Uncertainty: Wrap up & Decision Theory: Intro

Alan Mackworth

UBC CS 322 - Decision Theory 1

March 25, 2013

Textbook §6.4.1 & §9.2

Announcements (1)

- Teaching Evaluations are online
 - You should have received a message about them
 - Secure, confidential, mobile access
- Your feedback is important!
 - Allows us to assess and improve the course material
 - I use it to assess and improve my teaching methods
 - The department as a whole uses it to shape the curriculum
 - Teaching evaluation results are important for instructors
 - · Appointment, reappointment, tenure, promotion and merit, salary
 - UBC takes them very seriously (now)
 - Evaluations close at 11:59PM on April 9, 2013.
 - Before exam, but instructors can't see results until *after* we submit grades
 - Please do it!
- Take a few minutes and visit <u>https://eval.olt.ubc.ca/science</u>

Announcements (2)

- Assignment 4 due Wednesday, April 3rd,1pm
- Final exam
 - Thursday, April 18th, 8:30am 11am in PHRM 1101
 - Same general format as midterm (~60% short questions)
 - List of short questions is now on Connect
 - Practice final is now available in Connect
 - More emphasis on material after midterm
 - How to study?
 - Practice exercises, assignments, short questions, lecture notes, text, problems in text, learning goals ...
 - Use TA and my office hours (extra office hours TBA if needed)
 - Review sessions: last class plus more TBA if needed
 - Submit topics you want reviewed in response to message on Connect

Hints for Assignment 4

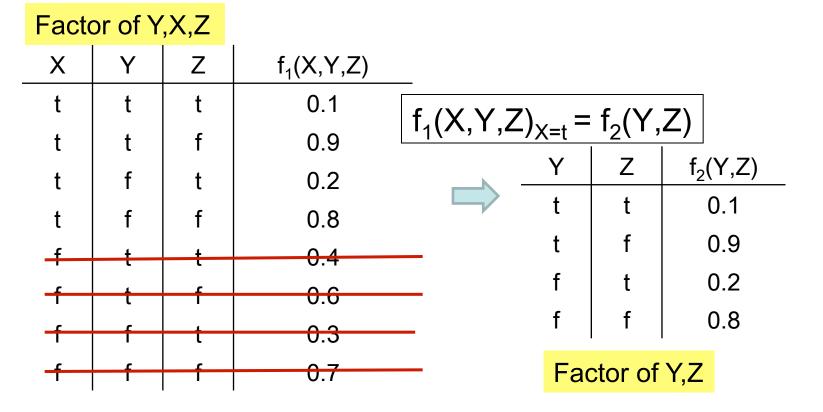
- Question 4 (Bayesian networks)
 - "correctly represent the situation described above" means
 "do not make any independence assumptions that aren't true"
 - "(Hint: remember that Bayes nets do not necessarily encode causality."
 - Another hint:
 - Step 1: identify the causal network
 - Step 2: for each network, check if it entails (conditional or marginal) independencies the causal network does not entail. If so, it's incorrect
 - Failing to entail some (or all) independencies does not make a network incorrect (only computationally suboptimal)

Lecture Overview

Variable elimination: recap and some more details

- Variable elimination: pruning irrelevant variables
- Summary of Reasoning under Uncertainty
- Decision Theory
 - Intro
 - Time-permitting: Single-Stage Decision Problems

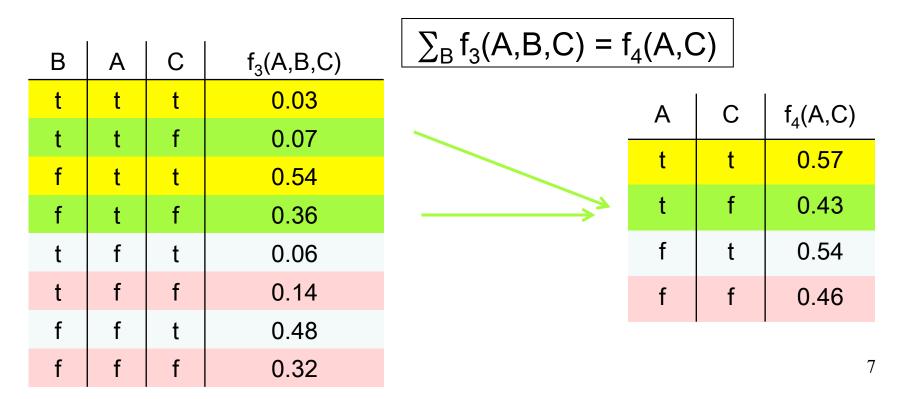
- A factor is a function from a tuple of random variables to the real numbers R
- Operation 1: assigning a variable in a factor
 - E.g., assign X=t



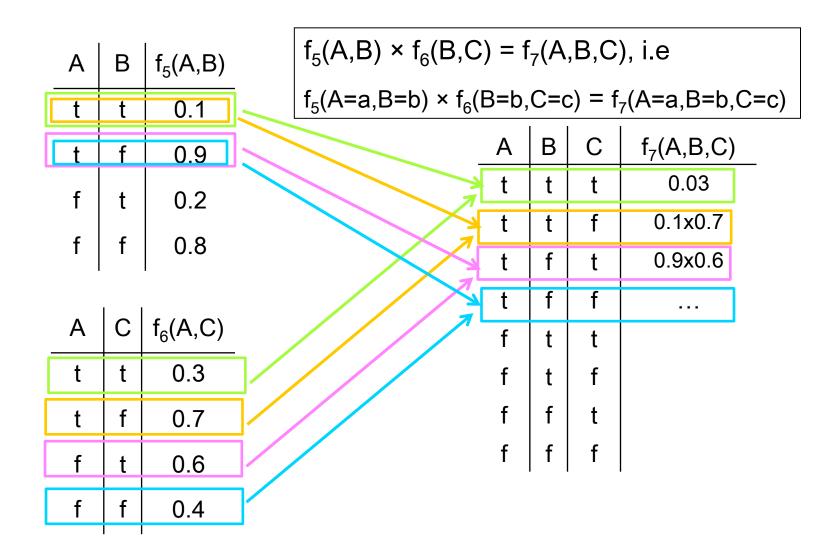
- A factor is a function from a tuple of random variables to the real numbers R
- Operation 1: assigning a variable in a factor

 $- f_2(Y,Z) = f_1(X,Y,Z)_{X=t}$

• Operation 2: marginalize out a variable from a factor



Recap: Operation 3: multiplying factors



- A factor is a function from a tuple of random variables to the real numbers R
- Operation 1: assigning a variable in a factor
 E.g., f₂(Y,Z) = f₁(X,Y,Z)_{X=t}
- Operation 2: marginalize out a variable from a factor – E.g., $f_4(A,C) = \sum_B f_3(A,B,C)$
- Operation 3: multiply two factors
 - E.g. $f_7(A,B,C) = f_5(A,B) \times f_6(B,C)$
 - That means, $f_7(A=a,B=b,C=c) = f_5(A=a,B=b) \times f_6(B=b,C=c)$
- If we assign variable A=a in factor f₇(A,B), what is the correct form for the resulting factor?



