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Announcements (1)  
 
•  Teaching Evaluations are online 

–  You should have received a message about them 
–  Secure, confidential, mobile access 

•  Your feedback is important! 
–  Allows us to assess and improve the course material 
–  I use it to assess and improve my teaching methods 
–  The department as a whole uses it to shape the curriculum 
–  Teaching evaluation results are important for instructors 

•  Appointment, reappointment, tenure, promotion and merit, salary 
–  UBC takes them very seriously (now) 
–  Evaluations close at 11:59PM on April 9, 2013. 

•  Before exam, but instructors can’t see results until after we submit grades 
–  Please do it! 

•  Take a few minutes and visit https://eval.olt.ubc.ca/science 
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Announcements (2) 
•  Assignment 4 due Wednesday, April 3rd,1pm 
•  Final exam  

–  Thursday, April 18th, 8:30am – 11am in PHRM 1101   
–  Same general format as midterm (~60% short questions) 

•  List of short questions is now on Connect 
–  Practice final is now available in Connect 
–  More emphasis on material after midterm 
–  How to study? 

•  Practice exercises, assignments, short questions,  
lecture notes, text, problems in text, learning goals … 

•  Use TA and my office hours (extra office hours TBA if needed) 
•  Review sessions: last class plus more TBA if needed 
•  Submit topics you want reviewed in response to message on Connect  
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Hints for Assignment 4 
•  Question 4 (Bayesian networks) 

–  “correctly represent the situation described above” means 
“do not make any independence assumptions that aren’t true” 

–  “(Hint: remember that Bayes nets do not necessarily encode 
causality.” 

–  Another hint: 
•  Step 1: identify the causal network 
•  Step 2: for each network, check if it entails (conditional or marginal) 

independencies the causal network does not entail. If so, it’s incorrect 
–  Failing to entail some (or all) independencies  does not make a 

network incorrect (only computationally suboptimal) 
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Lecture Overview 

•  Variable elimination: recap and some more details 
•  Variable elimination: pruning irrelevant variables 
•  Summary of Reasoning under Uncertainty 
•  Decision Theory  

–  Intro 
–  Time-permitting: Single-Stage Decision Problems 
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Recap: Factors and Operations on them 
•  A factor is a function from a tuple of random variables to 

the real numbers R 
•  Operation 1: assigning a variable in a factor 

–  E.g., assign X=t 

X Y Z f1(X,Y,Z) 
t t t 0.1 
t t f 0.9 
t f t 0.2 
t f f 0.8 
f t t 0.4 
f t f 0.6 
f f t 0.3 
f f f 0.7 

Y Z f2(Y,Z) 
t t 0.1 
t f 0.9 
f t 0.2 
f f 0.8 

Factor of Y,Z 

Factor of Y,X,Z 

f1(X,Y,Z)X=t = f2(Y,Z) 
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Recap: Factors and Operations on Them 
•  A factor is a function from a tuple of random variables to 

the real numbers R 
•  Operation 1: assigning a variable in a factor 

–  f2(Y,Z) = f1(X,Y,Z)X=t 
•  Operation 2: marginalize out a variable from a factor 

B A C f3(A,B,C) 
t t t 0.03 
t t f 0.07 
f t t 0.54 
f t f 0.36 
t f t 0.06 
t f f 0.14 
f f t 0.48 
f f f 0.32 

A C f4(A,C) 

t t 0.57 

t f 0.43 

f t 0.54 

f f 0.46 

∑B f3(A,B,C) = f4(A,C)  
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Recap: Operation 3: multiplying factors 

A B C f7(A,B,C) 
t t t 0.03 

t t f 0.1x0.7 

t f t 0.9x0.6 

t f f … 
f t t 
f t f 
f f t 
f f f 

A B f5(A,B) 

t t 0.1 

t f 0.9 

f t 0.2 

f f 0.8 

A C f6(A,C) 

t t 0.3 

t f 0.7 

f t 0.6 

f f 0.4 
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f5(A,B) × f6(B,C) = f7(A,B,C), i.e 
 

f5(A=a,B=b) × f6(B=b,C=c) = f7(A=a,B=b,C=c) 



