs. Sequential Actions 
•   Single Action (aka One-Off Decisions) 

–  One or more primitive decisions that can be treated as a single macro 
decision to be made before acting 

•   Sequence of Actions (Sequential Decisions) 
–   Repeat: 

•  observe 
•  act 

–   Agent has to take actions not knowing what the future brings 
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Recap: Optimal single-stage decisions 

0.01 
0.99 

0.2 

0.8 

0.01 
0.99 

0.2 

0.8 

Utility 
35 35 
95 

Conditional  
probability E[U|D] 

83 

35 30 
75 

35 3 
100 

35 0 
80 

74.55 

80.6 

79.2 

Best decision: (wear pads, short way) 



Recap: Single-Stage decision networks 

•  Compact and explicit representation 
–  Compact: each random/decision variable only occurs once 
–  Explicit: dependences are made explicit 

•  e.g., which variables affect the probability of an accident? 

•  Extension of Bayesian networks with 
–  Decision variables 
–  A single utility node 
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Recap: Types of nodes in decision networks 
•  A random variable is drawn as an ellipse. 

–  Parents pa(X): encode dependence 
Conditional probability p( X | pa(X) ) 
Random variable X is conditionally independent  
of its non-descendants given its parents 

–  Domain: the values it can take at random 

•  A decision variable is drawn as an rectangle.  
–  Parents pa(D) 

information available when decision D is made 
•  Single-stage: pa(D) only includes decision variables 

–  Domain: the values the agents can choose (actions) 

•  A utility node is drawn as a diamond. 
–  Parents pa(U): variables utility directly depends on 

•  utility U( pa(U) ) for each instantiation of its parents 
–  Domain: does not have a domain! 
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Lecture Overview 

•  Recap: Single-Stage Decision Problems 
–  Single-Stage decision networks 
–  Variable elimination (VE) for computing the optimal decision 

•  Sequential Decision Problems 
–  General decision networks 
–  Policies 

 

•  Expected Utility and Optimality of Policies 

•  Computing the Optimal Policy by Variable Elimination 

•  Summary & Perspectives 
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Computing the optimal decision: we can use VE 

•  Denote 
–  the random variables as X1, …, Xn  
–  the decision variables as D 
–  the parents of node N as pa(N) 

•  To find the optimal decision we can use VE: 
1. Create a factor for each conditional probability and for the utility 
2. Sum out all random variables, one at a time 

•  This creates a factor on D that gives the expected utility for each di  

3. Choose the di with the maximum value in the factor 
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VE Example: Step 1, create initial factors 

11 

Which way W    Accident A      Pads P Utility 

long                    true                true   
long                    true                false 
long                    false               true 
long                    false               false 
short                   true                true 
short                   true                false 
short                   false              true 
short                   false              false 

30 
0  
75  
80 
35 
3 
95  
100 

Which Way W Accident A P(A|W) 
long 
long  
short 
short 

true  
false  
true  
false 

0.01  
0.99  
0.2  
0.8 

f1(A,W) 

f2(A,W,P) 

∑=
A

PWAUWAPUE ),,()|()(

∑=
A

PWAfWAf ),,(),( 21

Abbreviations: 
W = Which Way 
P  = Wear Pads 
A  = Accident 



VE example: step 2, sum out A 
Step 2a: compute product 
f1(A,W) × f2(A,W,P) 

What is the right form for the product f1(A,W) × f2(A,W,P)? 
 

f(A,P) f (A,W) f(A) f(A,P,W) 
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VE example: step 2, sum out A 

What is the right form for the product f1(A,W) × f2(A,W,P)? 
• It is f(A,P,W):  
the domain of the product is the union of the multiplicands’ domains 
• f(A,P,W)  =  f1(A,W) × f2(A,W,P) 

–  I.e., f(A=a,P=p,W=w)  =  f1(A=a,W=w) × f2(A=a,W=w,P=p) 
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Step 2a: compute product 
f(A,W,P) = f1(A,W) × f2(A,W,P) 
   



Which way W   Accident A     Pads P f(A,W,P) 
long                 true                 true   
long                 true                 false 
long                 false               true 
long                 false               false 
short                true                true 
short                true                false 
short                false              true 
short                false              false 

0.01 * 30 
 
 
??? 