- A factor is a function from a tuple of random variables to the real numbers R
- Operation 1: assigning a variable in a factor
 E.g., f₂(Y,Z) = f₁(X,Y,Z)_{X=t}
- Operation 2: marginalize out a variable from a factor - E.g., $f_4(A,C) = \sum_B f_3(A,B,C)$
- Operation 3: multiply two factors
 - E.g. $f_7(A,B,C) = f_5(A,B) \times f_6(B,C)$
 - That means, $f_7(A=a,B=b,C=c) = f_5(A=a,B=b) \times f_6(B=b,C=c)$
- If we assign variable A=a in factor f₇(A,B), what is the correct form for the resulting factor?
 - f(B).

When we assign variable A we remove it from the factor's domain

- A factor is a function from a tuple of random variables to the real numbers R
- Operation 1: assigning a variable in a factor
 E.g., f₂(Y,Z) = f₁(X,Y,Z)_{X=t}
- Operation 2: marginalize out a variable from a factor – E.g., $f_4(A,C) = \sum_B f_3(A,B,C)$
- Operation 3: multiply two factors
 - E.g. $f_7(A,B,C) = f_5(A,B) \times f_6(B,C)$
 - That means, $f_7(A=a,B=b,C=c) = f_5(A=a,B=b) \times f_6(B=b,C=c)$
- If we marginalize variable A out from factor f₇(A,B), what is the correct form for the resulting factor?

- A factor is a function from a tuple of random variables to the real numbers R
- Operation 1: assigning a variable in a factor
 E.g., f₂(Y,Z) = f₁(X,Y,Z)_{X=t}
- Operation 2: marginalize out a variable from a factor - E.g., $f_4(A,C) = \sum_B f_3(A,B,C)$
- Operation 3: multiply two factors
 - E.g. $f_7(A,B,C) = f_5(A,B) \times f_6(B,C)$
 - That means, $f_7(A=a,B=b,C=c) = f_5(A=a,B=b) \times f_6(B=b,C=c)$
- If we assign variable A=a in factor f₇(A,B), what is the correct form for the resulting factor?
 - f(B).
 When we marginalize out variable A we remove it from the factor's domain

- A factor is a function from a tuple of random variables to the real numbers R
- Operation 1: assigning a variable in a factor
 E.g., f₂(Y,Z) = f₁(X,Y,Z)_{X=t}
- Operation 2: marginalize out a variable from a factor – E.g., $f_4(A,C) = \sum_B f_3(A,B,C)$
- Operation 3: multiply two factors
 - E.g. $f_7(A,B,C) = f_5(A,B) \times f_6(B,C)$
 - That means, $f_7(A=a,B=b,C=c) = f_5(A=a,B=b) \times f_6(B=b,C=c)$
- If we multiply factors f₄(X,Y) and f₆(Z,Y), what is the correct form for the resulting factor?

- A factor is a function from a tuple of random variables to the real numbers R
- Operation 1: assigning a variable in a factor
 E.g., f₂(Y,Z) = f₁(X,Y,Z)_{X=t}
- Operation 2: marginalize out a variable from a factor – E.g., $f_4(A,C) = \sum_B f_3(A,B,C)$
- Operation 3: multiply two factors
 - E.g. $f_7(A,B,C) = f_5(A,B) \times f_6(B,C)$
 - That means, $f_7(A=a,B=b,C=c) = f_5(A=a,B=b) \times f_6(B=b,C=c)$
- If we multiply factors f₄(X,Y) and f₆(Z,Y), what is the correct form for the resulting factor?
 - f(X,Y,Z)
 - When multiplying factors, the resulting factor's domain is the union of the multiplicands' domains

- A factor is a function from a tuple of random variables to the real numbers R
- Operation 1: assigning a variable in a factor
 E.g., f₂(Y,Z) = f₁(X,Y,Z)_{X=t}
- Operation 2: marginalize out a variable from a factor – E.g., $f_4(A,C) = \sum_B f_3(A,B,C)$
- Operation 3: multiply two factors
 - E.g. $f_7(A,B,C) = f_5(A,B) \times f_6(B,C)$
 - That means, $f_7(A=a,B=b,C=c) = f_5(A=a,B=b) \times f_6(B=b,C=c)$
- What is the correct form for $\sum_{B} f_5(A,B) \times f_6(B,C)$
 - As usual, product before sum: $\sum_{B} (f_5(A,B) \times f_6(B,C))$

- A factor is a function from a tuple of random variables to the real numbers R
- Operation 1: assigning a variable in a factor
 E.g., f₂(Y,Z) = f₁(X,Y,Z)_{X=t}
- Operation 2: marginalize out a variable from a factor – E.g., $f_4(A,C) = \sum_B f_3(A,B,C)$
- Operation 3: multiply two factors
 - E.g. $f_7(A,B,C) = f_5(A,B) \times f_6(B,C)$
 - That means, $f_7(A=a,B=b,C=c) = f_5(A=a,B=b) \times f_6(B=b,C=c)$
- What is the correct form for $\sum_{B} f_5(A,B) \times f_6(B,C)$
 - As usual, product before sum: $\sum_{B} (f_5(A,B) \times f_6(B,C))$
 - Result of multiplication: f(A,B,C). Then marginalize out B: f'(A,C)

- A factor is a function from a tuple of random variables to the real numbers R
- Operation 1: assigning a variable in a factor
 E.g., f₂(Y,Z) = f₁(X,Y,Z)_{X=t}
- Operation 2: marginalize out a variable from a factor – E.g., $f_4(A,C) = \sum_B f_3(A,B,C)$
- Operation 3: multiply two factors
 - E.g. $f_7(A,B,C) = f_5(A,B) \times f_6(B,C)$
 - That means, $f_7(A=a,B=b,C=c) = f_5(A=a,B=b) \times f_6(B=b,C=c)$
- Operation 4: normalize the factor
 - Divide each entry by the sum of the entries. The result will sum to 1.

Recap: General Inference in Bayesian Networks

Given

- A Bayesian Network BN, and
- Observations of a subset of its variables E: E=e
- A subset of its variables Y that is queried

Compute the conditional probability P(Y=y|E=e)



All we need to compute is the joint probability of the query variable(s) and the evidence!

