Reasoning Under Uncertainty: Introduction to Probability

Alan Mackworth

UBC CS 322 - Uncertainty 1
March 11, 2013

Textbook §6.1, 6.1.1, 6.1.3
Coloured Cards

• If you lost/forgot your set, please come to the front and pick up a new one
 – We’ll use them quite a bit in the uncertainty module
Lecture Overview

Reasoning Under Uncertainty

- Motivation
- Introduction to Probability
 - Random Variables and Possible World Semantics
 - Probability Distributions and Marginalization
 - Time-permitting: Conditioning
For the rest of the course, we will consider uncertainty as CSP (using arc consistency).
Lecture Overview

• Reasoning Under Uncertainty
 – Motivation
 – Introduction to Probability
 • Random Variables and Possible World Semantics
 • Probability Distributions and Marginalization
 • Time-permitting: Conditioning
Two main sources of uncertainty

(From Lecture 2)

• **Sensing Uncertainty**: The agent cannot fully observe a state of interest.

 For example:
 – Right now, how many people are in this room? In this building?
 – What disease does this patient have?
 – Where is the soccer player behind me?

• **Effect Uncertainty**: The agent cannot be certain about the effects of its actions.

 For example:
 – If I work hard, will I get an A?
 – Will this drug work for this patient?
 – Where will the ball go when I kick it?
Motivation for uncertainty

- To act in the real world, we almost always have to handle uncertainty (both effect and sensing uncertainty)
 - Deterministic domains are an abstraction
 - Sometimes this abstraction enables more powerful inference
 - Now we don’t make this abstraction anymore
 - Our representation becomes more expressive and general

- AI main focus shifted from logic to probability in the 1980s
 - The language of probability is very expressive and general
 - New representations enable efficient reasoning
 - We will see some of these, in particular Bayesian networks
 - Reasoning under uncertainty is part of the ‘new’ AI
 - This is not a dichotomy: framework for probability is logical!
 - New frontier: combine logic and probability
Interesting article about AI and uncertainty

• “The machine age”
 – by Peter Norvig (head of research at Google)
 – New York Post, 12 February 2011
 the_machine_age_tM7xPAv4pI4JslK0M1JtxI

 – “The things we thought were hard turned out to be easier.”
 • Playing grandmaster level chess,
 or proving theorems in integral calculus
 – “Tasks that we at first thought were easy turned out to be hard.”
 • A toddler (or a dog) can distinguish hundreds of objects (ball, bottle, blanket, mother, …) just by glancing at them
 • Very difficult for computer vision to perform at this level
 – “Dealing with uncertainty turned out to be more important than thinking with logical precision.”
 • Reasoning under uncertainty (and lots of data) are key to progress
Lecture Overview

• Reasoning Under Uncertainty
 – Motivation
 – Introduction to Probability
 • Random Variables and Possible World Semantics
 • Probability Distributions and Marginalization
 • Time-permitting: Conditioning
Probability as a formal measure of uncertainty (ignorance)

• Probability measures an agent's degree of belief in propositions about states of the world
 – It does not measure how true a proposition is.
 – Propositions are true or false. We simply may not know exactly which.
 – Example:
 • I roll a fair dice. What is the probability that the result is a ‘6’?
Probability as a formal measure of uncertainty (ignorance)

- Probability measures an agent's degree of belief in truth of propositions about states of the world
 - It does not measure how true a proposition is
 - Propositions are true or false. We simply may not know exactly which.
 - Example:
 - I roll a fair dice. What is 'the' (my) probability that the result is a '6'?
 - It is $1/6 \approx 16.7\%$.
 - The result is either a '6' or not. But I don’t know which one.
 - I now look at the dice. What is ‘the’ (my) probability now?
 - *Your* probability hasn’t changed: $1/6 \approx 16.7\%$
 - *My* probability is now either 1 or 0, depending on what I observed.
 - What if I tell some of you the result is even?
 - *Their* probability increases to $1/3 \approx 33.3\%$
 (assuming they believe I speak the truth)
 - Different agents can have different degrees of belief in (probabilities for) a proposition conditioned on the evidence they have.
Probability as a formal measure of uncertainty/ignorance

