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Lecture Overview 

•  Recap: Bayesian Networks 

•  Inference in Special Types of Bayesian Networks 
–  Markov Chains 
–  Hidden Markov Models (HMMs) 

•  Inference in General Bayesian Networks 
–  Observations and Inference 
–  Time Permitting: Variable elimination 
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Recap: Conditional Independence 



Recap: Bayesian Networks, Definition 
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Pa(Xi) 



Recap: Construction of Bayesian Networks 

Encoding the joint over {X1, …, Xn} as a Bayesian network: 
–  Totally order the variables: e.g., X1, …, Xn   

–  For every variable Xi, find the smallest set of parents  
Pa(Xi) ⊆ {X1, …, Xi-1} such that Xi ╨ {X1, …, Xi-1} \ Pa(Xi) | Pa(Xi) 
•  Xi is conditionally independent from its other ancestors given its parents 

 

–  For every variable Xi, construct its conditional probability table 
•  P(Xi | Pa(Xi) ) 
•  This has to specify a conditional probability distribution  

P(Xi | Pa(Xi) = pa(Xi) ) for every instantiation pa(Xi) of Xi’s parents 
•  If a variable has 3 parents each of which has a domain with 4 values, 

how many instantiations of its parents are there?  

5 

43  34 3*4 43 -1 



Recap: Construction of Bayesian Networks 

Encoding the JPD over {X1, …, Xn} as a Bayesian network: 
–  Totally order the variables: e.g., X1, …, Xn   

–  For every variable Xi, find the smallest set of parents  
Pa(Xi) ⊆ {X1, …, Xi-1} such that Xi ╨ {X1, …, Xi-1} \ Pa(Xi) | Pa(Xi) 
•  Xi is conditionally independent from its other ancestors given its parents 

 

–  For every variable Xi, construct its conditional probability table 
•  P(Xi | Pa(Xi) ) 
•  This has to specify a conditional probability distribution  

P(Xi | Pa(Xi) = pa(Xi) ) for every instantiation pa(Xi) of Xi‘s parents 
•  If a variable has 3 parents each of which has a domain with 4 values, 

how many instantiations of its parents are there?  
–  4 * 4 * 4 = 43 
–  For each of these 43 values we need 

one probability distribution defined over the values of Xi 
–  So need [(|dom(Xi)| - 1)  * 43] numbers in total for  Xi’s CPT 

6 



Recap of BN construction with a small example 

Disease D! Symptom S! P(D,S)!
t" t" 0.0099"
t" f" 0.0001"
f" t" 0.0990"
f" f" 0.8910"

Disease D! P(D)!
t" 0.01"
f" 0.99"

Symptom S! P(S)!
t" 0.1089"
f" 0.8911"

Yes No 



Recap of BN construction with a small example 

Disease D! Symptom S! P(D,S)!
t" t" 0.0099"
t" f" 0.0001"
f" t" 0.0990"
f" f" 0.8910"

Disease Symptom 

Disease D! P(D)!
t" 0.01"
f" 0.99"

Symptom S! P(S)!
t" 0.1089"
f" 0.8911"



Recap of BN construction with a small example 

•  Which (conditional) probability tables do we need? 
 

Disease D! Symptom S! P(D,S)!
t" t" 0.0099"
t" f" 0.0001"
f" t" 0.0990"
f" f" 0.8910"

Disease Symptom 

Disease D! P(D)!
t" 0.01"
f" 0.99"

Symptom S! P(S)!
t" 0.1089"
f" 0.8911"

P(D|S) P(D) P(S|D) P(D,S) 



Recap of BN construction with a small example 

•  Which conditional probability tables do we need? 
–  P(D) and P(S|D) 
–  In general: for each variable X in the network: P( X|Pa(X) ) 

Disease D! Symptom S! P(D,S)!
t" t" 0.0099"
t" f" 0.0001"
f" t" 0.0990"
f" f" 0.8910"

Disease Symptom 

Disease D! P(D)!
t" 0.01"
f" 0.99"

Symptom S! P(S)!
t" 0.1089"
f" 0.8911"

P(D=t)!
0.01"

Disease D! P(S=t|D)!
t" 0.0099/(0.0099+0.0001)=0.99"
f" 0.099/(0.099+0.891)=0.1"



Recap of BN construction with a small example 

Disease D! Symptom S! P(D,S)!
t" t" 0.0099"
t" f" 0.0001"
f" t" 0.0990"
f" f" 0.8910"

•  How about a different ordering? Symptom, Disease 
–  We need distributions P(S) and P(D|S) 
–  In general: for each variable X in the network: P( X|Pa(X) ) 