VE example: step 2, sum out A 
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Which way W   Accident A     Pads P f2(A,W,P) 

long                 true                 true   
long                 true                 false 
long                 false               true 
long                 false               false 
short                true                true 
short                true                false 
short                false              true 
short                false              false 

30 
0  
75  
80 
35 
3 
95  
100 

Which way W Accident A f1(A,W)  
long 
long  
short 
short 

true  
false  
true  
false 

0.01  
0.99  
0.2  
0.8 

f (A=a,P=p,W=w)  =  f1(A=a,W=w) × f2(A=a,W=w,P=p) 

0.01 * 80 0.99 * 30 

0.99 * 80 0.8 * 30 

Step 2a: compute product 
f(A,W,P) = f1(A,W) × f2(A,W,P) 
   



Which way W   Accident A     Pads P f(A,W,P) 
long                 true                 true   
long                 true                 false 
long                 false               true 
long                 false               false 
short                true                true 
short                true                false 
short                false              true 
short                false              false 

0.01 * 30 
0.01*0 
0.99*75 
0.99*80 
0.2*35 
0.2*3 
0.8*95  
0.8*100 

VE example: step 2, sum out A 
Step 2a: compute product 
f(A,W,P) = f1(A,W) × f2(A,W,P) 
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Which way W   Accident A     Pads P f2(A,W,P) 

long                 true                 true   
long                 true                 false 
long                 false               true 
long                 false               false 
short                true                true 
short                true                false 
short                false              true 
short                false              false 

30 
0  
75  
80 
35 
3 
95  
100 

f (A=a,P=p,W=w)  =  f1(A=a,W=w) × f2(A=a,W=w,P=p) 
Which way W Accident A f1(A,W)  
long 
long  
short 
short 

true  
false  
true  
false 

0.01  
0.99  
0.2  
0.8 



VE example: step 2, sum out A 
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Step 2b: sum A out of the 
product f(A,W,P): 
   

Which way W Pads P f3(W,P) 
long 
long  
short 
short 

true  
false  
true  
false 

0.01*30+0.99*75=74.55 
 
?? 

∑=
A

3 )PW,A,(f  P)(W,f

0.99*80 + 0.8*95 

0.2*35 + 0.2*0.3 

0.2*35 + 0.8*95 

0.8 * 95 + 0.8*100 

Which way W   Accident A     Pads P f(A,W,P) 
long                 true                 true   
long                 true                 false 
long                 false               true 
long                 false               false 
short                true                true 
short                true                false 
short                false              true 
short                false              false 

0.01 * 30 
0.01*0 
0.99*75 
0.99*80 
0.2*35 
0.2*3 
0.8*95  
0.8*100 



VE example: step 2, sum out A 
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Which way W Pads P f3(W,P) 
long 
long  
short 
short 

true  
false  
true  
false 

0.01*30+0.99*75=74.55 
0.01*0+0.99*80=79.2 
0.2*35+0.8*95=83 
0.2*3+0.8*100=80.6 

Which way W   Accident A     Pads P f(A,W,P) 
long                 true                 true   
long                 true                 false 
long                 false               true 
long                 false               false 
short                true                true 
short                true                false 
short                false              true 
short                false              false 

0.01 * 30 
0.01*0 
0.99*75 
0.99*80 
0.2*35 
0.2*3 
0.8*95  
0.8*100 

Step 2b: sum A out of the 
product f(A,W,P): 
   ∑=

A
3 )PW,A,(f  P)(W,f



The final factor encodes the  
expected utility of each decision 
•  Thus, taking the short way but wearing pads is the best choice, with an 

expected utility of 83 

VE example: step 3, choose decision with max E(U) 
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Which way W Pads P f3(W,P) 
long 
long  
short 
short 

true  
false  
true  
false 

0.01*30+0.99*75=74.55 
0.01*0+0.99*80=79.2 
0.2*35+0.8*95=83 
0.2*3+0.8*100=80.6 

Which way W   Accident A     Pads P f(A,W,P) 
long                 true                 true   
long                 true                 false 
long                 false               true 
long                 false               false 
short                true                true 
short                true                false 
short                false              true 
short                false              false 