Recap: Factors and Operations on Them 
•  A factor is a function from a tuple of random variables to 

the real numbers R 
•  Operation 1: assigning a variable in a factor 

–  E.g., f2(Y,Z) = f1(X,Y,Z)X=t 
•  Operation 2: marginalize out a variable from a factor 

–  E.g., f4(A,C) = ∑B f3(A,B,C) 
•  Operation 3: multiply two factors 

–  E.g. f7(A,B,C) = f5(A,B) × f6(B,C) 
•  That means, f7(A=a,B=b,C=c) = f5(A=a,B=b) × f6(B=b,C=c) 

•  If we assign variable A=a in factor f7(A,B), what is the 
correct form for the resulting factor? 

f(B) f(A) f(A,B) A number 
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Recap: Factors and Operations on Them 
•  A factor is a function from a tuple of random variables to 

the real numbers R 
•  Operation 1: assigning a variable in a factor 

–  E.g., f2(Y,Z) = f1(X,Y,Z)X=t 
•  Operation 2: marginalize out a variable from a factor 

–  E.g., f4(A,C) = ∑B f3(A,B,C) 
•  Operation 3: multiply two factors 

–  E.g. f7(A,B,C) = f5(A,B) × f6(B,C) 
•  That means, f7(A=a,B=b,C=c) = f5(A=a,B=b) × f6(B=b,C=c) 

•  If we assign variable A=a in factor f7(A,B), what is the correct 
form for the resulting factor? 
–  f(B).  

When we assign variable A we remove it from the factor’s domain 
10 



Recap: Factors and Operations on Them 
•  A factor is a function from a tuple of random variables to 

the real numbers R 
•  Operation 1: assigning a variable in a factor 

–  E.g., f2(Y,Z) = f1(X,Y,Z)X=t 
•  Operation 2: marginalize out a variable from a factor 

–  E.g., f4(A,C) = ∑B f3(A,B,C) 
•  Operation 3: multiply two factors 

–  E.g. f7(A,B,C) = f5(A,B) × f6(B,C) 
•  That means, f7(A=a,B=b,C=c) = f5(A=a,B=b) × f6(B=b,C=c) 

•  If we marginalize variable A out from factor f7(A,B), what is 
the correct form for the resulting factor? 

f(B) f(A) f(A,B) A number 
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Recap: Factors and Operations on Them 
•  A factor is a function from a tuple of random variables to  

the real numbers R 
•  Operation 1: assigning a variable in a factor 

–  E.g., f2(Y,Z) = f1(X,Y,Z)X=t 
•  Operation 2: marginalize out a variable from a factor 

–  E.g., f4(A,C) = ∑B f3(A,B,C) 
•  Operation 3: multiply two factors 

–  E.g. f7(A,B,C) = f5(A,B) × f6(B,C) 
•  That means, f7(A=a,B=b,C=c) = f5(A=a,B=b) × f6(B=b,C=c) 

•  If we assign variable A=a in factor f7(A,B), what is the correct 
form for the resulting factor? 
–  f(B).  

When we marginalize out variable A we remove it from the factor’s 
domain 12 



Recap: Factors and Operations on Them 
•  A factor is a function from a tuple of random variables to 

the real numbers R 
•  Operation 1: assigning a variable in a factor 

–  E.g., f2(Y,Z) = f1(X,Y,Z)X=t 
•  Operation 2: marginalize out a variable from a factor 

–  E.g., f4(A,C) = ∑B f3(A,B,C) 
•  Operation 3: multiply two factors 

–  E.g. f7(A,B,C) = f5(A,B) × f6(B,C) 
•  That means, f7(A=a,B=b,C=c) = f5(A=a,B=b) × f6(B=b,C=c) 

•  If we multiply factors f4(X,Y) and f6(Z,Y), what is the correct 
form for the resulting factor? 

f(X) f(X,Z) f(X,Y) f(X,Y,Z) 
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Recap: Factors and Operations on Them 
•  A factor is a function from a tuple of random variables to 

the real numbers R 
•  Operation 1: assigning a variable in a factor 

–  E.g., f2(Y,Z) = f1(X,Y,Z)X=t 
•  Operation 2: marginalize out a variable from a factor 