Disease Symptom 

P(S=t)!
0.1089"

Symptom S! P(D=t|S)!
t" 0.0099/(0.0099+0.099)=0.00909090"
f" 0.0001/(0.0001+0.891)=0.00011122"

Disease D! P(D)!
t" 0.01"
f" 0.99"

Symptom S! P(S)!
t" 0.1089"
f" 0.8911"



 
Remark: where do the conditional probabilities 

come from? 
•  The joint distribution is not normally the starting point 

–  We would have to define exponentially many numbers  

 
•  First define the Bayesian network structure 

–  Either by domain knowledge  
–  Or by machine learning algorithms (see CPSC 540) 

•  Typically based on local search 

 
•  Then fill in the conditional probability tables 

–  Either by domain knowledge  
–  Or by machine learning algorithms (see CPSC 340, CPSC 422) 

•  Based on statistics over the observed data 
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Lecture Overview 

•  Recap: Bayesian Networks 

•  Inference in Special Types of Bayesian Networks 
–  Markov Chains 
–  Hidden Markov Models (HMMs) 

•  Inference in General Bayesian Networks 
–  Observations and Inference 
–  Time Permitting: Factors and Variable Elimination 
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Markov Chains 
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X0 X1 X2 

  
…



Stationary Markov Chains 

•  A stationary Markov chain is when  
–  All state transition probability tables are the same 
–  I.e., for all t > 0, t’ > 0: P(Xt|Xt-1) = P(Xt’|Xt’-1) 

•  We only need to specify P(X0) and P(Xt |Xt-1). 
–  Simple model, easy to specify 
–  Often the natural model 
–  The network can extend indefinitely in time 

•  Example: Drunkard’s walk, robot random motion 
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X0 X1 X2 

  
…



Lecture Overview 

•  Recap: Bayesian Networks 

•  Inference in Special Types of Bayesian Networks 
–  Markov Chains 
–  Hidden Markov Models (HMMs) 

•  Inference in General Bayesian Networks 
–  Observations and Inference 
–  Time Permitting: Factors and Variable Elimination 
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Hidden Markov Models (HMMs) 
•  A Hidden Markov Model (HMM) is a stationary Markov chain 

plus a noisy observation about the state at each time step: 
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O1 

X0 X1 

O2 

X2 

  
…



Example HMM: Robot Tracking 
•  Robot tracking as an HMM: 
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Sens1 

Pos0 Pos1 

Sens2 

Pos2 

•  Robot is moving at random: P(Post|Post-1) 
•  Sensor observations of the current state P(Senst|Post) 

  
…



Filtering in Hidden Markov Models (HMMs) 
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O1 

X0 X1 

O2 

X2 

•  Filtering problem in HMMs:  
at time step t, we would like to know P(Xt|o1, …, ot) 

•  We can derive simple update equations for this belief state: 
–  We are given P(X0)   (i.e., P(X0 | {}) 
–  We can compute P(Xt|O1, …, Ot) if we know P(Xt-1|o1, …, ot-1) 
–  Simple example of dynamic programming 
–  See P&M text Section 6.5.3 (not responsible for this for exam!) 

  
…



Lecture Overview 

•  Recap: Bayesian Networks 

•  Inference in Special Types of Bayesian Networks 
–  Markov Chains 
–  Hidden Markov Models (HMMs) 

•  Inference in General Bayesian Networks 
–  Observations and Inference 
–  Time Permitting: Factors and Variable Elimination 
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Bayesian Networks: Incorporating Observations 

•  In the special case of Hidden Markov Models (HMMs): 
–  we could easily incorporate observations  
–  and do efficient inference (in particular: filtering) 

•  Back to general Bayesian Networks 
–  We can still incorporate observations 
–  And we can still do (fairly) efficient inference 
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Bayesian Networks: Incorporating Observations 
We denote observed variables as shaded. Examples: 
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O1 

X0 X1 

O2 

X2 

Understood
Material 

Assignment 
Grade 

Exam 
Grade 

Alarm 

Smoking At 
Sensor 

Fire 



Bayesian Networks: Types of  Inference 
Diagnostic 

People are  
leaving 

L=t 

P(F|L=t)=? 

Predictive Intercausal Mixed 

Fire happens 
F=t 

P(L|F=t)=? 
Alarm goes off 

P(a) = 1.0 

P(F|A=t,T=t)=? 

People are  
leaving 

L=t 

There is no fire 
F=f 

P(A|F=f,L=t)=? 

