Reasoning Under Uncertainty: Conditioning, Bayes Rule & the Chain Rule

Alan Mackworth

UBC CS 322 - Uncertainty 2

March 13, 2013

Textbook §6.1.3

Lecture Overview

- Recap: Probability & Possible World Semantics
- Reasoning Under Uncertainty
 - Conditioning
 - Inference by Enumeration
 - Bayes Rule
 - The Chain Rule

Course Overview

Environment

Deterministic

Stochastic

Course Module

Representation

For the rest of

the course, we

will consider

uncertainty

Reasoning Technique

Problem Type

Constraint Satisfaction Variables +

Logic

Sequential

Static

Planning

Arc
Consistency
Variables + Searc
Constraints

Logics

Search

STRIPS

Search

As CSP (using arc consistency)

Bayesian Networks

Variable Elimination

Decision Networks

Variable Elimination

Markov Processes

Value Iteration Decision Theory

Uncertainty

3

Recap: Possible Worlds Semantics

- Example: model with 2 random variables
 - Temperature, with domain {hot, mild, cold}
 - Weather, with domain {sunny, cloudy}
- One joint random variable
 - <Temperature, Weather>
 - With the crossproduct domain {hot, mild, cold} × {sunny, cloudy}
- There are 6 possible worlds
 - The joint random variable has a probability for each possible world

Weather	Temperature	μ(w)
sunny	hot	0.10
sunny	mild	0.20
sunny	cold	0.10
cloudy	hot	0.05
cloudy	mild	0.35
cloudy	cold	0.20

- We can read the probability for each subset of variables from the joint probability distribution
 - E.g. P(Temperature=hot) = P(Temperature=hot, Weather=Sunny)
 - + P(Temperature=hot, Weather=cloudy)
 - = 0.10 + 0.05

Recap: Possible Worlds Semantics

- Examples for ⊧ (related to but not identical to its meaning in logic)
 - $w_1 = (W=sunny)$
 - $w_1 = (T=hot)$
 - w_1 ∤ (W=sunny ∧ T=hot)
- E.g. f = "T=hot"
 - Only $w_1 \models f$ and $w_4 \models f$
 - $p(f) = \mu(w_1) + \mu(w_4)$ = 0.10 + 0.05
- E.g. g = "W=sunny ∧ T=hot"
 - Only w₁ ⊧ g
 - $P(g) = \mu(w_1) = 0.10$

Name of possible world	Weather W	Temperature T	Measure μ of possible world
W ₁	sunny	hot	0.10
W ₂	sunny	mild	0.20
W_3	sunny	cold	0.10
W_4	cloudy	hot	0.05
W ₅	cloudy	mild	0.35
<i>W</i> ₆	cloudy	cold	0.20

- w | (X=x) means variable X is assigned value x in world w
- Probability measure $\mu(w)$ sums to 1 over all possible worlds w
- The probability of proposition f is defined by: $p(f) = \sum_{w \in f} \mu(w)$

Recap: Probability Distributions

Definition (probability distribution)

A probability distribution P on a random variable X is a function $dom(X) \rightarrow [0,1]$ such that

$$x \rightarrow P(X=x)$$

Note: We use notations P(f) and p(f) interchangeably

Recap: Marginalization

 Given the joint distribution, we can compute distributions over smaller sets of variables through marginalization:

$$P(X=x) = \Sigma_{z \in dom(Z)} P(X=x, Z=z)$$

- This corresponds to summing out a dimension in the table.
- The new table still sums to 1. It must, since it's a probability distribution!

Weather	Temperature	μ(w)
sunny	hot	0.10
sunny	mild	0.20
sunny	cold	0.10
cloudy	hot	0.05
cloudy	mild	0.35
cloudy	cold	0.20

Temperature	μ(w)
hot	0.15
mild	
cold	

P(Temperature=hot) =
P(Temperature = hot, Weather=sunny)
+ P(Temperature = hot, Weather=cloudy)
= 0.10 + 0.05 = 0.15

Recap: Marginalization

 Given the joint distribution, we can compute distributions over smaller sets of variables through marginalization:

$$P(X=x) = \sum_{z \in dom(Z)} P(X=x, Z = z)$$

- This corresponds to summing out a dimension in the table.
- The new table still sums to 1. It must, since it's a probability distribution!