Recap: Key Idea of Variable Elimination

- To sum out a variable Z⁻ from a product f₁ × ...×f_k of factors:
 - Partition the factors into
 - those that don't contain Z say $f_1 \times ... \times f_i$
 - those that contain Z say $f_{i+1} \times ... \times f_k$
- We know: $\sum_{Z} f_1 \times \ldots \times f_k = f_1 \times \ldots \times f_i \times \left(\sum_{Z} f_{i+1} \times \ldots \times f_k\right)$

New factor! Let's call it f'

- We thus have $\sum_{Z} f_1 \times ... \times f_k = f_1 \times ... \times f_i \times f'$
- Store f' explicitly, and discard $f_{i+1} \dots f_k$
- Now we've summed out Z

Recap: Variable Elimination (VE) in BNs

- The joint probability distribution of a Bayesian network is $P(X_1, ..., X_n) = \prod_{i=1}^n P(X_i | pa(X_i))$
 - We make a factor f_i for each conditional probability table $P(X_i|pa(X_i))$
 - So we have $P(X_1, ..., X_n) = \prod_{i=1}^n f_i$
- The variable elimination algorithm computes P(Y| E₁=e₁, ..., E_j=e_j) as follows:
 - Assign $E_1 = e_1, \ldots, E_j = e_j$
 - Sum out all non-query variables $Z_1, ..., Z_k$, one at a time
 - To sum out Z_i:
 - Multiply factors containing it Z_i
 - Then marginalize out Z_i from the product
 - The order in which we sum out variables is called our elimination ordering
 - Normalize the final factor f(Y).
 - The resulting factor is exactly $P(Y|E_1=e_1, ..., E_i=e_i)$

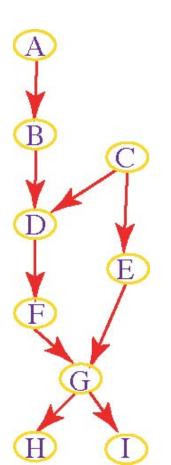
VE_BN Algorithm

- 1: Procedure VE_BN(Vs,Ps,O,Q) 2: Inputs 3: Vs: set of variables 4: Ps: set of factors representing the conditional probabilities O: set of observations of values on some of the variables 5: 6: Q: a query variable 7: Output 8: posterior distribution on Q 9: Local 10: Fs: a set of factors 11: Fs ←Ps 12: for each X∈Vs-{Q} using some elimination ordering do 13: if (X is observed) then 14: for each $F \in Fs$ that involves X do 15: set X in F to its observed value in O 16: project F onto remaining variables 17: else 18: $Rs \leftarrow \{F \in Fs: F \text{ involves } X\}$
- 19: let T be the product of the factors in Rs
- 20: $N \leftarrow \sum_X T$
- 21: Fs←Fs \ Rs ∪ {N}
- 22: let T be the product of the factors in Rs
- 23: $N \leftarrow \sum_Q T$
- 24: return T/N

Figure 6.8: Variable elimination for belief networks (P&M, Section 6.4.1, p. 254)

Recap: VE example: compute $P(G|H=h_1)$ Step 1: construct a factor for each cond. probability

 $P(G,H) = \sum_{A,B,C,D,E,F,I} f_0(A) f_1(B,A) f_2(C) f_3(D,B,C) f_4(E,C) f_5(F, D) f_6(G,F,E) f_7(H,G) f_8(I,G)$

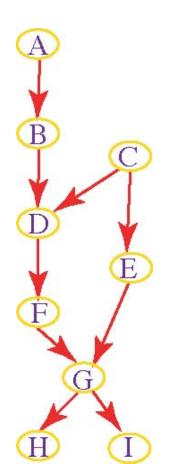


Recap: VE example: compute P(G|H=h₁) Step 2: assign observed variables their observed value $P(G,H) = \sum_{A,B,C,D,E,F,I} f_0(A) f_1(B,A) f_2(C) f_3(D,B,C) f_4(E,C) f_5(F, D) f_6(G,F,E) f_7(H,G) f_8(I,G)$

> Assigning the variable $H=h_1$: $f_9(G) = f_7(H,G)_{H=h_1}$

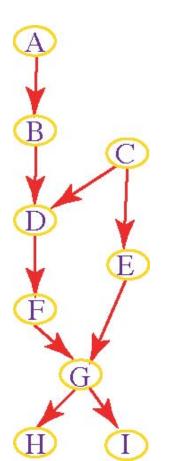
 $P(G,H=h_1) = \sum_{A,B,C,D,E,F,I} f_0(A) f_1(B,A) f_2(C) f_3(D_1B,C) f_4(E,C)$ $f_5(F, D) f_6(G,F,E) f_9(G) f_8(I,G)$

 $P(G,H=h_1) = \sum_{A,B,C,D,E,F,I} f_0(A) f_1(B,A) f_2(C) f_3(D,B,C) f_4(E,C) f_5(F,D) f_6(G,F,E) f_9(G) f_8(I,G)$



 $P(G,H=h_1) = \sum_{A,B,C,D,E,F,I} f_0(A) f_1(B,A) f_2(C) f_3(D,B,C) f_4(E,C) f_5(F,D) f_6(G,F,E) f_9(G) f_8(I,G)$

 $= \sum_{B,C,D,E,F,I} f_2(C) f_3(D,B,C) f_4(E,C) f_5(F,D) f_6(G,F,E) f_9(G) f_8(I,G) f_{10}(B)$



Summing out variable A: $\sum_{A} f_0(A) f_1(B,A) = f_{10}(B)$

 $P(G,H=h_1) = \sum_{A,B,C,D,E,F,I} f_0(A) f_1(B,A) f_2(C) f_3(D,B,C) f_4(E,C) f_5(F, D) f_6(G,F,E) f_9(G) f_8(I,G)$

 $= \sum_{B,C,D,E,F,I} f_2(C) f_3(D,B,C) f_4(E,C) f_5(F,D) f_6(G,F,E) f_9(G) f_8(I,G) f_{10}(B)$

 $= \sum_{B,D,E,F,I} f_5(F, D) f_6(G,F,E) f_9(G) f_8(I,G) f_{10}(B) \stackrel{>}{\to} f_{11}(B,D,E)$

Summing out variable *C*: $\sum_{C} f_2(C) f_3(D,B,C) f_4(E,C) = f_{11}(B,D,E)$

 $P(G,H=h_1) = \sum_{A,B,C,D,E,F,I} f_0(A) f_1(B,A) f_2(C) f_3(D,B,C) f_4(E,C) f_5(F, D) f_6(G,F,E) f_9(G) f_8(I,G)$

- = $\sum_{B,C,D,E,F,I} f_2(C) f_3(D,B,C) f_4(E,C) f_5(F, D) f_6(G,F,E) f_9(G) f_8(I,G) f_{10}(B)$
- $= \sum_{B,D,E,F,I} f_5(F, D) f_6(G,F,E) f_9(G) f_8(I,G) f_{10}(B) f_{11}(B,D,E)$
- $= \sum_{B,D,F,I} f_5(F, D) f_9(G) f_8(I,G) f_{10}(B) f_{12}(G,F,B,D)$