–  E.g., f4(A,C) = ∑B f3(A,B,C) 
•  Operation 3: multiply two factors 

–  E.g. f7(A,B,C) = f5(A,B) × f6(B,C) 
•  That means, f7(A=a,B=b,C=c) = f5(A=a,B=b) × f6(B=b,C=c) 

•  If we multiply factors f4(X,Y) and f6(Z,Y), what is the correct 
form for the resulting factor? 
–  f(X,Y,Z) 
–  When multiplying factors, the resulting factor’s domain is the union 

of the multiplicands’ domains 14 



Recap: Factors and Operations on Them 
•  A factor is a function from a tuple of random variables to 

the real numbers R 
•  Operation 1: assigning a variable in a factor 

–  E.g., f2(Y,Z) = f1(X,Y,Z)X=t 
•  Operation 2: marginalize out a variable from a factor 

–  E.g., f4(A,C) = ∑B f3(A,B,C) 
•  Operation 3: multiply two factors 

–  E.g. f7(A,B,C) = f5(A,B) × f6(B,C) 
•  That means, f7(A=a,B=b,C=c) = f5(A=a,B=b) × f6(B=b,C=c) 

•  What is the correct form for ∑B f5(A,B) × f6(B,C) 
–  As usual, product before sum:  ∑B (  f5(A,B) × f6(B,C)   ) 

f(B) f(A,B,C) f(A,C) f(B,C) 
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Recap: Factors and Operations on Them 
•  A factor is a function from a tuple of random variables to 

the real numbers R 
•  Operation 1: assigning a variable in a factor 

–  E.g., f2(Y,Z) = f1(X,Y,Z)X=t 
•  Operation 2: marginalize out a variable from a factor 

–  E.g., f4(A,C) = ∑B f3(A,B,C) 
•  Operation 3: multiply two factors 

–  E.g. f7(A,B,C) = f5(A,B) × f6(B,C) 
•  That means, f7(A=a,B=b,C=c) = f5(A=a,B=b) × f6(B=b,C=c) 

•  What is the correct form for ∑B f5(A,B) × f6(B,C) 
–  As usual, product before sum:  ∑B ( f5(A,B) × f6(B,C) ) 
–  Result of multiplication: f(A,B,C). Then marginalize out B: f’(A,C) 
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Recap: Factors and Operations on Them 
•  A factor is a function from a tuple of random variables to  

the real numbers R 
•  Operation 1: assigning a variable in a factor 

–  E.g., f2(Y,Z) = f1(X,Y,Z)X=t 
•  Operation 2: marginalize out a variable from a factor 

–  E.g., f4(A,C) = ∑B f3(A,B,C) 
•  Operation 3: multiply two factors 

–  E.g. f7(A,B,C) = f5(A,B) × f6(B,C) 
•  That means, f7(A=a,B=b,C=c) = f5(A=a,B=b) × f6(B=b,C=c) 

•  Operation 4: normalize the factor 
–  Divide each entry by the sum of the entries. The result will sum to 1. 

A f8(A) 

t 0.4 

f 0.1 

A f9(A) 

t 0.4/(0.4+0.1) = 0.8 

f 0.1/(0.4+0.1) = 0.2 17 



Recap: General Inference in Bayesian Networks 

Given  
–  A Bayesian Network BN, and 
–  Observations of a subset of its variables E: E=e 
–  A subset of its variables Y that is queried 

Compute the conditional probability P(Y=y|E=e) 
 
 
 
 
 
All we need to compute is the  
joint probability of the query variable(s) and the evidence! 
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Marginalization over Y:  
P(E=e) = Σy’∈dom(Y) P(E=e,Y=y’) 
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Recap: Key Idea of Variable Elimination 
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Recap: Variable Elimination (VE) in BNs 
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VE_BN Algorithm 
1: Procedure VE_BN(Vs,Ps,O,Q)  
2:           Inputs 
3:                     Vs: set of variables  
4:                     Ps: set of factors representing the conditional probabilities  
5:                     O: set of observations of values on some of the variables  
6:                     Q: a query variable  
7:           Output 
8:                     posterior distribution on Q  
9:           Local 
10:                     Fs: a set of factors  
11:           Fs ←Ps  
12:           for each X∈Vs-{Q} using some elimination ordering do  
13:                     if (X is observed) then  
14:                               for each F ∈Fs that involves X do  
15:                                         set X in F to its observed value in O  
16:                                         project F onto remaining variables  
17:                     else 
18:                               Rs←{F ∈Fs: F  involves X}  
19:                               let T be the product of the factors in Rs  
20:                               N ←∑X T  
21:                               Fs←Fs \ Rs∪{N}  
22:           let T be the product of the factors in Rs  
23:           N ←∑Q T  
24:           return T/N 
 