Person smokes  
next to sensor 

S=t 
Fire 

Alarm 

Leaving 

Fire 

Alarm 

Leaving 

Fire 

Alarm 

Leaving 

Fire 

Alarm 

Smoking 
at Sensor 

We will use the same reasoning procedure for all of these types 



Inference in Bayesian Networks 
 
Given:  

–  A Bayesian Network BN, and 
–  Observations of a subset of its variables E: E=e 
–  A subset of its variables Y that is queried 

Compute: The conditional probability P(Y|E=e) 
How: Run variable elimination algorithm 
 
N.B. We can already do all this: See lecture “Uncertainty2” 
Inference by Enumeration topic.  
The BN represents the JPD. Could just multiply out the BN to 
get full JPD and then do Inference by Enumeration BUT that’s 
extremely inefficient -  does not scale. 
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Lecture Overview 

 
 
•  Inference in General Bayesian Networks 

–  Factors:  
•  Assigning Variables 
•  Summing out Variables  
•  Multiplication of Factors 

–  The variable elimination algorithm 
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Factors 
•  A factor is a function from a tuple of random variables to 

the real numbers R 
•  We write a factor on variables X1,… ,Xj as f(X1,… ,Xj)  

•  P(Z|X,Y) is a factor f (X,Y,Z) 
–  Factors do not have to sum to one 
–  P(Z|X,Y) is a set of probability  

distributions: one for each  
combination of values of X and Y 

•  P(Z=f|X,Y) is a factor f(X,Y)   
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X Y Z val 

t t t 0.1 
t t f 0.9 
t f t 0.2 
t f f 0.8 

f t t 0.4 
f t f 0.6 
f f t 0.3 
f f f 0.7 

 f(X, Y)Z=f 



Operation 1: assigning a variable 
•  We can make new factors out of an existing factor 

•  Our first operation:  
we can assign some or all of the variables of a factor. 

X Y Z val 
t t t 0.1 
t t f 0.9 
t f t 0.2 

f(X,Y,Z): t f f 0.8 
f t t 0.4 
f t f 0.6 
f f t 0.3 
f f f 0.7 

What is the result of  
assigning X= t   ? 

f(X=t,Y,Z) =f(X, Y, Z)X = t 
 

Y Z val 
t t 0.1 
t f 0.9 
f t 0.2 
f f 0.8 

Factor of Y, Z 

27 



28 

More examples of assignment 
X Y Z val 
t t t 0.1 
t t f 0.9 
t f t 0.2 

f(X,Y,Z): t f f 0.8 
f t t 0.4 
f t f 0.6 
f f t 0.3 
f f f 0.7 

Y Z val 
t t 0.1 
t f 0.9 
f t 0.2 
f f 0.8 

Y val 
t 0.9 
f 0.8 

f(X=t,Y=f,Z=f): 0.8 

f(X=t,Y,Z) 

f(X=t,Y,Z=f): 

Factor of Y,Z 

Factor of Y 

Number 



Operation 2: Summing out a variable 
•  Our second operation on factors:  

we can marginalize out (or sum out) a variable 
–  Exactly as before. Only difference: factors don’t sum to 1 
–  Marginalizing out a variable X from a factor f(X1,… ,Xn) yields a new 

factor defined on {X1,… ,Xn } \ {X} 
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X
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B A C val 
t t t 0.03 
t t f 0.07 
f t t 0.54 
f t f 0.36 

f3= t f t 0.06 
t f f 0.14 
f f t 0.48 
f f f 0.32 

A C val 

t t 0.57 

t f 0.43 

f t 0.54 

f f 0.46 

(∑Bf3)(A,C) 
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Operation 3: multiplying factors 

30 

A B C val 
t t t 0.03 

t t f 0.1x0.7 

t f t 0.9x0.6 

t f f … 
f t t 
f t f 
f f t 
f f f 

A B Val 

t t 0.1 

f1(A,B): t f 0.9 

f t 0.2 

f f 0.8 

B C Val 

t t 0.3 

f2(B,C): t f 0.7 

f t 0.6 

f f 0.4 

f1(A,B)× f2(B,C): 



Operation 3: multiplying factors 
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),(),(),,)(( 2121 CBfBAfCBAff =×



•  Build a Bayesian Network for a given domain 
•  Understand basics of Markov Chains and Hidden Markov 

Models 
•  Classify the types of inference: 

–  Diagnostic, Predictive, Mixed, Intercausal 

•  Understand factors 
 

Assignment 4 available on Connect: Q1, Q2, Q3 and Q4 
NOW. Q5: variable elimination (VE) next class. 
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Learning Goals For Today’s Class 