Summing out variable *E*: $\sum_{E} f_6(G,F,E) f_{11}(B,D,E) = f_{12}(G,F,B,D)$

 $P(G,H=h_1) = \sum_{A,B,C,D,E,F,I} f_0(A) f_1(B,A) f_2(C) f_3(D,B,C) f_4(E,C) f_5(F, D) f_6(G,F,E) f_9(G) f_8(I,G)$

 $= \sum_{B,C,D,E,F,I} f_2(C) f_3(D,B,C) f_4(E,C) f_5(F,D) f_6(G,F,E) f_9(G) f_8(I,G) f_{10}(B)$

= $\sum_{B,D,E,F,I} f_5(F, D) f_6(G,F,E) f_9(G) f_8(I,G) f_{10}(B) f_{11}(B,D,E)$

- = $\sum_{B,D,F,I} f_5(F, D) f_9(G) \frac{f_8(I,G)}{f_{10}(B)} f_{12}(G,F,B,D)$
- $= \sum_{B,D,F} f_5(F, D) f_9(G) f_{10}(B) f_{12}(G,F,B,D) f_{13}(G)$

 $P(G,H=h_1) = \sum_{A,B,C,D,E,F,I} f_0(A) f_1(B,A) f_2(C) f_3(D,B,C) f_4(E,C) f_5(F, D) f_6(G,F,E) f_9(G) f_8(I,G)$

- $= \sum_{B,C,D,E,F,I} f_2(C) f_3(D,B,C) f_4(E,C) f_5(F,D) f_6(G,F,E) f_9(G) f_8(I,G) f_{10}(B)$
- = $\sum_{B,D,E,F,I} f_5(F, D) f_6(G,F,E) f_9(G) f_8(I,G) f_{10}(B) f_{11}(B,D,E)$
- = $\sum_{B,D,F,I} f_5(F, D) f_9(G) f_8(I,G) f_{10}(B) f_{12}(G,F,B,D)$
- $= \sum_{B,D,F} f_5(F, D) f_9(G) f_{10}(B) f_{12}(G,F,B,D) f_{13}(G)$
- $= \sum_{D,F} f_5(F, D) f_9(G) f_{11}(G,F) f_{12}(G) f_{14}(G,F,D)$

Recap: VE example: compute P(G|H=h₁) Step 4: sum out non- query variables (one at a time) $P(G,H=h_1) = \sum_{A,B,C,D,E,F,I} f_0(A) f_1(B,A) f_2(C) f_3(D,B,C) f_4(E,C) f_5(F,D) f_6(G,F,E) f_9(G) f_8(I,G)$ $= \sum_{B \in D \in F_1} f_2(C) f_3(D,B,C) f_4(E,C) f_5(F,D) f_6(G,F,E) f_9(G) f_8(I,G) f_{10}(B)$ $= \sum_{B,D,E,F,I} f_5(F, D) f_6(G,F,E) f_9(G) f_8(I,G) f_{10}(B) f_{11}(B,D,E)$ $= \sum_{B,D,F,I} f_5(F, D) f_9(G) f_8(I,G) f_{10}(B) f_{12}(G,F,B,D)$ $= \sum_{B,D,F} f_5(F, D) f_9(G) f_{10}(B) f_{12}(G,F,B,D) f_{13}(G)$ $= \sum_{D,F} f_5(F, D) f_9(G) f_{11}(G,F) f_{12}(G) f_{14}(G,F,D)$ $= \sum_{F} f_{0}(G) f_{11}(G,F) f_{12}(G) f_{15}(G,F)^{L}$ Elimination ordering: A, C, E, I, B, D, F 30

Recap: VE example: compute P(G|H=h₁) Step 4: sum out non- query variables (one at a time) $P(G,H=h_1) = \sum_{A,B,C,D,E,F,I} f_0(A) f_1(B,A) f_2(C) f_3(D,B,C) f_4(E,C) f_5(F,D) f_6(G,F,E) f_9(G) f_8(I,G)$ $= \sum_{B \in D \in F_1} f_2(C) f_3(D,B,C) f_4(E,C) f_5(F,D) f_6(G,F,E) f_9(G) f_8(I,G) f_{10}(B)$ $= \sum_{B,D,E,F,I} f_5(F, D) f_6(G,F,E) f_9(G) f_8(I,G) f_{10}(B) f_{11}(B,D,E)$ $= \sum_{B,D,F,I} f_5(F, D) f_9(G) f_8(I,G) f_{10}(B) f_{12}(G,F,B,D)$ $= \sum_{B,D,F} f_5(F, D) f_9(G) f_{10}(B) f_{12}(G,F,B,D) f_{13}(G)$ $= \sum_{D,F} f_5(F, D) f_9(G) f_{11}(G,F) f_{12}(G) f_{14}(G,F,D)$ $= \sum_{F} f_{9}(G) f_{11}(G,F) f_{12}(G) f_{15}(G,F)$ = $f_0(G) f_{12}(G) f_{16}(G)$ Elimination ordering: A, C, E, I, B, D, F 31

Recap: VE example: compute P(G|H=h₁) Step 5: multiply the remaining factors

 $P(G,H=h_1) = \sum_{A,B,C,D,E,F,I} f_0(A) f_1(B,A) f_2(C) f_3(D,B,C) f_4(E,C) f_5(F,D) f_6(G,F,E) f_9(G) f_8(I,G)$

- $= \sum_{B,C,D,E,F,I} f_2(C) f_3(D,B,C) f_4(E,C) f_5(F,D) f_6(G,F,E) f_9(G) f_8(I,G) f_{10}(B)$
- = $\sum_{B,D,E,F,I} f_5(F, D) f_6(G,F,E) f_9(G) f_8(I,G) f_{10}(B) f_{11}(B,D,E)$
- = $\sum_{B,D,F,I} f_5(F, D) f_9(G) f_8(I,G) f_{10}(B) f_{12}(G,F,B,D)$
- = $\sum_{B,D,F} f_5(F, D) f_9(G) f_{10}(B) f_{12}(G,F,B,D) f_{13}(G)$
- $= \sum_{D,F} f_5(F, D) f_9(G) f_{11}(G,F) f_{12}(G) f_{14}(G,F,D)$
 - $\int = \sum_{F} f_{9}(G) f_{11}(G,F) f_{12}(G) f_{15}(G,F)$
- $= f_{9}(G) f_{12}(G) f_{16}(G)$ $= f_{1,2}(G)$