                 Figure 6.8: Variable elimination for belief networks (P&M, Section 6.4.1, p. 254) 
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Recap: VE example: compute P(G|H=h1) 
Step 1: construct a factor for each cond. probability 

22 

 
P(G,H) = 

 ∑A,B,C,D,E,F,I f0(A) f1(B,A) f2(C) f3(D,B,C) f4(E,C) f5(F, D) f6(G,F,E) f7(H,G) f8(I,G) 



Recap: VE example: compute P(G|H=h1) 
Step 2: assign observed variables their observed value 

 
 
P(G,H=h1)=∑A,B,C,D,E,F,I f0(A) f1(B,A) f2(C) f3(D,B,C) f4(E,C)  

                             

                                                f5(F, D) f6(G,F,E) f9(G) f8(I,G)  
 
 

Assigning the variable H=h1: 
f9(G) =  f7(H,G) H=h1  
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P(G,H) = 

 ∑A,B,C,D,E,F,I f0(A) f1(B,A) f2(C) f3(D,B,C) f4(E,C) f5(F, D) f6(G,F,E) f7(H,G) f8(I,G) 



Recap: VE example: compute P(G|H=h1) 
Step 4: sum out non- query variables (one at a time) 

P(G,H=h1) = ∑A,B,C,D,E,F,I f0(A) f1(B,A) f2(C) f3(D,B,C) f4(E,C) f5(F, D) f6(G,F,E) f9(G) f8(I,G) 

Elimination ordering: A, C, E, I, B, D, F 24 



Recap: VE example: compute P(G|H=h1) 
Step 4: sum out non- query variables (one at a time) 

P(G,H=h1) = ∑A,B,C,D,E,F,I f0(A) f1(B,A) f2(C) f3(D,B,C) f4(E,C) f5(F, D) f6(G,F,E) f9(G) f8(I,G) 
 

                  = ∑B,C,D,E,F,I f2(C) f3(D,B,C) f4(E,C) f5(F, D) f6(G,F,E) f9(G) f8(I,G) f10(B) 

Elimination ordering: A, C, E, I, B, D, F 25 

Summing out variable A: 
∑A f0(A) f1(B,A) = f10(B)  

 



Recap: VE example: compute P(G|H=h1) 
Step 4: sum out non- query variables (one at a time) 

P(G,H=h1) = ∑A,B,C,D,E,F,I f0(A) f1(B,A) f2(C) f3(D,B,C) f4(E,C) f5(F, D) f6(G,F,E) f9(G) f8(I,G) 
 

                  = ∑B,C,D,E,F,I f2(C) f3(D,B,C) f4(E,C) f5(F, D) f6(G,F,E) f9(G) f8(I,G) f10(B) 
 

                  = ∑B,D,E,F,I f5(F, D) f6(G,F,E) f9(G) f8(I,G) f10(B)    f11(B,D,E) 

26 Elimination ordering: A, C, E, I, B, D, F 

Summing out variable C: 
∑C f2(C) f3(D,B,C) f4(E,C) = f11(B,D,E)  

 



Recap: VE example: compute P(G|H=h1) 
Step 4: sum out non- query variables (one at a time) 

P(G,H=h1) = ∑A,B,C,D,E,F,I f0(A) f1(B,A) f2(C) f3(D,B,C) f4(E,C) f5(F, D) f6(G,F,E) f9(G) f8(I,G) 
 

                  = ∑B,C,D,E,F,I f2(C) f3(D,B,C) f4(E,C) f5(F, D) f6(G,F,E) f9(G) f8(I,G) f10(B) 
 