- Probability measures an agent's degree of belief in truth of propositions about states of the world.
- It does not measure how true a proposition is.
 - Propositions are true or false.
 - Different agents can have different degrees of belief in the truth of a proposition.
 - This is the subjective interpretation of probability.
- Belief in a proposition f can be measured in terms of a number between 0 and 1 — this is the probability of f.
 - $P(\text{"roll of fair die came out as a 6"}) = 1/6 \approx 16.7\% = 0.167$
 - Using probabilities between 0 and 1 is purely a convention.
- $P(f) = 0$ means that f is believed to be
 - Probably true
 - Probably false
 - Definitely false
 - Definitely true
Probability as a formal measure of uncertainty/ignorance

- Probability measures an agent's degree of belief in truth of propositions about states of the world.
- It does not measure how true a proposition is:
 - Propositions are true or false.
 - Different agents can have different degrees of belief in the truth of a proposition.
 - This is the subjective interpretation of probability.
- Belief in a proposition f can be measured in terms of a number between 0 and 1 – this is the probability of f.
 - $P(\text{"roll of fair die came out as a 6"}) = 1/6 \approx 16.7\% = 0.167$
 - Using probabilities between 0 and 1 is purely a convention.
- $P(f) = 0$ means that f is believed to be definitely false: the probability of f being true is zero.
- Likewise, $P(f) = 1$ means f is believed to be definitely true.
Probability Theory and Random Variables

• Probability Theory: system of **logical** axioms and formal operations for sound reasoning under uncertainty

• Basic element: **random variable** X
 – X is a **variable** like the ones we have seen in CSP/Planning/Logic, but the **agent** can be uncertain about the value of X
 – As usual, the **domain** of a random variable X, written \(\text{dom}(X) \), is the set of values X can take

• Types of variables
 – **Boolean**: e.g., *Cancer* (does the patient have cancer or not?)
 – **Categorical**: e.g., *CancerType* could be one of \{*breastCancer*, *lungCancer*, *skinMelanomas*\}
 – **Numeric**: e.g., Temperature (integer or real)
 – We will focus on Boolean and categorical variables
Possible Worlds Semantics

• A possible world w specifies an assignment to each random variable.

• Example: if we model only 2 Boolean variables *Smoking* and *Cancer*, how many distinct possible worlds are there?
Possible Worlds Semantics

• A possible world w specifies an assignment to each random variable

• Example: if we model only 2 Boolean variables Smoking and Cancer. Then there are $2^2=4$ distinct possible worlds:

 w_1: Smoking = T \land Cancer = T
 w_2: Smoking = T \land Cancer = F
 w_3: Smoking = F \land Cancer = T
 w_4: Smoking = T \land Cancer = T

<table>
<thead>
<tr>
<th>Smoking</th>
<th>Cancer</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

• $w \models X=x$ means variable X is assigned value x in world w
• Define a nonnegative measure $\mu(w)$ on possible worlds w such that the measures on the possible worlds sum to 1

- The probability of proposition f is defined by: $p(f) = \sum_{w \models f} \mu(w)$
Possible Worlds Semantics

- New example: weather in Vancouver
 - Modeled as one Boolean variable:
 - *Weather* with domain \{sunny, cloudy\}
 - Possible worlds:
 - \(w_1: \text{Weather} = \text{sunny} \)
 - \(w_2: \text{Weather} = \text{cloudy} \)
 - Let’s say the probability of sunny weather is 0.4
 - i.e. \(p(\text{Weather} = \text{sunny}) = 0.4 \)
 - What is the probability of \(p(\text{Weather} = \text{cloudy}) \)?

\[
\begin{array}{|c|c|}
\hline
\text{Weather} & p \\
\hline
\text{sunny} & 0.4 \\
\text{cloudy} & \\
\hline
\end{array}
\]

w ⊨ X=x means variable X is assigned value x in world w
- Probability measure \(\mu(w) \) sums to 1 over all possible worlds w
- The probability of proposition f is defined by:
 \[
p(f) = \sum_{w \not\models f} \mu(w)
\]
Possible Worlds Semantics

• New example: weather in Vancouver
 – Modeled as one categorical variable:
 • *Weather* with domain \{sunny, cloudy\}
 – Possible worlds:
 \(w_1: \text{Weather} = \text{sunny} \)
 \(w_2: \text{Weather} = \text{cloudy} \)

<table>
<thead>
<tr>
<th>Weather</th>
<th>(p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>sunny</td>
<td>0.4</td>
</tr>
<tr>
<td>cloudy</td>
<td>0.6</td>
</tr>
</tbody>
</table>

