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Lecture Overview 

•  Recap: marginal and conditional independence 

•  Bayesian Networks Introduction 

•  Hidden Markov Models 
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Marginal Independence 

•  Intuitively: if X ╨ Y, then 
–  learning that Y=y does not change your belief in X 
–  and this is true for all values y that Y could take 

•  For example, weather is marginally independent  
of the result of a coin toss 
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Marginal Independence 
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Conditional Independence 
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•  Intuitively: if X ╨ Y | Z, then 
–  learning that Y=y does not change your belief in X  

when we already know Z=z 
–  and this is true for all values y that Y could take  

and all values z that Z could take 

•  For example,  
ExamGrade ╨ AssignmentGrade | UnderstoodMaterial 



Conditional Independence 



Lecture Overview 

•  Recap: marginal and conditional independence 

•  Bayesian Networks Introduction 

•  Hidden Markov Models 
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Bayesian Network Motivation 
•  We want a representation and reasoning system that is 

based on conditional (and marginal) independence 
–  Compact yet expressive representation 
–  Efficient reasoning procedures 

•  Bayes[ian] (Belief) Net[work]s are such a representation 
–  Named after Thomas Bayes (ca. 1702 –1761) 
–  Term coined in 1985 by Judea Pearl (1936 –  ) 
–  Their invention changed the primary focus of AI from logic to 

probability! 

 
             Thomas Bayes                               Judea Pearl 8 



Bayesian Networks: Intuition 

•  A graphical representation for a joint probability distribution 
–  Nodes are random variables 
–  Directed edges between nodes reflect dependence 

•  Some informal examples: 
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Understood
Material 

Assignment 
Grade 

Exam 
Grade Alarm 

Smoking At 
Sensor 

Fire 

Pos0 Pos1 Pos2 Robot: 



Bayesian Networks: Definition 
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Bayesian Networks: Definition 
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•  Discrete Bayesian networks: 
–  Domain of each variable is finite 
–  Conditional probability distribution is a conditional probability table  
–  We will assume this discrete case 

•  But everything we say about independence (marginal & conditional) 
carries over to the continuous case 



Example for BN construction: Fire Diagnosis 
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Example for BN construction: Fire Diagnosis 
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5.     Construct the Bayesian Net (BN) 
•  Nodes are the random variables 
•  Directed arc from each variable in Pa(Xi) to Xi 
•  Conditional Probability Table (CPT)  

 for each variable Xi: P(Xi | Pa(Xi)) 



Example for BN construction: Fire Diagnosis 

 
You want to diagnose whether there is a fire in a building 
•  You receive a noisy report about whether everyone is 

leaving the building 
•  If everyone is leaving, this may have been caused by a fire 

alarm 
•  If there is a fire alarm, it may have been caused by a fire or 

by tampering  
•  If there is a fire, there may be smoke 
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Example for BN construction: Fire Diagnosis 

First you choose the variables. In this case, all are Boolean: 
• Tampering is true when the alarm has been tampered with 
• Fire is true when there is a fire 
• Alarm is true when there is an alarm 
• Smoke is true when there is smoke 
• Leaving is true if there are lots of people leaving the building 
• Report is true if the sensor reports that lots of people are 
leaving the building 

• Let’s construct the Bayesian network for this (whiteboard) 
–  First, you choose a total ordering of the variables, let’s say:  

Fire; Tampering; Alarm; Smoke; Leaving; Report. 
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Example for BN construction: Fire Diagnosis 
•  Using the total ordering of variables:  

–  Let’s say Fire; Tampering; Alarm; Smoke; Leaving; Report. 

•  Now choose the parents for each variable by evaluating 
conditional independencies 
–  Fire is the first variable in the ordering, X1. It does not have parents. 
–  Tampering independent of fire (learning that one is true would not 

change your beliefs about the probability of the other) 
–  Alarm depends on both Fire and Tampering: it could be caused by 

either or both 
–  Smoke is caused by Fire, and so is independent of Tampering and 

Alarm given whether there is a Fire 
–  Leaving is caused by Alarm, and thus is independent of the other 

variables given Alarm 
–  Report is caused by Leaving, and thus is independent of the other 

variables given Leaving 
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Example for BN construction: Fire Diagnosis 
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Example for BN construction: Fire Diagnosis 

 

•  We are not done yet: must specify the Conditional Probability 
Table (CPT) for each variable. All variables are Boolean. 

•  How many probabilities do we need to specify for this 
Bayesian network? 
–  This time taking into account that probability tables have to sum to 1 
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Example for BN construction: Fire Diagnosis 

 

•  We are not done yet: must specify the Conditional Probability 
Table (CPT) for each variable. All variables are Boolean. 

•  How many probabilities do we need to specify for this 
Bayesian network?  