Recap: VE example: compute P(G|H=h₁) Step 6: normalize

 $P(G,H=h_1) = \sum_{A,B,C,D,E,F,I} f_0(A) f_1(B,A) f_2(C) f_3(D,B,C) f_4(E,C) f_5(F,D) f_6(G,F,E) f_9(G) f_8(I,G)$

- $= \sum_{B,C,D,E,F,I} f_2(C) f_3(D,B,C) f_4(E,C) f_5(F,D) f_6(G,F,E) f_9(G) f_8(I,G) f_{10}(B)$
- = $\sum_{B,D,E,F,I} f_5(F, D) f_6(G,F,E) f_9(G) f_8(I,G) f_{10}(B) f_{11}(B,D,E)$

$$= \sum_{B,D,F,I} f_5(F, D) f_9(G) f_8(I,G) f_{10}(B) f_{12}(G,F,B,D)$$

=
$$\sum_{B,D,F} f_5(F, D) f_9(G) f_{10}(B) f_{12}(G,F,B,D) f_{13}(G)$$

$$= \sum_{D,F} f_5(F, D) f_9(G) f_{11}(G,F) f_{12}(G) f_{14}(G,F,D)$$

$$= \sum_{F} f_{9}(G) f_{11}(G,F) f_{12}(G) f_{15}(G,F)$$

$$= f_{9}(G) f_{12}(G) f_{16}(G)$$

$$= f_{17}(G)$$

G

$$P(G = g \mid H = h_1) = \frac{f_{17}(g)}{\sum_{g' \in dom(G)} f_{17}(g')}$$

Alspace: Belief and Decision Networks Applet

- <u>http://aispace.org/bayes/</u> implements VE_BN.
- Try some of the sample problems.
- Provide some evidence (symptoms) and query some of the causes.
- Observe how the posterior probability of the causes changes from the prior as you add more evidence.
- Switch from Brief mode to Verbose mode to see the factors generated.
- Experiment with different elimination orderings.

Complexity of Variable Elimination (VE)

- A factor over n binary variables has to store 2ⁿ numbers
 - The initial factors are typically quite small (variables typically only have few parents in Bayesian networks)
 - But variable elimination constructs larger factors by multiplying factors together
- The complexity of VE is exponential in the maximum number of variables in any factor during its execution
 - This number is called the treewidth of a graph (along an ordering)
 - Elimination ordering influences treewidth
- Finding the best ordering is NP-complete
 - I.e., the ordering that generates the minimum treewidth
 - Heuristics work well in practice (e.g. least connected variables first)
 - Even with best ordering, inference is sometimes infeasible
 - In those cases, we need approximate inference. See CS422 & CS540

Lecture Overview

- Variable elimination: recap and some more details
 Variable elimination: pruning irrelevant variables
- Summary of Reasoning under Uncertainty
- Decision Theory
 - Intro
 - Time-permitting: Single-Stage Decision Problems

VE and conditional independence

- So far, we haven't use conditional independence!
 - Before running VE, we can prune all variables Z that are conditionally independent of the query Y given evidence E: Z I Y | E
 - Example: which variables can we prune for the query P(G=g| C=c₁, F=f₁, H=h₁) ?

A B D E

VE and conditional independence

- So far, we haven't use conditional independence!
 - Before running VE, we can prune all variables Z that are conditionally independent of the query Y given evidence E: Z I Y | E
 - Example: which variables can we prune for the query P(G=g| C=c₁, F=f₁, H=h₁) ?
 - A, B, and D. Both paths are blocked
 - F is observed node in chain structure
 - C is an observed common parent

- Thus, we only need to consider this subnetwork

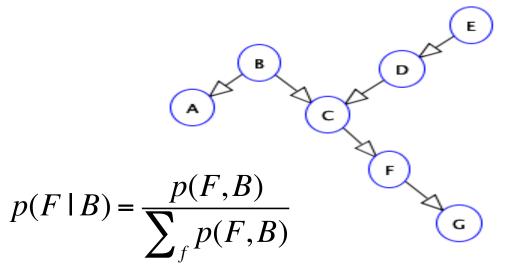
One last trick

- We can also prune unobserved leaf nodes
 - And we can do so recursively

E.g., which nodes can we prune if the query is P(A)?

Recursively prune unobserved leaf nodes: we can prune all nodes other than A !

Elimination of Irrelevant Variables in VE

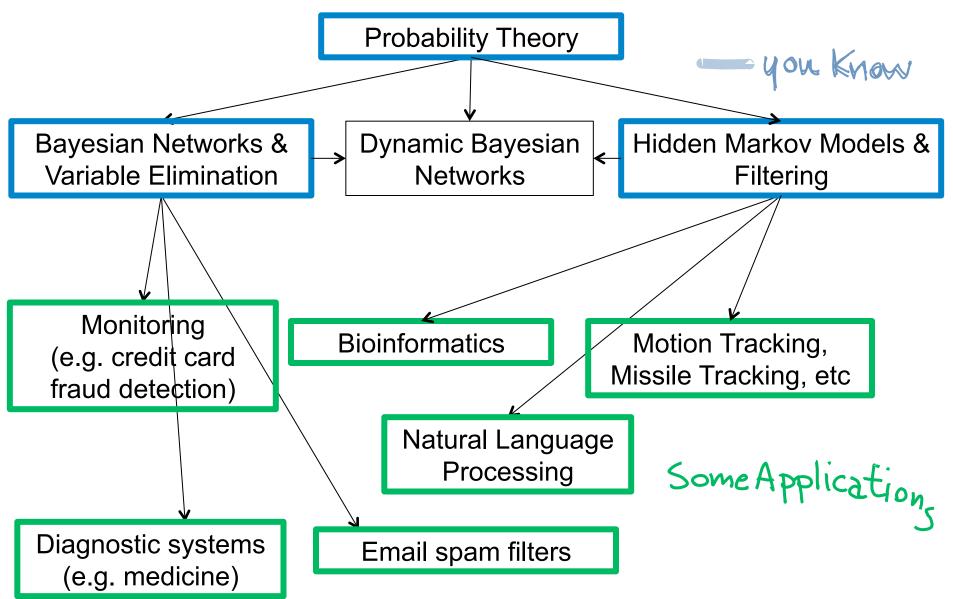


 $p(F,B) = \sum_{c} \sum_{d} \sum_{e} p(B)p(F|C)p(C|B,D)p(D|E)p(E)$ $p(F,B) = \sum_{c} \sum_{d} p(B)p(F|C)p(C|B,D)f_{1}(D)$ $p(F,B) = \sum_{c} p(B)p(F|C)f_{2}(C,B)$ $p(F,B) = p(B)f_{3}(B,F)$ $p(F,B) = f_{4}(B,F)$