Weather	Temperature	$\mu(w)$		Temperature	μ(w)
sunny	hot	0.10		hot	0.15
sunny	mild	0.20	→	mild	0.55
sunny	cold	0.10		cold	
cloudy	hot	0.05			
cloudy	mild	0.35			
cloudy	cold	0.20			

Recap: Marginalization

 Given the joint distribution, we can compute distributions over smaller sets of variables through marginalization:

$$P(X=x) = \Sigma_{z \in dom(Z)} P(X=x, Z=z)$$

- This corresponds to summing out a dimension in the table.
- The new table still sums to 1. It must, since it's a probability distribution!

Weather	Temperature	μ(w)
sunny	hot	0.10
sunny	mild	0.20
sunny	cold	0.10
cloudy	hot	0.05
cloudy	mild	0.35
cloudy	cold	0.20

Temperature	μ(w)
hot	0.15
mild	0.55
cold	0.30

Alternative way to compute last entry: probabilities have to sum to 1.

Lecture Overview

- Recap: Probability & Possible World Semantics
- Reasoning Under Uncertainty

- Conditioning
- Inference by Enumeration
- Bayes Rule
- The Chain Rule

Conditioning

- Conditioning: revise beliefs based on new observations
 - Build a probabilistic model (the joint probability distribution, JPD)
 - Takes into account all background information
 - Called the prior probability distribution
 - Denote the prior probability for hypothesis h as P(h)
 - Observe new information about the world
 - Call all information we received subsequently the evidence e
 - Integrate the two sources of information
 - to compute the conditional probability P(h|e)
 - This is also called the posterior probability of h given e.

Example

- Prior probability for having a disease (typically small)
- Evidence: a test for the disease comes out positive
 - But diagnostic tests have false positives
- Posterior probability: integrate prior and evidence

Example for conditioning

 You have a prior for the joint distribution of weather and temperature, and the marginal distribution of temperature

Possible world	Weather	Temperature	μ(w)
W_1	sunny	hot	0.10
W_2	sunny	mild	0.20
W_3	sunny	cold	0.10
W_4	cloudy	hot	0.05
W ₅	cloudy	mild	0.35
₩ ₆	cloudy	cold	0.20

Т	P(TIW=sunny)
hot	0.10/0.40=0.25
mild	??
cold	

0.20 0.40 0.50 0.80

- Now, you look outside and see that it's sunny
 - You are now certain that you're in one of worlds w₁, w₂, or w₃
 - To get the conditional probability, you simply renormalize to sum to 1
 - -0.10+0.20+0.10=0.40

Example for conditioning

 You have a prior for the joint distribution of weather and temperature, and the marginal distribution of temperature

Possible world	Weather	Temperature	μ(w)
W_1	sunny	hot	0.10
W_2	sunny	mild	0.20
W_3	sunny	cold	0.10
W ₄	cloudy	hot	0.05
		mild	0.25
W ₅	cloudy	mila	0.35
W ₆	cloudy	cold	0.20

T	P(TIW=sunny)
hot	0.10/0.40=0.25
mild	0.20/0.40=0.50
cold	0.10/0.40=0.25

- Now, you look outside and see that it's sunny
 - You are now certain that you're in one of worlds w₁, w₂, or w₃
 - To get the conditional probability, you simply renormalize to sum to 1
 - -0.10+0.20+0.10=0.40

Semantics of Conditioning

- Evidence e ("W=sunny") rules out possible worlds incompatible with e.
 - Now we formalize what we did in the previous example

Possible world	Weather W	Temperature	μ(w)	$\mu_{\rm e}(w)$
W ₁	sunny	hot	0.10	
W_2	sunny	mild	0.20	
W_3	sunny	cold	0.10	
W ₄	cloudy	hot	0.05	
W ₅	cloudy	mild	0.35	
W ₆	cloudy	cold	0.20	

What is P(e)?

0.20 0.40

0.50 0.80

Recall: e = "W=sunny"

 We represent the updated probability using a new measure, μ_e, over possible worlds

$$\mu_{e}(\mathbf{w}) = \begin{cases} \frac{1}{P(e)} \times \mu(w) & if \quad w \neq e \\ 0 & if \quad w \neq e \end{cases}$$

Semantics of Conditioning

- Evidence e ("W=sunny") rules out possible worlds incompatible with e.
 - Now we formalize what we did in the previous example

Possible world	Weather W	Temperature	μ(w)	μ _e (w)
W_1	sunny	hot	0.10	
W_2	sunny	mild	0.20	
W_3	sunny	cold	0.10	
W ₄	cloudy	hot	0.05	
W ₅	cloudy	mild	0.35	
W ₆	cloudy	cold	0.20	

What is P(e)?