                  = ∑B,D,E,F,I f5(F, D) f6(G,F,E) f9(G) f8(I,G) f10(B) f11(B,D,E) 
 

                  = ∑B,D,F,I f5(F, D) f9(G) f8(I,G) f10(B) f12(G,F,B,D)  
 

27 Elimination ordering: A, C, E, I, B, D, F 

Summing out variable E: 
∑E f6(G,F,E) f11(B,D,E) = f12(G,F,B,D)

 



Recap: VE example: compute P(G|H=h1) 
Step 4: sum out non- query variables (one at a time) 

P(G,H=h1) = ∑A,B,C,D,E,F,I f0(A) f1(B,A) f2(C) f3(D,B,C) f4(E,C) f5(F, D) f6(G,F,E) f9(G) f8(I,G) 
 

                  = ∑B,C,D,E,F,I f2(C) f3(D,B,C) f4(E,C) f5(F, D) f6(G,F,E) f9(G) f8(I,G) f10(B) 
 

                  = ∑B,D,E,F,I f5(F, D) f6(G,F,E) f9(G) f8(I,G) f10(B) f11(B,D,E) 
 

                  = ∑B,D,F,I f5(F, D) f9(G) f8(I,G) f10(B) f12(G,F,B,D)  
 

                  = ∑B,D,F f5(F, D) f9(G) f10(B) f12(G,F,B,D) f13(G) 
 

28 Elimination ordering: A, C, E, I, B, D, F 



Recap: VE example: compute P(G|H=h1) 
Step 4: sum out non- query variables (one at a time) 

P(G,H=h1) = ∑A,B,C,D,E,F,I f0(A) f1(B,A) f2(C) f3(D,B,C) f4(E,C) f5(F, D) f6(G,F,E) f9(G) f8(I,G) 
 

                  = ∑B,C,D,E,F,I f2(C) f3(D,B,C) f4(E,C) f5(F, D) f6(G,F,E) f9(G) f8(I,G) f10(B) 
 

                  = ∑B,D,E,F,I f5(F, D) f6(G,F,E) f9(G) f8(I,G) f10(B) f11(B,D,E) 
 

                  = ∑B,D,F,I f5(F, D) f9(G) f8(I,G) f10(B) f12(G,F,B,D)  
 

                  = ∑B,D,F f5(F, D) f9(G) f10(B) f12(G,F,B,D) f13(G) 
  

                  = ∑D,F f5(F, D) f9(G) f11(G,F) f12(G) f14(G,F,D) 
 

29 Elimination ordering: A, C, E, I, B, D, F 



Recap: VE example: compute P(G|H=h1) 
Step 4: sum out non- query variables (one at a time) 

P(G,H=h1) = ∑A,B,C,D,E,F,I f0(A) f1(B,A) f2(C) f3(D,B,C) f4(E,C) f5(F, D) f6(G,F,E) f9(G) f8(I,G) 
 

                  = ∑B,C,D,E,F,I f2(C) f3(D,B,C) f4(E,C) f5(F, D) f6(G,F,E) f9(G) f8(I,G) f10(B) 
 

                  = ∑B,D,E,F,I f5(F, D) f6(G,F,E) f9(G) f8(I,G) f10(B) f11(B,D,E) 
 

                  = ∑B,D,F,I f5(F, D) f9(G) f8(I,G) f10(B) f12(G,F,B,D)  
 

                  = ∑B,D,F f5(F, D) f9(G) f10(B) f12(G,F,B,D) f13(G) 
  

                  = ∑D,F f5(F, D) f9(G) f11(G,F) f12(G) f14(G,F,D) 
 

                       = ∑F f9(G) f11(G,F) f12(G) f15(G,F) 
 

30 Elimination ordering: A, C, E, I, B, D, F 



Recap: VE example: compute P(G|H=h1) 
Step 4: sum out non- query variables (one at a time) 

P(G,H=h1) = ∑A,B,C,D,E,F,I f0(A) f1(B,A) f2(C) f3(D,B,C) f4(E,C) f5(F, D) f6(G,F,E) f9(G) f8(I,G) 
 

                  = ∑B,C,D,E,F,I f2(C) f3(D,B,C) f4(E,C) f5(F, D) f6(G,F,E) f9(G) f8(I,G) f10(B) 
 