Lecture Overview

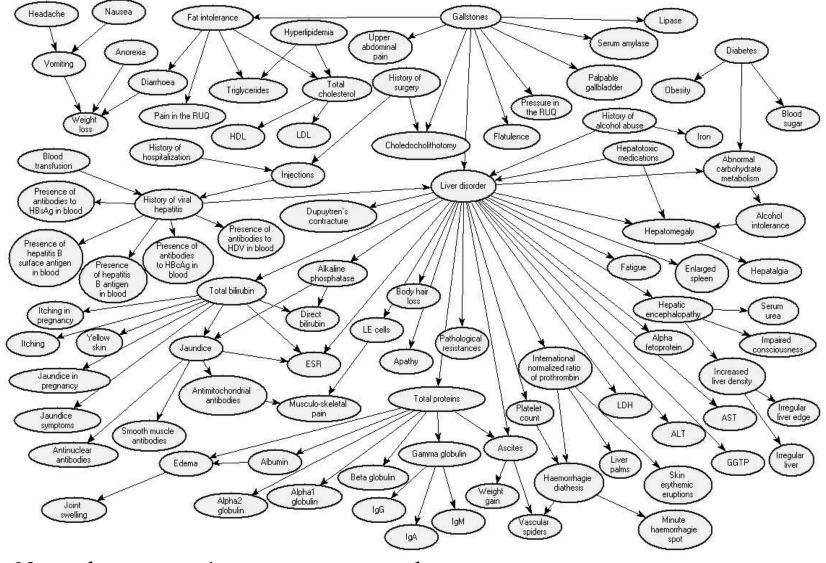
- Variable elimination: recap and some more details
- Variable elimination: pruning irrelevant variables
 Summary of Reasoning under Uncertainty
- Decision Theory
 - Intro
 - Time-permitting: Single-Stage Decision Problems

Big picture: Reasoning Under Uncertainty

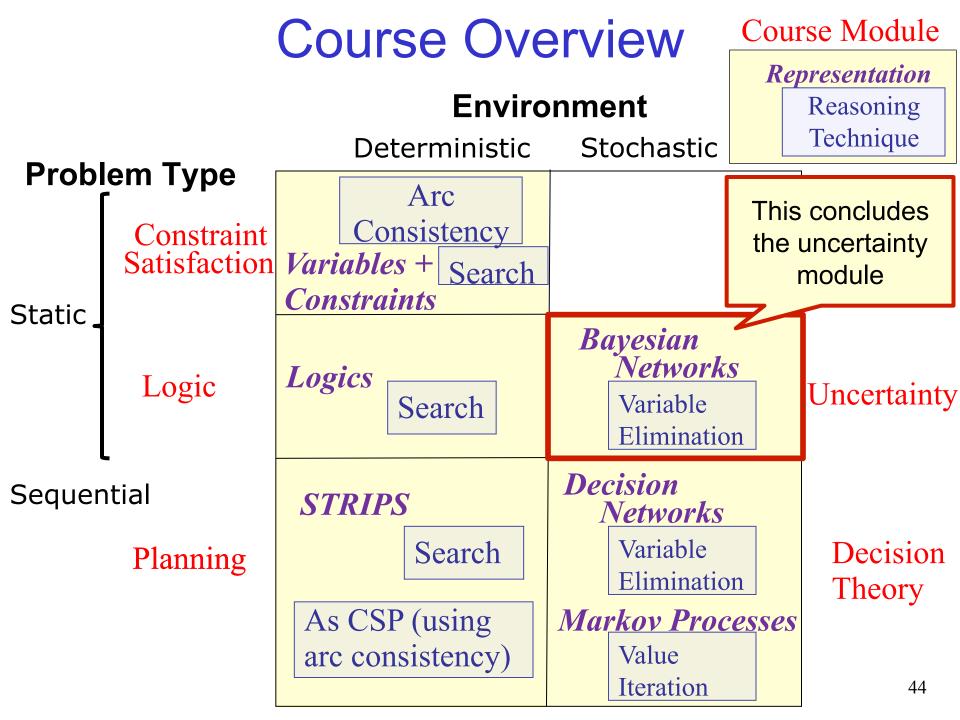


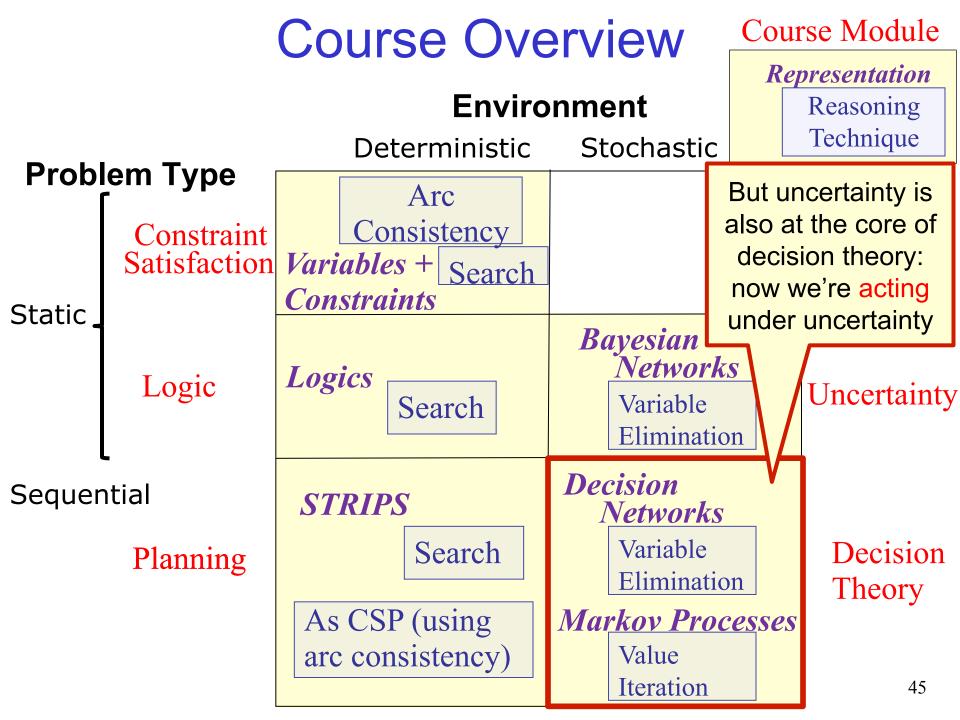
One Realistic BN: Liver Diagnosis

Source: Onisko et al., 1999



~60 nodes, max 4 parents per node





Lecture Overview

- Variable elimination: recap and some more details
- Summary of Reasoning under Uncertainty
- Decision Theory
 - Intro
 - Time-permitting: Single-Stage Decision Problems