•  P(Tampering): 1 probability 
•  P(Alarm|Tampering, Fire): 4 (independent) 

 1 probability for each of the 4 instantiations of the parents 
•  In total: 1+1+4+2+2+2 = 12 (compared to 26 -1= 63 for full JPD!) 
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P(Tampering=t)! P(Tampering=f)!
0.02" 0.98"

Example for BN construction: Fire Diagnosis 

We don’t need to  
store P(Tampering=f)  
since probabilities sum to 1 
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P(Tampering=t)!
0.02"



Tampering T! Fire F! P(Alarm=t|T,F)! P(Alarm=f|T,F)!
t" t" 0.5" 0.5"
t" f" 0.85" 0.15"
f" t" 0.99" 0.01"
f" f" 0.0001" 0.9999"

Example for BN construction: Fire Diagnosis 
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P(Tampering=t)!
0.02"

P(Fire=t)!
0.01"

We don’t need to store 
P(Alarm=f|T,F) since 
probabilities sum to 1 

Each row of this table is a conditional probability distribution 



Example for BN construction: Fire Diagnosis 
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Tampering T! Fire F! P(Alarm=t|T,F)!
t" t" 0.5"
t" f" 0.85"
f" t" 0.99"
f" f" 0.0001"

P(Tampering=t)!
0.02"

P(Fire=t)!
0.01"

We don’t need to store 
P(Alarm=f|T,F) since 
probabilities sum to 1 
Each row of this table is a 
conditional probability 
distribution 



Example for BN construction: Fire Diagnosis 

P(Tampering=t, Fire=f, Alarm=t, Smoke=f, Leaving=t, Report=t) 
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Tampering T! Fire F! P(Alarm=t|T,F)!
t" t" 0.5"
t" f" 0.85"
f" t" 0.99"
f" f" 0.0001"

P(Tampering=t)!
0.02"

P(Fire=t)!
0.01"

Fire F! P(Smoke=t |F)!
t" 0.9"
f" 0.01"

Alarm! P(Leaving=t|A)!
t" 0.88"
f" 0.001"Leaving! P(Report=t|A)!

t" 0.75"
f" 0.01"



Example for BN construction: Fire Diagnosis 
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Tampering T! Fire F! P(Alarm=t|T,F)!
t" t" 0.5"
t" f" 0.85"
f" t" 0.99"
f" f" 0.0001"

P(Tampering=t)!
0.02"

P(Fire=t)!
0.01"

Fire F! P(Smoke=t |F)!
t" 0.9"
f" 0.01"

Alarm! P(Leaving=t|A)!
t" 0.88"
f" 0.001"Leaving! P(Report=t|A)!

t" 0.75"
f" 0.01"

= 0.126 



What if we use a different ordering? 
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Leaving 

Report 

Tampering 

Smoke 

Alarm 

•  We end up with a completely different network structure! 
•  Which of the two structures is better (think computationally)? 

Fire 

The previous structure 

This structure 

•  Important for assignment 4, question 4: 
•  Say, we use the following order: 

–  Leaving; Tampering; Report; Smoke; Alarm; Fire. 



What if we use a different ordering? 
•  Important for assignment 4, question 4: 
•  Say, we use the following order: 

–  Leaving; Tampering; Report; Smoke; Alarm; Fire. 
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Leaving 

Report 

Tampering 

Smoke 

Alarm 

•  We end up with a completely different network structure! 
•  Which of the two structures is better (think computationally)? 

–  In the last network, we had to specify 12 probabilities 
–  Here? 1 + 2 + 2 + 2 + 8 + 8 = 23 
–  The causal structure typically leads to the most compact network 

•  Compactness typically enables more efficient reasoning 

Fire 



Are there wrong network structures? 
•  Important for assignment 4, question 4 
•  Some variable orderings yield more compact, some less 

compact structures 
–  Compact ones are better 
–  But all representations resulting from this process are correct 
–  One extreme: the fully connected network is always correct but 

rarely the best choice 

•  How can a network structure be wrong? 
–  If it misses directed edges that are required 
–  E.g. an edge is missing below: Fire ╨ Alarm | {Tampering, Smoke} 
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Leaving 

Report 

Tampering 

Smoke 

Alarm 

Fire 



Lecture Overview 

•  Recap: marginal and conditional independence 

•  Bayesian Networks Introduction 

•  Hidden Markov Models 
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Markov Chains 
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X0 X1 X2 

  
…



Stationary Markov Chains 

•  A stationary Markov chain is when  
–  All state transition probability tables are the same 
–  I.e., for all t > 0, t’ > 0: P(Xt|Xt-1) = P(Xt’|Xt’-1) 

•  We only need to specify P(X0) and P(Xt |Xt-1). 
–  Simple model, easy to specify 
–  Often the natural model 
–  The network can extend indefinitely in time 

•  Example: Drunkard’s walk, robot random motion 
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X0 X1 X2 

  
…



Hidden Markov Models (HMMs) 
•  A Hidden Markov Model (HMM) is a Markov chain plus a 

noisy observation about the state at each time step: 
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O1 

X0 X1 

O2 

X2 

  
…

P(Ot|Xt) 



Example HMM: Robot Tracking 
•  Robot tracking as an HMM: 
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O1 

Pos0 Pos1 

O2 

Pos2 

•  Robot is moving at random: P(Post|Post-1) 
•  Sensor observations of the current state P(Ot|Post) 

  
…



Filtering in Hidden Markov Models (HMMs) 
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O1 

X0 X1 

O2 

X2 

•  Filtering problem in HMMs:  
at time step t, we would like to know P(Xt|O1, …, Ot) 

•  Can derive simple update equations: 
–  Compute P(Xt|O1, …, Ot) if we already know P(Xt-1|O1, …, Ot-1) 

  
…



•  Build a Bayesian Network for a given domain 
•  Compute the representational savings in terms of number 

of probabilities required 
•  Understand basics of Markov Chains and Hidden Markov 

Models 
 

•  Assignment 4 available on Connect 
–  Due Wednesday, April 4. 
–  You should now be able to solve questions 1, 2, 3 and 4. Do them! 
–  Material for question 5 (variable elimination): later this week 
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Learning Goals For Today’s Class 