                  = ∑B,D,E,F,I f5(F, D) f6(G,F,E) f9(G) f8(I,G) f10(B) f11(B,D,E) 
 

                  = ∑B,D,F,I f5(F, D) f9(G) f8(I,G) f10(B) f12(G,F,B,D)  
 

                  = ∑B,D,F f5(F, D) f9(G) f10(B) f12(G,F,B,D) f13(G) 
  

                  = ∑D,F f5(F, D) f9(G) f11(G,F) f12(G) f14(G,F,D) 
 

                       = ∑F f9(G) f11(G,F) f12(G) f15(G,F) 
  

                       =  f9(G) f12(G) f16(G) 
 

31 Elimination ordering: A, C, E, I, B, D, F 



Recap: VE example: compute P(G|H=h1) 
Step 5: multiply the remaining factors 

P(G,H=h1) = ∑A,B,C,D,E,F,I f0(A) f1(B,A) f2(C) f3(D,B,C) f4(E,C) f5(F, D) f6(G,F,E) f9(G) f8(I,G) 
 

                  = ∑B,C,D,E,F,I f2(C) f3(D,B,C) f4(E,C) f5(F, D) f6(G,F,E) f9(G) f8(I,G) f10(B) 
 

                  = ∑B,D,E,F,I f5(F, D) f6(G,F,E) f9(G) f8(I,G) f10(B) f11(B,D,E) 
 

                  = ∑B,D,F,I f5(F, D) f9(G) f8(I,G) f10(B) f12(G,F,B,D)  
 

                  = ∑B,D,F f5(F, D) f9(G) f10(B) f12(G,F,B,D) f13(G) 
  

                  = ∑D,F f5(F, D) f9(G) f11(G,F) f12(G) f14(G,F,D) 
 

                       = ∑F f9(G) f11(G,F) f12(G) f15(G,F) 
  

                       =  f9(G) f12(G) f16(G)  

    

                       =  f17(G) 
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Recap: VE example: compute P(G|H=h1) 
Step 6: normalize 

P(G,H=h1) = ∑A,B,C,D,E,F,I f0(A) f1(B,A) f2(C) f3(D,B,C) f4(E,C) f5(F, D) f6(G,F,E) f9(G) f8(I,G) 
 

                  = ∑B,C,D,E,F,I f2(C) f3(D,B,C) f4(E,C) f5(F, D) f6(G,F,E) f9(G) f8(I,G) f10(B) 
 

                  = ∑B,D,E,F,I f5(F, D) f6(G,F,E) f9(G) f8(I,G) f10(B) f11(B,D,E) 
 

                  = ∑B,D,F,I f5(F, D) f9(G) f8(I,G) f10(B) f12(G,F,B,D)  
 

                  = ∑B,D,F f5(F, D) f9(G) f10(B) f12(G,F,B,D) f13(G) 
  

                  = ∑D,F f5(F, D) f9(G) f11(G,F) f12(G) f14(G,F,D) 
 

                       = ∑F f9(G) f11(G,F) f12(G) f15(G,F) 
  

                       =  f9(G) f12(G) f16(G)  

    

                       =  f17(G) 
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AIspace: Belief and Decision Networks Applet 

•  http://aispace.org/bayes/ implements VE_BN. 
•  Try some of the sample problems.  
•  Provide some evidence (symptoms) and query some of the 

causes.  
•  Observe how the posterior probability of the causes 

changes from the prior as you add more evidence.  
•  Switch from Brief mode to Verbose mode to see the factors 

generated.  
•  Experiment with different elimination orderings. 
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Complexity of Variable Elimination (VE) 
•  A factor over n binary variables has to store 2n numbers 

–  The initial factors are typically quite small  
(variables typically only have few parents in Bayesian networks) 

–  But variable elimination constructs larger factors  
by multiplying factors together 

•  The complexity of VE is exponential in the maximum 
number of variables in any factor during its execution  
–  This number is called the treewidth of a graph (along an ordering) 
–  Elimination ordering influences treewidth 

•  Finding the best ordering is NP-complete 
–  I.e., the ordering that generates the minimum treewidth 
–  Heuristics work well in practice (e.g. least connected variables first) 
–  Even with best ordering, inference is sometimes infeasible 

•  In those cases, we need approximate inference. See CS422 & CS540 
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Lecture Overview 

•  Variable elimination: recap and some more details 
•  Variable elimination: pruning irrelevant variables 
•  Summary of Reasoning under Uncertainty 
•  Decision Theory  

–  Intro 
–  Time-permitting: Single-Stage Decision Problems 
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VE and conditional independence 
•  So far, we haven’t use conditional independence! 