Decisions Under Uncertainty: Intro

- Earlier in the course, we focused on decision making in deterministic domains
 - Search/CSPs: single-stage decisions
 - Planning: sequential decisions
- Now we face stochastic domains
 - so far we've considered how to represent and update beliefs
 - What if an agent has to make decisions under uncertainty?
- Making decisions under uncertainty is important
 - We mainly represent the world probabilistically so we can use our beliefs as the basis for making decisions

Decisions Under Uncertainty: Intro

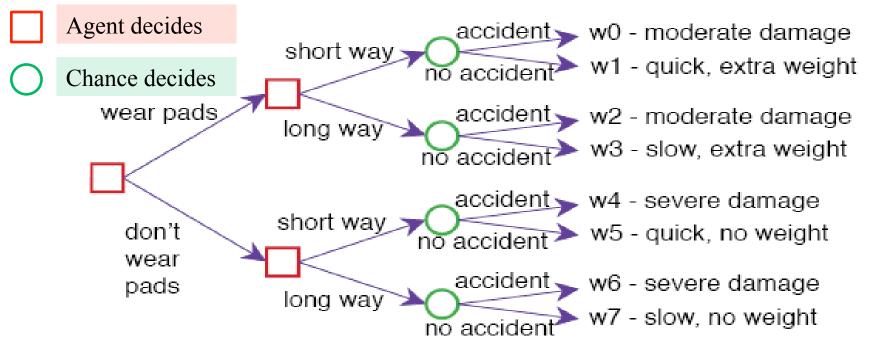
- An agent's decision will depend on
 - What actions are available
 - What beliefs the agent has
 - Which goals the agent has
- Differences between deterministic and stochastic setting
 - Obvious difference in representation: need to represent our uncertain beliefs
 - Now we'll speak about representing actions and goals
 - Actions will be pretty straightforward: decision variables
 - Goals will be interesting: we'll move from all-or-nothing goals to a richer notion: rating how happy the agent is in different situations.
 - Putting these together, we'll extend Bayesian Networks to make a new representation called Decision Networks

Lecture Overview

- Variable elimination: recap and some more details
- Variable elimination: pruning irrelevant variables
- Summary of Reasoning under Uncertainty
- Decision Theory
 - Intro
 - Time-permitting: Single-Stage Decision Problems

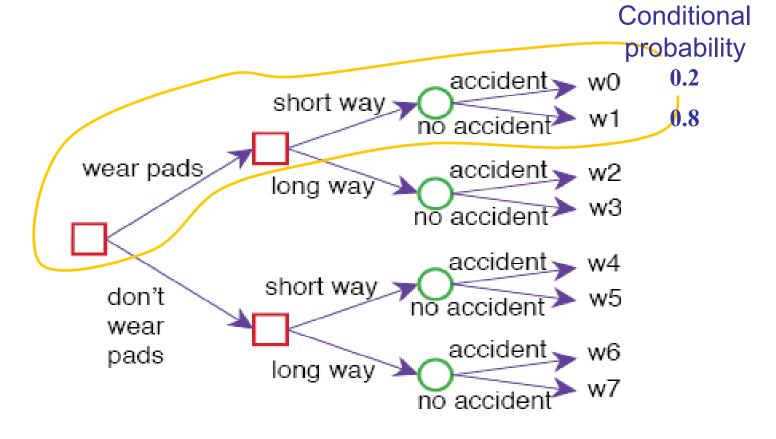
Delivery Robot Example

- Decision variable 1: the robot can choose to wear pads
 - Yes: protection against accidents, but extra weight
 - No: fast, but no protection
- Decision variable 2: the robot can choose the way
 - Short way: quick, but higher chance of accident
 - Long way: safe, but slow
- Random variable: is there an accident?

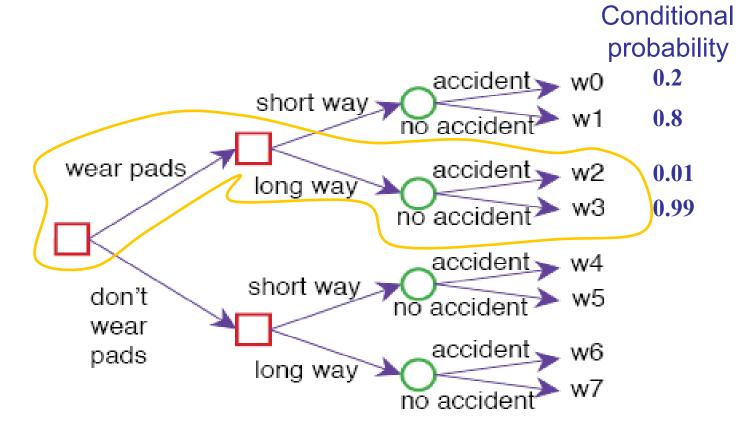


50

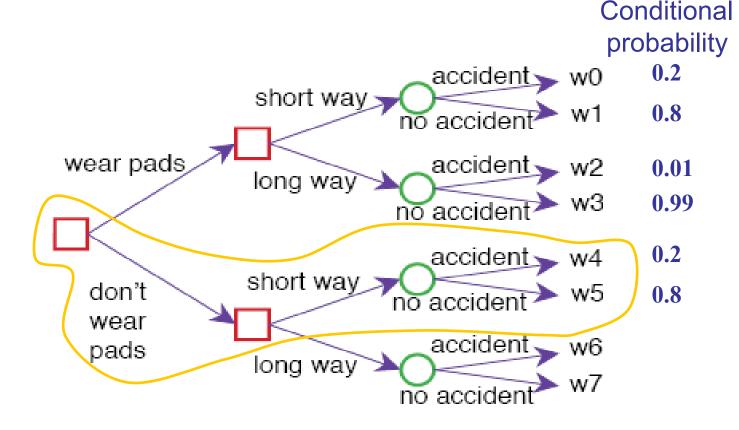
- A possible world specifies a value for each random variable and each decision variable
- For each assignment of values to all decision variables
 - the probabilities of the worlds satisfying that assignment sum to 1.



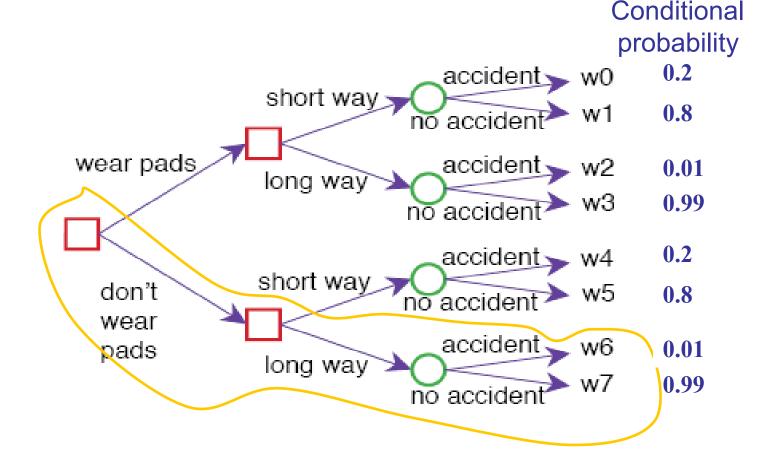
- A possible world specifies a value for each random variable and each decision variable
- For each assignment of values to all decision variables
 - the probabilities of the worlds satisfying that assignment sum to 1.