• Let’s say the probability of sunny weather is 0.4
 – *i.e. \(p(\text{Weather} = \text{sunny}) = 0.4 \)
 – What is the probability of \(p(\text{Weather} = \text{cloudy}) \)?
 • \(p(\text{Weather} = \text{sunny}) = 0.4 \) means that \(\mu(w_1) \) is 0.4
 • \(\mu(w_1) \) and \(\mu(w_2) \) have to sum to 1 (those are the only 2 possible worlds)
 • So \(\mu(w_2) \) has to be 0.6, and thus \(p(\text{Weather} = \text{cloudy}) = 0.6 \)

\[w \models X=x \text{ means variable } X \text{ is assigned value } x \text{ in world } w \]
- Probability measure \(\mu(w) \) sums to 1 over all possible worlds \(w \)
- The probability of proposition \(f \) is defined by:
 \[p(f) = \sum_{w \not\models f} \mu(w) \]
One more example

• Now we have an additional variable:
 − Temperature, modeled as a categorical variable with domain \{hot, mild, cold\}
 − There are now 6 possible worlds:

<table>
<thead>
<tr>
<th>Weather</th>
<th>Temperature</th>
<th>(\mu(w))</th>
</tr>
</thead>
<tbody>
<tr>
<td>sunny</td>
<td>hot</td>
<td>0.10</td>
</tr>
<tr>
<td>sunny</td>
<td>mild</td>
<td>0.20</td>
</tr>
<tr>
<td>sunny</td>
<td>cold</td>
<td>0.10</td>
</tr>
<tr>
<td>cloudy</td>
<td>hot</td>
<td>0.05</td>
</tr>
<tr>
<td>cloudy</td>
<td>mild</td>
<td>0.35</td>
</tr>
<tr>
<td>cloudy</td>
<td>cold</td>
<td>?</td>
</tr>
</tbody>
</table>

• What’s the probability of it being cloudy and cold?

\[0.10 + 0.20 + 0.10 + 0.05 + 0.35 = 0.8\]
Now we have an additional variable:
- Temperature, modeled as a categorical variable with domain \{hot, mild, cold\}

- There are now 6 possible worlds:

 - What’s the probability of it being cloudy and cold?

 • It is 0.2: the probability has to sum to 1 over all possible worlds
Lecture Overview

• Reasoning Under Uncertainty
 – Motivation
 – Introduction to Probability
 • Random Variables and Possible World Semantics
 • Probability Distributions and Marginalization
 • Time-permitting: Conditioning
Consider the case where possible worlds are simply assignments to one random variable.

Definition (probability distribution)
A probability distribution P on a random variable X is a function $\text{dom}(X) \rightarrow [0,1]$ such that

$$x \rightarrow P(X=x)$$

- When $\text{dom}(X)$ is infinite we need a probability density function
- We will focus on the finite case
Joint Distribution

- The **joint distribution** over random variables X_1, \ldots, X_n:
 - a probability distribution over the **joint random variable** $\langle X_1, \ldots, X_n \rangle$
 - with domain $\text{dom}(X_1) \times \ldots \times \text{dom}(X_n)$ (the Cartesian product)

- Example from before
 - Joint probability distribution over random variables Weather and Temperature
 - Each row corresponds to an assignment of values to these variables, and the probability of this joint assignment
 - In general, each row corresponds to an assignment $X_1 = x_1, \ldots, X_n = x_n$ and its probability $P(X_1 = x_1, \ldots, X_n = x_n)$
 - We also write $P(X_1 = x_1 \land \ldots \land X_n = x_n)$
 - The sum of probabilities across the whole table is 1.

<table>
<thead>
<tr>
<th>Weather</th>
<th>Temperature</th>
<th>$\mu(w)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>sunny</td>
<td>hot</td>
<td>0.10</td>
</tr>
<tr>
<td>sunny</td>
<td>mild</td>
<td>0.20</td>
</tr>
<tr>
<td>sunny</td>
<td>cold</td>
<td>0.10</td>
</tr>
<tr>
<td>cloudy</td>
<td>hot</td>
<td>0.05</td>
</tr>
<tr>
<td>cloudy</td>
<td>mild</td>
<td>0.35</td>
</tr>
<tr>
<td>cloudy</td>
<td>cold</td>
<td>0.20</td>
</tr>
</tbody>
</table>
Marginalization

• Given the joint distribution, we can compute distributions over smaller sets of variables through marginalization:

$$P(X=x) = \sum_{z \in \text{dom}(Z)} P(X=x, Z = z)$$

– We also write this as $P(X) = \sum_{z \in \text{dom}(Z)} P(X, Z = z)$.