0.01 * 30 
0.01*0 
0.99*75 
0.99*80 
0.2*35 
0.2*3 
0.8*95  
0.8*100 

Step 2b: sum A out of the 
product f(A,W,P): 
   ∑=

A
3 )PW,A,(f  P)(W,f



 
Variable Elimination for Single-Stage 

Decision Networks: Summary 
1.  Create a factor for each conditional probability  

and for the utility 
2.  Sum out all random variables, one at a time 

–  This creates a factor on D that gives the expected utility for each di 
3.  Choose the di with the maximum value in the factor 

This is Algorithm OptimizeSSDN, in P&M, Section 9.2.1, p.387 
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•  Compare and contrast stochastic single-stage (one-off) 
decisions vs. multistage (sequential) decisions 

•  Define a Utility Function on possible worlds 
•  Define and compute optimal one-off decisions 
•  Represent one-off decisions as single stage decision networks  
•  Compute optimal decisions by Variable Elimination 
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Learning Goals So Far For Decisions 



Lecture Overview 

•  Recap: Single-Stage Decision Problems 
–  Single-Stage decision networks 
–  Variable elimination (VE) for computing the optimal decision 

•  Sequential Decision Problems 
–  General decision networks 
–  Policies 

 

•  Expected Utility and Optimality of Policies 

•  Computing the Optimal Policy by Variable Elimination 

•  Summary & Perspectives 
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Sequential Decision Problems 
•   An intelligent agent doesn't make a multi-step decision 

 and carry it out blindly 
–  It would take new observations it makes into account 

•   A more typical scenario: 
–  The agent observes, acts, observes, acts, … 

•   Subsequent actions can depend on what is observed 
–  What is observed often depends on previous actions 
–  Often the sole reason for carrying out an action is to provide 

information for future actions 
•  For example: diagnostic tests, spying 

•  General Decision networks: 
–  Just like single-stage decision networks, with one exception: 

the parents of decision nodes can include random variables 
22 



Sequential Decision Problems: Example 
•  Example for sequential decision problem 

–  Treatment depends 
on Test Result (& others) 

 

•  Each decision Di has an information set of variables pa(Di), 
whose value will be known at the time decision Di is made 
–  pa(Test) = {Symptoms} 
–  pa(Treatment) = {Test, Symptoms, TestResult} 

Decision node: Agent decides 

Chance node: Chance decides 



•  Another example for sequential decision problems 
–  Call depends on 

Report and SeeSmoke 
(and on CheckSmoke) 

 

Sequential Decision Problems: Example 

Decision node: Agent decides 

Chance node: Chance decides 



Sequential Decision Problems 
•  What should an agent do? 

–  What an agent should do depends on what it will do in the future 
•  E.g. agent only needs to check for smoke if that will affect whether it calls 

–  What an agent does in the future depends on what it did before 
•  E.g. when making the decision it needs to know whether it checked for 

smoke 
–  We will get around this problem as follows 

•  The agent has a conditional plan of what it will do in the future 
•  We will formalize this conditional plan as a policy  
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Policies for Sequential Decision Problems 

This policy means that when the agent has observed 
     o ∈ dom(pa(Di )) , it will do δi(o) 

CheckSmoke 

Report δcs1           δcs2        δcs3             δcs4 
T T T F F 

F T F T F 

Call 

Definition (Policy) 
A policy is a sequence of  δ1 ,….., δn decision functions 

    δi : dom(pa(Di )) → dom(Di)  

There are 22=4 possible decision 
functions δcs for Check Smoke: 
• Decision function needs to specify a value 
for each instantiation of parents 



R=t, 
CS=t, 
SS=t"

R=t, 
CS=t, 
SS=f"

R=t, 
CS=f, 
SS=t"

R=t, 
CS=f, 
SS=f"

R=f, 
CS=t, 
SS=t"

R=f, 
CS=t, 
SS=f"

R=f, 
CS=f, 
SS=t"

R=f, 
CS=f, 
SS=f"

δcall1(R)  T T T T T T T" T"
δcall2(R) T T T T T T T" F"
δcall3(R) T T T T T T F" T"
δcall4(R) T T T T T T F" F"
δcall5(R) T T T T T F T" T"
… … …" …" …" …" …" …" …"

δcall256(R) F F" F" F" F" F" F" F"

R=t, 
CS=t, 
SS=t"