Marginalize out Temperature, i.e. 0.10+0.20+0.10=0.40

 We represent the updated probability using a new measure, μ_e, over possible worlds

$$\mu_{e}(\mathbf{w}) = \begin{cases} \frac{1}{P(e)} \times \mu(w) & if \quad w \neq e \\ 0 & if \quad w \neq e \end{cases}$$

Semantics of Conditioning

- Evidence e ("W=sunny") rules out possible worlds incompatible with e.
 - Now we formalize what we did in the previous example

Possible world	Weather W	Temperature	μ(w)	μ _e (w)
W_1	sunny	hot	0.10	0.10/0.40=0.25
W_2	sunny	mild	0.20	0.20/0.40=0.50
W_3	sunny	cold	0.10	0.10/0.40=0.25
W_4	cloudy	hot	0.05	0
W ₅	cloudy	mild	0.35	0
W ₆	cloudy	cold	0.20	0

What is P(e)?

Marginalize out Temperature, i.e. 0.10+0.20+0.10=0.40

 We represent the updated probability using a new measure, µ_e, over possible worlds

$$\mu_{e}(\mathbf{w}) = \begin{cases} \frac{1}{P(e)} \times \mu(w) & if \quad w \neq e \\ 0 & if \quad w \neq e \end{cases}$$

Conditional Probability

- P(e): Sum of probability for all worlds in which e is true
- P(h∧e): Sum of probability for all worlds in which both h and e are true
- $P(h|e) = P(h \land e) / P(e)$ (Only defined if P(e) > 0)

$$\mu_{e}(\mathbf{w}) = \begin{cases} \frac{1}{P(e)} \times \mu(w) & if \quad w \neq e \\ 0 & if \quad w \neq e \end{cases}$$

Definition (conditional probability)

The conditional probability of formula h given evidence e is

$$P(h|e) = \sum_{w \models h} \mu_{e}(w) = \frac{1}{P(e)} \sum_{w \models h \land e} \mu(w) = \frac{P(h \land e)}{P(e)}$$

Lecture Overview

- Recap: Probability & Possible World Semantics
- Reasoning Under Uncertainty
 - Conditioning
- _ _ In
 - Inference by Enumeration
 - Bayes Rule
 - The Chain Rule

Inference by Enumeration

- Great, we can compute arbitrary probabilities now!
- Given:
 - Prior joint probability distribution (JPD) on set of variables X
 - specific values e for the evidence variables E (subset of X)
- We want to compute:
 - posterior joint distribution of query variables Y (a subset of X)
 given evidence e
- Step 1: Condition to get distribution P(X|e)
- Step 2: Marginalize to get distribution P(Y|e)

- Given P(X) as JPD below, and evidence e = "Wind=yes"
 - What is the probability it is hot? I.e., P(Temperature=hot | Wind=yes)
- Step 1: condition to get distribution P(X|e)

Windy W	Cloudy C	Temperature T	P(W, C, T)
yes	no	hot	0.04
yes	no	mild	0.09
yes	no	cold	0.07
yes	yes	hot	0.01
yes	yes	mild	0.10
yes	yes	cold	0.12
no	no	hot	0.06
no	no	mild	0.11
no	no	cold	0.03
no	yes	hot	0.04
no	yes	mild	0.25
no	yes	cold	0.08

- Given P(X) as JPD below, and evidence e = "Wind=yes"
 - What is the probability it is hot? I.e., P(Temperature=hot | Wind=yes)
- Step 1: condition to get distribution P(X|e)

Windy W	Cloudy C	Temperature T	P(W, C, T)
yes	no	hot	0.04
yes	no	mild	0.09
yes	no	cold	0.07
yes	yes	hot	0.01
yes	yes	mild	0.10
yes	yes	cold	0.12
по	ПО	hot	0.06
no	no	mild	0.11
no	no	cold	0.03
по	yes	hot	0.04
no	yes	mild	0.25
no	yes	celd	0.08