• This corresponds to summing out a dimension in the table.
• The new table still sums to 1. It must, since it’s a probability distribution!

<table>
<thead>
<tr>
<th>Weather</th>
<th>Temperature</th>
<th>$\mu(w)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>sunny</td>
<td>hot</td>
<td>0.10</td>
</tr>
<tr>
<td>sunny</td>
<td>mild</td>
<td>0.20</td>
</tr>
<tr>
<td>sunny</td>
<td>cold</td>
<td>0.10</td>
</tr>
<tr>
<td>cloudy</td>
<td>hot</td>
<td>0.05</td>
</tr>
<tr>
<td>cloudy</td>
<td>mild</td>
<td>0.35</td>
</tr>
<tr>
<td>cloudy</td>
<td>cold</td>
<td>0.20</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Temperature</th>
<th>$\mu(w)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>hot</td>
<td>?</td>
</tr>
<tr>
<td>mild</td>
<td>?</td>
</tr>
<tr>
<td>cold</td>
<td>?</td>
</tr>
</tbody>
</table>
Marginalization

• Given the joint distribution, we can compute distributions over smaller sets of variables through **marginalization**:

\[
P(X = x) = \sum_{z \in \text{dom}(Z)} P(X = x, Z = z)
\]

– We also write this as \(P(X) = \sum_{z \in \text{dom}(Z)} P(X, Z = z)\).

• This corresponds to summing out a dimension in the table.

• The new table still sums to 1. It must, since it’s a probability distribution!

<table>
<thead>
<tr>
<th>Weather</th>
<th>Temperature</th>
<th>(\mu(w))</th>
</tr>
</thead>
<tbody>
<tr>
<td>sunny</td>
<td>hot</td>
<td>0.10</td>
</tr>
<tr>
<td>sunny</td>
<td>mild</td>
<td>0.20</td>
</tr>
<tr>
<td>sunny</td>
<td>cold</td>
<td>0.10</td>
</tr>
<tr>
<td>cloudy</td>
<td>hot</td>
<td>0.05</td>
</tr>
<tr>
<td>cloudy</td>
<td>mild</td>
<td>0.35</td>
</tr>
<tr>
<td>cloudy</td>
<td>cold</td>
<td>0.20</td>
</tr>
</tbody>
</table>

```
Temperature | \(\mu(w)\)
-------------|-------------
hot          | ??          
mild         |
cold          |
```

\[
P(\text{Temperature} = \text{hot}) = P(\text{Weather} = \text{sunny}, \text{Temperature} = \text{hot}) + P(\text{Weather} = \text{cloudy}, \text{Temperature} = \text{hot})
\]

\[
= 0.10 + 0.05 = 0.15
\]
Marginalization

• Given the joint distribution, we can compute distributions over smaller sets of variables through marginalization:

\[P(X=x) = \sum_{z \in \text{dom}(Z)} P(X=x, Z = z) \]

– We also write this as \[P(X) = \sum_{z \in \text{dom}(Z)} P(X, Z = z) \].

• This corresponds to summing out a dimension in the table.

• The new table still sums to 1. It must, since it’s a probability distribution!

<table>
<thead>
<tr>
<th>Weather</th>
<th>Temperature</th>
<th>(\mu(w))</th>
</tr>
</thead>
<tbody>
<tr>
<td>sunny</td>
<td>hot</td>
<td>0.10</td>
</tr>
<tr>
<td>sunny</td>
<td>mild</td>
<td>0.20</td>
</tr>
<tr>
<td>sunny</td>
<td>cold</td>
<td>0.10</td>
</tr>
<tr>
<td>cloudy</td>
<td>hot</td>
<td>0.05</td>
</tr>
<tr>
<td>cloudy</td>
<td>mild</td>
<td>0.35</td>
</tr>
<tr>
<td>cloudy</td>
<td>cold</td>
<td>0.20</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Temperature</th>
<th>(\mu(w))</th>
</tr>
</thead>
<tbody>
<tr>
<td>hot</td>
<td>0.15</td>
</tr>
<tr>
<td>mild</td>
<td></td>
</tr>
<tr>
<td>cold</td>
<td></td>
</tr>
</tbody>
</table>

\[P(\text{Temperature}=\text{hot}) = P(\text{Weather}=\text{sunny}, \text{Temperature} = \text{hot}) + P(\text{Weather}=\text{cloudy}, \text{Temperature} = \text{hot}) = 0.10 + 0.05 = 0.15 \]
Marginalization

• Given the joint distribution, we can compute distributions over smaller sets of variables through marginalization:

$$P(X=x) = \sum_{z \in \text{dom}(Z)} P(X=x, Z = z)$$

–We also write this as $P(X) = \sum_{z \in \text{dom}(Z)} P(X, Z = z)$.