–  Before running VE, we can prune all variables Z that are conditionally 
independent of the query Y given evidence E:   Z ╨ Y | E 
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•  Example: which variables can we prune for 
the query P(G=g| C=c1, F=f1, H=h1) ? 

B A D E 



VE and conditional independence 
•  So far, we haven’t use conditional independence! 

–  Before running VE, we can prune all variables Z that are conditionally 
independent of the query Y given evidence E:   Z ╨ Y | E 
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•  Example: which variables can we prune for  
the query P(G=g| C=c1, F=f1, H=h1) ? 

–  A, B, and D. Both paths are blocked  
•  F is observed node in chain structure 
•  C is an observed common parent 

–  Thus, we only need to consider this subnetwork 



One last trick 

•  We can also prune unobserved leaf nodes 
–  And we can do so recursively 

•             E.g., which nodes can we prune if the query is P(A)? 

•               Recursively prune unobserved leaf nodes: 
•               we can prune all nodes other than A ! 
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Elimination of Irrelevant Variables in VE  
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p(F | B) = p(F,B)
p(F,B)

f∑
p(F,B) =

e
∑

d
∑ p(B)p(F |C)p(C | B,D)p(D | E)p(E)

c
∑

p(F,B) =
d
∑ p(B)p(F |C)p(C | B,D) f1

c
∑ (D)

p(F,B) = p(B)p(F |C) f2
c
∑ (C,B)

p(F,B) = p(B) f3(B,F)
p(F,B) = f4 (B,F)



Lecture Overview 

•  Variable elimination: recap and some more details 
•  Variable elimination: pruning irrelevant variables 
•  Summary of Reasoning under Uncertainty 
•  Decision Theory  

–  Intro 
–  Time-permitting: Single-Stage Decision Problems 
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Bioinformatics 

Big picture: Reasoning Under Uncertainty 

Dynamic Bayesian 
Networks 

Hidden Markov Models & 
Filtering 

Probability Theory 

Bayesian Networks & 
Variable Elimination 

Natural Language 
Processing 

Email spam filters 

Motion Tracking, 
Missile Tracking, etc 

Monitoring 
(e.g. credit card 
fraud detection) 

Diagnostic systems 
(e.g. medicine) 
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One Realistic BN: Liver Diagnosis    
Source: Onisko et al., 1999 

~60 nodes, max 4 parents per node 43 
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the uncertainty 
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As CSP (using 
arc consistency) 
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Course Overview 
Environment 

Problem Type 

Logic 

Planning 

Deterministic Stochastic 

     Constraint 
Satisfaction Search 

Arc  
Consistency 

Search 

Search 

 Logics 

 STRIPS 

Variables +  
Constraints 

Variable 
Elimination 

Bayesian 
Networks 

Decision 
Networks 

 Markov Processes 

Static 

Sequential 

Representation 
Reasoning 
Technique 

Uncertainty 

Decision 
Theory   

Course Module 

Variable 
Elimination 

Value 
Iteration 

Planning 

But uncertainty is 
also at the core of 
decision theory: 
now we’re acting 
under uncertainty 

As CSP (using 
arc consistency) 



Lecture Overview 

•  Variable elimination: recap and some more details 
•  Summary of Reasoning under Uncertainty 
•  Decision Theory  

–  Intro 
–  Time-permitting: Single-Stage Decision Problems 
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Decisions Under Uncertainty: Intro 
•  Earlier in the course, we focused on decision making in 

deterministic domains  
–  Search/CSPs: single-stage decisions 
–  Planning: sequential decisions 

•  Now we face stochastic domains 
–  so far we've considered how to represent and update beliefs 
–  What if an agent has to make decisions under uncertainty? 