R=t, 
CS=t, 
SS=f"

R=t, 
CS=f, 
SS=t"

R=t, 
CS=f, 
SS=f"

R=f, 
CS=t, 
SS=t"

R=f, 
CS=t, 
SS=f"

R=f, 
CS=f, 
SS=t"

R=f, 
CS=f, 
SS=f"

δcall1(R)  T T T T T T T" T"
δcall2(R) T T T T T T T" F"
δcall3(R) T T T T T T F" T"
δcall4(R) T T T T T T F" F"
δcall5(R) T T T T T F T" T"
… … …" …" …" …" …" …" …"

δcall256(R) F F" F" F" F" F" F" F"

R=t, 
CS=t, 
SS=t"

R=t, 
CS=t, 
SS=f"

R=t, 
CS=f, 
SS=t"

R=t, 
CS=f, 
SS=f"

R=f, 
CS=t, 
SS=t"

R=f, 
CS=t, 
SS=f"

R=f, 
CS=f, 
SS=t"

R=f, 
CS=f, 
SS=f"

δcall1(R)  T T T T T T T" T"
δcall2(R) T T T T T T T" F"
δcall3(R) T T T T T T F" T"
δcall4(R) T T T T T T F" F"
δcall5(R) T T T T T F T" T"
… … …" …" …" …" …" …" …"

δcall256(R) F F" F" F" F" F" F" F"

R=t, 
CS=t, 
SS=t"

R=t, 
CS=t, 
SS=f"

R=t, 
CS=f, 
SS=t"

R=t, 
CS=f, 
SS=f"

R=f, 
CS=t, 
SS=t"

R=f, 
CS=t, 
SS=f"

R=f, 
CS=f, 
SS=t"

R=f, 
CS=f, 
SS=f"

δcall1(R)  T T T T T T T" T"
δcall2(R) T T T T T T T" F"
δcall3(R) T T T T T T F" T"
δcall4(R) T T T T T T F" F"
δcall5(R) T T T T T F T" T"
… … …" …" …" …" …" …" …"

δcall256(R) F F" F" F" F" F" F" F"

Policies for Sequential Decision Problems 
Definition (Policy) 
A policy π is a sequence of  δ1 ,….., δn decision functions 

    δi : dom(pa(Di )) → dom(Di)  

There are 28=256 possible decision functions δcs for Call: 

I.e., when the agent has observed o ∈ dom(pDi ) , it will do δi(o) 
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How many policies are there? 
•  If a decision D has k binary parents, how many 

assignments of values to the parents are there?  

28 

k2 2k 2+k 2k 



How many policies are there? 
•  If a decision D has k binary parents, how many 

assignments of values to the parents are there?  
–  2k 

•  If there are b possible value for a decision variable, how 
many different decision functions are there for it if it has k 
binary parents?  

29 
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How many policies are there? 
•  If a decision D has k binary parents, how many 

assignments of values to the parents are there?  
–  2k 

•  If there are b possible value for a decision variable, how 
many different decision functions are there for it if it has k 
binary parents?  
–  b2k, because there are 2k possible instantiations for the parents and 

for every instantiation of those parents, the decision function could 
pick any of b values 

•  If there are d decision variables, each with k  binary parents 
and b possible actions, how many policies are there? 

30 
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How many policies are there? 
•  If a decision D has k binary parents, how many  

assignments of values to the parents are there?  
–  2k 

•  If there are b possible value for a decision variable, how 
many different decision functions are there for it if it has k 
binary parents?  
–  b2k, because there are 2k possible instantiations for the parents and 

for every instantiation of those parents, the decision function could 
pick any of b values 

•  If there are d decision variables, each with k  binary parents 
and b possible actions, how many policies are there? 
–  (b2k)d, because there are b2k possible decision functions for each 

decision, and a policy is a combination of d such decision functions 



Lecture Overview 

•  Recap: Single-Stage Decision Problems 
–  Single-Stage decision networks 
–  Variable elimination (VE) for computing the optimal decision 

•  Sequential Decision Problems 
–  General decision networks 
–  Policies 

 

•  Expected Utility and Optimality of Policies 

•  Computing the Optimal Policy by Variable Elimination 

•  Summary & Perspectives 
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Possible worlds satisfying a policy 