Cloudy C	Temperature T	P(C, TI W=yes)
sunny	hot	
sunny	mild	
sunny	cold	
cloudy	hot	
cloudy	mild	
cloudy	cold	

$$P(C = c \land T = t | W = yes)$$

$$= \frac{P(C = c \land T = t \land W = yes)}{P(W = yes)}$$

- Given P(X) as JPD below, and evidence e = "Wind=yes"
 - What is the probability it is hot? I.e., P(Temperature=hot | Wind=yes)
- Step 1: condition to get distribution P(X|e)

Windy W	Cloudy C	Temperature T	P(W, C, T)	
yes	no	hot	0.04	
yes	no	mild	0.09	
yes	no	cold	0.07	
yes	yes	hot	0.01	
yes	yes	mild	0.10	
yes	yes	cold	0.12	
по	ПО	hot	0.06	_
no	no	mild	0.11	_
no	no	cold	0.03	_
no	yes	hot	0.04	_
no	yes	mild	0.25	_
no	yes	cold	0.08	

-		
Cloudy C	Temperature T	P(C, TI W=yes)
sunny	hot	0.04/0.43 ≅ 0.10
sunny	mild	0.09/0.43 ≅ 0.21
sunny	cold	0.07/0.43 ≅ 0.16
cloudy	hot	0.01/0.43 ≅ 0.02
cloudy	mild	0.10/0.43 ≅ 0.23
cloudy	cold	0.12/0.43 ≅ 0.28

$$P(C = c \land T = t | W = yes)$$

$$= \frac{P(C = c \land T = t \land W = yes)}{P(W = yes)}$$

- Given P(X) as JPD below, and evidence e = "Wind=yes"
 - What is the probability it is hot? I.e., P(Temperature=hot | Wind=yes)
- Step 2: marginalize to get distribution P(Y|e)

Cloudy C	Temperature T	P(C, Tl W=yes)
sunny	hot	0.10
sunny	mild	0.21
sunny	cold	0.16
cloudy	hot	0.02
cloudy	mild	0.23
cloudy	cold	0.28

Temperature T	P(TI W=yes)
hot	0.10+0.02 = 0.12
mild	0.21+0.23 = 0.44
cold	0.16+0.28 = 0.44

Problems of Inference by Enumeration

- If we have n variables, and d is the size of the largest domain
- What is the space complexity to store the joint distribution?

Problems of Inference by Enumeration

- If we have n variables, and d is the size of the largest domain
- What is the space complexity to store the joint distribution?
 - We need to store the probability for each possible world
 - There are O(dⁿ) possible worlds, so the space complexity is O(dⁿ)
- How do we find the numbers for O(dⁿ) entries?
- Time complexity O(dⁿ)
- We have some of our basic tools, but to gain computational efficiency we need to do more
 - We will exploit (conditional) independence between variables
 - (Later)

Lecture Overview

- Recap: Probability & Possible World Semantics
- Reasoning Under Uncertainty
 - Conditioning
 - Inference by Enumeration

- Bayes Rule
- The Chain Rule

Using conditional probability

- Often you have causal knowledge (forward from cause to evidence):
 - For example
 - P(symptom | disease)
 - P(light is off | status of switches and switch positions)
 - P(alarm | fire)
 - In general: P(evidence e | hypothesis h)
- ... and you want to do evidential reasoning (backwards from evidence to cause):
 - For example
 - P(disease | symptom)
 - P(status of switches | light is off and switch positions)
 - P(fire | alarm)
 - In general: P(hypothesis h | evidence e)

Bayes rule

- By definition, we know that $P(h|e) = \frac{P(h \land e)}{P(e)}$
- We can rearrange terms to show:

$$P(h \wedge e) = P(h|e) \times P(e)$$

Similarly, we can show:

$$P(e \wedge h) = P(e|h) \times P(h)$$

• Since $e \wedge h$ and $h \wedge e$ are identical, we have:

Theorem (Bayes theorem, or Bayes rule)

$$P(h|e) = \frac{P(e|h) \times P(h)}{P(e)}$$

- On average, the alarm rings once a year
 - P(alarm) = ?
- If there is a fire, the alarm will almost always ring

On average, we have a fire every 10 years

The fire alarm rings. What is the probability there is a fire?