•  Making decisions under uncertainty is important 
–  We mainly represent the world probabilistically so we can use our 

beliefs as the basis for making decisions 
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Decisions Under Uncertainty: Intro 
•  An agent's decision will depend on 

–  What actions are available 
–  What beliefs the agent has 
–  Which goals the agent has 

•  Differences between deterministic and stochastic setting 
–  Obvious difference in representation: need to represent our 

uncertain beliefs 
–  Now we'll speak about representing actions and goals 

•  Actions will be pretty straightforward: decision variables 
•  Goals will be interesting: we'll move from all-or-nothing goals to a richer 

notion: rating how happy the agent is in different situations. 
•  Putting these together, we'll extend Bayesian Networks to make a new 

representation called Decision Networks 
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Lecture Overview 

•  Variable elimination: recap and some more details 
•  Variable elimination: pruning irrelevant variables 
•  Summary of Reasoning under Uncertainty 
•  Decision Theory  

–  Intro 
–  Time-permitting: Single-Stage Decision Problems 

49 



Delivery Robot Example 
•  Decision variable 1: the robot can choose to wear pads  

–  Yes: protection against accidents, but extra weight 
–  No: fast, but no protection 

•  Decision variable 2: the robot can choose the way 
–  Short way: quick, but higher chance of accident 
–  Long way: safe, but slow 

•  Random variable: is there an accident? 
Agent decides 

Chance decides 
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Possible worlds and decision variables 
•  A possible world specifies a value 

for each random variable and each decision variable 
•  For each assignment of values to all decision variables  

–  the probabilities of the worlds satisfying that assignment sum to 1. 

0.2 

0.8 
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Possible worlds and decision variables 
•  A possible world specifies a value  

for each random variable and each decision variable 
•  For each assignment of values to all decision variables  

–  the probabilities of the worlds satisfying that assignment sum to 1. 

0.01 
0.99 

0.2 

0.8 
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Possible worlds and decision variables 
•  A possible world specifies a value  

for each random variable and each decision variable 
•  For each assignment of values to all decision variables  

–  the probabilities of the worlds satisfying that assignment sum to 1. 
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Possible worlds and decision variables 
•  A possible world specifies a value  

for each random variable and each decision variable 
•  For each assignment of values to all decision variables  

–  the probabilities of the worlds satisfying that assignment sum to 1. 
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Possible worlds and decision variables 
•  A possible world specifies a value  

for each random variable and each decision variable 
•  For each assignment of values to all decision variables  

–  the probabilities of the worlds satisfying that assignment sum to 1. 
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0.8 
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Utility 
•  Utility: a measure of desirability of possible worlds to an agent 

–  Let U be a real-valued function such that U(w) represents an agent's 
degree of preference for world w 

–  Expressed by a number in [0,100] 

•  Simple goals can still be specified 
–  Worlds that satisfy the goal have utility 100 
–  Other worlds have utility 0 

•  Utilities can be more complicated 
–  For example, in the robot delivery domains, they could involve 

•  Amount of damage 
•  Reached the target room? 
•  Energy left 
•  Time taken 
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Combining probabilities and utilities 
•  We can combine probability with utility 

–  The expected utility of a probability distribution over possible worlds  
average utility, weighted by probabilities of possible worlds 

–  What is the expected utility of Wearpads=yes, Way=short ? 
•  It is 0.2 * 35 + 0.8 * 95 = 83 
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Expected utility 
•  Suppose U(w) is the utility of possible world w and  

P(w) is the probability of possible world w 
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Expected utility of a decision 
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0.99 

0.2 

0.8 
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95 

Conditional  
probability E[U|D] 

83 

35 30 
75 
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Optimal single-stage decision 

•  Given a single decision variable D 
–  the agent can choose D=di for any value di ∈ dom(D) 
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•  Variable elimination 
–  Carry out variable elimination by using factor representation and 

using the factor operations 

•  Define a Utility Function on possible worlds 
•  Define and compute optimal one-off decisions 

 

•  Assignment 4 is due next Wednesday 
•  Please complete the Teaching Evaluation 
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Learning Goals For Today’s Class 