33 

Definition (Satisfaction of a policy) 
A possible world w satisfies a policy π, written w ⊧ π, if the 
value of each decision variable in w is the value selected 
by its decision function in policy π (when applied to w) 

•  Consider our previous example policy: 
–  Check smoke (i.e. set CheckSmoke=true) if and only if Report=true 
–  Call if and only if Report=true, CheckSmoke=true, SeeSmoke=true 

•  Does the following possible world satisfy this policy? 
¬tampering, fire, alarm, leaving, report, smoke, checkSmoke, seeSmoke, call 

No Yes 



Possible worlds satisfying a policy 
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Definition (Satisfaction of a policy) 
A possible world w satisfies a policy π, written w ⊧ π, if the 
value of each decision variable in w is the value selected 
by its decision function in policy π (when applied to w) 

•  Consider our previous example policy: 
–  Check smoke (i.e. set CheckSmoke=true) if and only if Report=true 
–  Call if and only if Report=true, CheckSmoke=true, SeeSmoke=true 

•  Do the following possible worlds satisfy this policy? 
¬tampering, fire, alarm, leaving, report, smoke, checkSmoke, seeSmoke, call 

•  Yes! Conditions are satisfied for each of the policy’s decision functions 

¬tampering, fire, alarm, leaving, report, smoke, checkSmoke, seeSmoke, ¬call 
No Yes 



Possible worlds satisfying a policy 
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Definition (Satisfaction of a policy) 
A possible world w satisfies a policy π, written w ⊧ π, if the 
value of each decision variable in w is the value selected 
by its decision function in policy π (when applied to w) 

•  Consider our previous example policy: 
–  Check smoke (i.e. set CheckSmoke=true) if and only if Report=true 
–  Call if and only if Report=true, CheckSmoke=true, SeeSmoke=true 

•  Do the following possible worlds satisfy this policy? 
¬tampering, fire, alarm, leaving, report, smoke, checkSmoke, seeSmoke, call 

•  Yes! Conditions are satisfied for each of the policy’s decision functions 

¬tampering, fire, alarm, leaving, report, smoke, checkSmoke, seeSmoke, ¬call 
•  No! The policy says to call if Report and CheckSmoke and SeeSmoke all true 

¬tampering,fire,alarm,leaving,¬report,¬smoke,¬checkSmoke,¬seeSmoke,¬call 
•  Yes! Policy says to neither check smoke nor call when there is no report No Yes 



Expected utility of a policy 

36 

This term is zero if Dj’s value  
does not agree with what the 
policy dictates given Dj’s 
parents. 



Optimality of a policy 
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Lecture Overview 

•  Recap: Single-Stage Decision Problems 
–  Single-Stage decision networks 
–  Variable elimination (VE) for computing the optimal decision 

•  Sequential Decision Problems 
–  General decision networks 
–  Policies 

 

•  Expected Utility and Optimality of Policies 

•  Computing the Optimal Policy by Variable Elimination 

•  Summary & Perspectives 
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One last operation on factors: maxing out a variable 

•  Maxing out a variable is similar to marginalization 
–  But instead of taking the sum of some values, we take the max 

 

B A C f3(A,B,C) 
t t t 0.03 
t t f 0.07 
f t t 0.54 
f t f 0.36 
t f t 0.06 
t f f 0.14 
f f t 0.48 
f f f 0.32 

A C f4(A,C) 

t t 0.54 

t f 0.36 

f t ? 

f f 

maxB f3(A,B,C) = f4(A,C)  

( )( ) ),,,(max,,max 21)(2 11 jXdomxjX XXxXfXX …… == ∈

0.48 0.32 0.06 0.14 
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One last operation on factors: maxing out a variable 

•  Maxing out a variable is similar to marginalization 
–  But instead of taking the sum of some values, we take the max 

 

B A C f3(A,B,C) 
t t t 0.03 
t t f 0.07 
f t t 0.54 
f t f 0.36 
t f t 0.06 
t f f 0.14 
f f t 0.48 
f f f 0.32 

A C f4(A,C) 

t t 0.54 

t f 0.36 

f t 0.48 

f f 0.32 

maxB f3(A,B,C) = f4(A,C)  