- On average, the alarm rings once a year
 - P(alarm) = 1/365
- If there is a fire, the alarm will almost always ring
 - P(alarm|fire) = 0.999
- On average, we have a fire every 10 years
 - P(fire) = 1/3650
- The fire alarm rings. What is the probability there is a fire?
 - Take a few minutes to do the math!

 0.999
 0.9

 0.0999
 0.1

- On average, the alarm rings once a year
 - P(alarm) = 1/365
- If there is a fire, the alarm will almost always ring
 - P(alarm|fire) = 0.999
- On average, we have a fire every 10 years
 - P(fire) = 1/3650
- The fire alarm rings. What is the probability there is a fire?

•
$$P(fire|alarm) = \frac{P(alarm|fire) \times P(fire)}{P(alarm)} = \frac{0.999 \times 1/3650}{1/365} = 0.0999$$

Even though the alarm rings the chance for a fire is only about 10%!

- On average, the alarm rings once a year
 - P(alarm) = 1/365
- If there is a fire, the alarm will almost always ring
 - P(alarm|fire) = 0.999
- On average, we have a fire every 10 years
 - P(fire) = 1/3650
- The fire alarm rings. What is the probability there is a fire?

•
$$P(fire|alarm) = \frac{P(alarm|fire) \times P(fire)}{P(alarm)} = \frac{0.999 \times 1/3650}{1/365} = 0.0999$$

Even though the alarm rings the chance for a fire is only about 10%!

Lecture Overview

- Recap: Probability & Possible World Semantics
- Reasoning Under Uncertainty
 - Conditioning
 - Inference by Enumeration
 - Bayes Rule

The Chain Rule

Product Rule

By definition, we know that

$$P(f_2|f_1) = \frac{P(f_2 \wedge f_1)}{P(f_1)}$$

We can rewrite this to

$$P(f_2 \wedge f_1) = P(f_2|f_1) \times P(f_1)$$

In general:

Theorem (Product Rule)

$$P(f_n \wedge \cdots \wedge f_{i+1} \wedge f_i \wedge \cdots \wedge f_1) = P(f_n \wedge \cdots \wedge f_{i+1} | f_i \wedge \cdots \wedge f_1) \times P(f_i \wedge \cdots \wedge f_1)$$

Chain Rule

We know

$$P(f_2 \wedge f_1) = P(f_2|f_1) \times P(f_1)$$

In general:

$$P(f_{n} \wedge f_{n-1} \wedge \cdots \wedge f_{1})$$

$$= P(f_{n}|f_{n-1} \wedge \cdots \wedge f_{1}) \times P(f_{n-1} \wedge \cdots \wedge f_{1})$$

$$= P(f_{n}|f_{n-1} \wedge \cdots \wedge f_{1}) \times P(f_{n-1}|f_{n-2} \wedge \cdots \wedge f_{1})$$

$$= P(f_{n}|f_{n-1} \wedge \cdots \wedge f_{1}) \times P(f_{n-1}|f_{n-2} \wedge \cdots \wedge f_{1})$$

$$= \dots$$

$$= \prod_{i=1}^{n} P(f_{i}|f_{i-1} \wedge \cdots \wedge f_{1})$$

$$P(f_n \wedge \cdots \wedge f_1) = \prod_{i=1}^n P(fi|f_{i-1} \wedge \cdots \wedge f_1)$$

Why does the chain rule help us?

- We can simplify some terms
 - For example, how about P(Weather | PriceOfOil)?
 - Weather in Vancouver is independent of the price of oil:
 - P(Weather | PriceOfOil) = P(Weather)
 - Under independence, we gain compactness
 - We can represent the JPD as a product of marginal distributions
 - e.g. P(Weather, PriceOfOil) = P(Weather) x P(PriceOfOil)
 - But not all variables are independent:
 - P(Weather | Temperature) ≠ P(Weather)
 - More about (conditional) independence later

Learning Goals For Today's Class

- Prove the formula to compute conditional probability P(h|e)
- Use inference by enumeration
 - to compute joint posterior probability distributions over any subset of variables given evidence
- Derive and use Bayes Rule
- Derive the Chain Rule
- Marginalization, conditioning and Bayes rule are crucial
 - They are core to reasoning under uncertainty
 - Be sure you understand them and be able to use them!