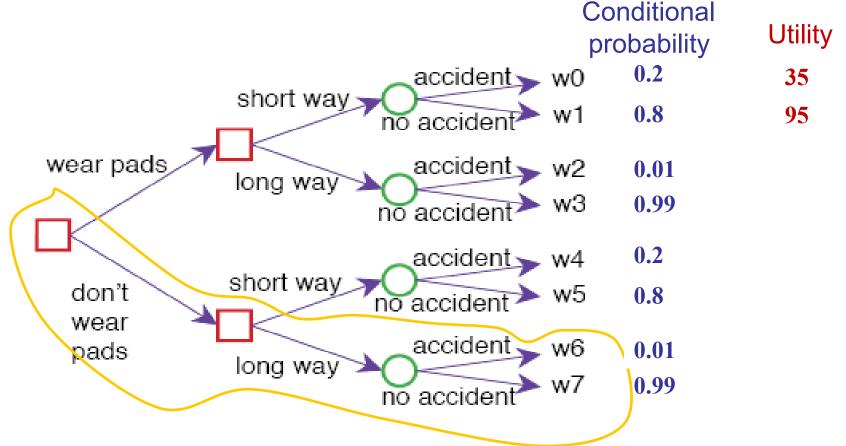
- A possible world specifies a value for each random variable and each decision variable
- For each assignment of values to all decision variables
 - the probabilities of the worlds satisfying that assignment sum to 1.



- A possible world specifies a value for each random variable and each decision variable
- For each assignment of values to all decision variables
 - the probabilities of the worlds satisfying that assignment sum to 1.



- A possible world specifies a value for each random variable and each decision variable
- For each assignment of values to all decision variables
 - the probabilities of the worlds satisfying that assignment sum to 1.

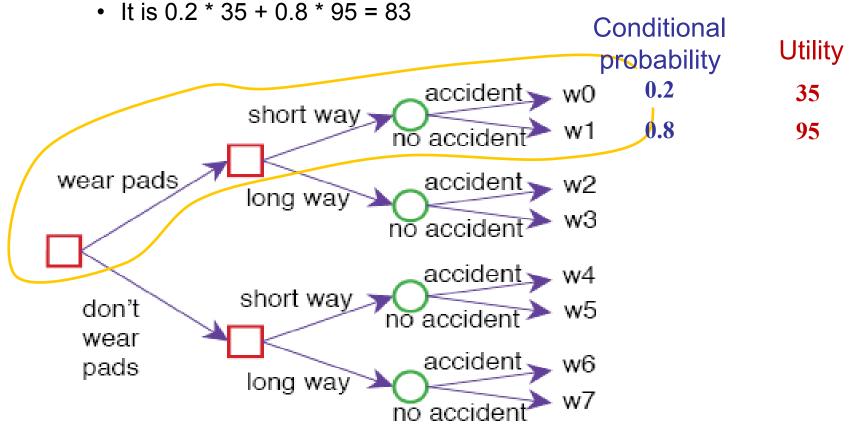


Utility

- Utility: a measure of desirability of possible worlds to an agent
 - Let U be a real-valued function such that U(w) represents an agent's degree of preference for world w
 - Expressed by a number in [0,100]
- Simple goals can still be specified
 - Worlds that satisfy the goal have utility 100
 - Other worlds have utility 0
- Utilities can be more complicated
 - For example, in the robot delivery domains, they could involve
 - Amount of damage
 - Reached the target room?
 - Energy left
 - Time taken

Combining probabilities and utilities

- We can combine probability with utility
 - The expected utility of a probability distribution over possible worlds average utility, weighted by probabilities of possible worlds
 - What is the expected utility of Wearpads=yes, Way=short ?



57

Expected utility

 Suppose U(w) is the utility of possible world w and P(w) is the probability of possible world w

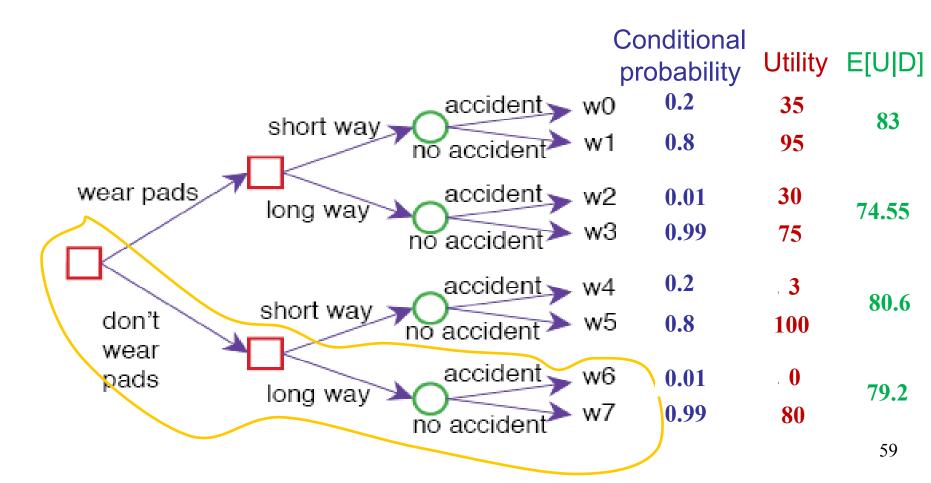
Definition (expected utility) The expected utility is $E[U] = \sum_{w} P(w)U(w)$

Definition (expected utility) The conditional expected utility given e is $E[U|e] = \sum_{w} P(w|e)U(w)$

Expected utility of a decision

• We write the expected utility of a decision as:

$$E[U|D = d] = \sum_{w} P(w|D = d)U(w)$$



Optimal single-stage decision

- Given a single decision variable D
 - the agent can choose $D=d_i$ for any value $d_i \in dom(D)$

Definition (optimal single-stage decision) An optimal single-stage decision is the decision D=d_{max} whose expected value is maximal:

$$d_{max} \in \underset{d_i \in dom(D)}{\operatorname{argmax}} E[U|D=d_i]$$

Learning Goals For Today's Class

- Variable elimination
 - Carry out variable elimination by using factor representation and using the factor operations
- Define a Utility Function on possible worlds
- Define and compute optimal one-off decisions
- Assignment 4 is due next Wednesday
- Please complete the Teaching Evaluation