( )( ) ),,,(max,,max 21)(2 11 jXdomxjX XXxXfXX …… == ∈
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The no-forgetting property 

•  A decision network has the no-forgetting property if 
–  Decision variables are totally ordered: D1, …, Dm  
–  If a decision Di comes before Dj ,then  

•  Di is a parent of Dj   
•  any parent of Di is a parent of Dj  

41 



Idea for finding optimal policies with VE 
•  Idea for finding optimal policies with variable elimination (VE): 

Dynamic programming: precompute optimal future decisions 
–  Consider the last decision D to be made 

•  Find optimal decision D=d for each instantiation of D’s parents  
–  For each instantiation of D’s parents, this is just a single-stage decision 

problem 
•  Create a factor of these maximum values: max out D 

–  I.e., for each instantiation of the parents, what is the best utility I can achieve by 
making this last decision optimally? 

•  Recurse to find optimal policy for reduced network (now one less decision) 
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Finding optimal policies with VE 
1.  Create a factor for each CPT and a factor for the utility 
2.  While there are still decision variables 

–  2a:  Sum out random variables that are not parents of a decision node. 
•  E.g Tampering, Fire, Alarm, Smoke, Leaving 

–  2b: Max out last decision variable D in the total ordering 
•  Keep track of decision function 

3.  Sum out any remaining variable:  
this is the expected utility of the optimal policy. 

This is Algorithm VE_DN in P&M, Section 9.3.3, p. 393 
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Computational complexity of VE for 

finding optimal policies 

•  We saw: 
For d decision variables (each with k binary parents and  
b possible actions), there are (b2k)d policies 
–  All combinations of (b2k) decision functions per decision 

•  Variable elimination saves the final exponent: 
–  Dynamic programming: consider each decision functions only once 
–  Resulting complexity: O(d * b2k) 

–  Much faster than enumerating policies (or search in policy space), 
but still doubly exponential 

–  CS422: approximation algorithms for finding optimal policies 
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Lecture Overview 

•  Recap: Single-Stage Decision Problems 
–  Single-Stage decision networks 
–  Variable elimination (VE) for computing the optimal decision 

•  Sequential Decision Problems 
–  General decision networks 
–  Policies 

 

•  Expected Utility and Optimality of Policies 

•  Computing the Optimal Policy by Variable Elimination 

•  Summary & Perspectives 
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Markov Decision Processes (MDPs) 

Big Picture: Planning under Uncertainty 

Fully Observable 
MDPs 

Partially  
Observable MDPs 

(POMDPs)  

One-Off Decisions/ 
Sequential Decisions 

Probability Theory Decision Theory 

Decision Support Systems 
(medicine, business, …) 

Economics Control 
Systems 

Robotics 
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Decision Theory: Decision Support Systems 

E.g., Computational Sustainability 
•  New interdisciplinary field, AI is a key component 

–  Models and methods for decision making concerning the management 
and allocation of resources 

–  to solve most challenging problems related to sustainability 
•  Often constraint optimization problems. E.g. 

–  Energy: when are where to produce green energy most economically? 
–  Which parcels of land to purchase to protect endangered species? 
–  Urban planning: how to use budget for best development in 30 years? 

47 Source: http://www.computational-sustainability.org/ 



Planning Under Uncertainty 
•  Learning and Using  

POMDP models of  
Patient-Caregiver Interactions 
During Activities of Daily Living  

•  Goal: Help older adults living 
with cognitive disabilities (such 
as Alzheimer's) when they:  
–  forget the proper sequence of 

tasks that need to be completed 
–  lose track of the steps that they 

have already completed 
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Planning Under Uncertainty 

Source:  
Andrew  

Ng 

Helicopter control: MDP, reinforcement learning  
(states: all possible positions, orientations, velocities and angular velocities) 

 



Planning Under Uncertainty 
Autonomous driving: DARPA Urban Challenge – Stanford’s 

Junior 

Source:  
Sebastian  

Thrun 



•  Sequential decision networks 
–  Represent sequential decision problems as decision networks 
–  Explain the non forgetting property  

•  Policies 
–  Verify whether a possible world satisfies a policy 
–  Define the expected utility of a policy  
–  Compute the number of policies for  a decision problem 
–  Compute the optimal policy by Variable Elimination 
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Learning Goals For Today’s Class 