• This corresponds to summing out a dimension in the table.
• The new table still sums to 1. It must, since it’s a probability distribution!

<table>
<thead>
<tr>
<th>Weather</th>
<th>Temperature</th>
<th>$\mu(w)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>sunny</td>
<td>hot</td>
<td>0.10</td>
</tr>
<tr>
<td>sunny</td>
<td>mild</td>
<td>0.20</td>
</tr>
<tr>
<td>sunny</td>
<td>cold</td>
<td>0.10</td>
</tr>
<tr>
<td>cloudy</td>
<td>hot</td>
<td>0.05</td>
</tr>
<tr>
<td>cloudy</td>
<td>mild</td>
<td>0.35</td>
</tr>
<tr>
<td>cloudy</td>
<td>cold</td>
<td>0.20</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Temperature</th>
<th>$\mu(w)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>hot</td>
<td>0.15</td>
</tr>
<tr>
<td>mild</td>
<td>??</td>
</tr>
<tr>
<td>cold</td>
<td></td>
</tr>
</tbody>
</table>

0.20 0.35 0.85 0.55
Marginalization

- Given the joint distribution, we can compute distributions over smaller sets of variables through **marginalization**:

\[
P(X=x) = \sum_{z \in \text{dom}(Z)} P(X=x, Z = z)
\]

- We also write this as \(P(X) = \sum_{z \in \text{dom}(Z)} P(X, Z = z) \).

- This corresponds to summing out a dimension in the table.
- The new table still sums to 1. It must, since it’s a probability distribution!

<table>
<thead>
<tr>
<th>Weather</th>
<th>Temperature</th>
<th>(\mu(w))</th>
</tr>
</thead>
<tbody>
<tr>
<td>sunny</td>
<td>hot</td>
<td>0.10</td>
</tr>
<tr>
<td>sunny</td>
<td>mild</td>
<td>0.20</td>
</tr>
<tr>
<td>sunny</td>
<td>cold</td>
<td>0.10</td>
</tr>
<tr>
<td>cloudy</td>
<td>hot</td>
<td>0.05</td>
</tr>
<tr>
<td>cloudy</td>
<td>mild</td>
<td>0.35</td>
</tr>
<tr>
<td>cloudy</td>
<td>cold</td>
<td>0.20</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Temperature</th>
<th>(\mu(w))</th>
</tr>
</thead>
<tbody>
<tr>
<td>hot</td>
<td>0.15</td>
</tr>
<tr>
<td>mild</td>
<td>0.55</td>
</tr>
<tr>
<td>cold</td>
<td>??</td>
</tr>
</tbody>
</table>

\[
\begin{align*}
0.70 & & 0.30 & & 0.20 & & 0.10 \\
\end{align*}
\]
Marginalization

Given the joint distribution, we can compute distributions over smaller sets of variables through marginalization:

\[P(X=x) = \sum_{z \in \text{dom}(Z)} P(X=x, Z = z) \]

We also write this as \(P(X) = \sum_{z \in \text{dom}(Z)} P(X, Z = z) \).

This corresponds to summing out a dimension in the table.

The new table still sums to 1. It must, since it’s a probability distribution!
Marginalization

• Given the joint distribution, we can compute distributions over smaller sets of variables through marginalization:

\[P(X=x) = \sum_{z \in \text{dom}(Z)} P(X=x, Z = z) \]

– We also write this as \(P(X) = \sum_{z \in \text{dom}(Z)} P(X, Z = z) \).

• You can marginalize out any of the variables

<table>
<thead>
<tr>
<th>Weather</th>
<th>Temperature</th>
<th>(\mu(w))</th>
</tr>
</thead>
<tbody>
<tr>
<td>sunny</td>
<td>hot</td>
<td>0.10</td>
</tr>
<tr>
<td>sunny</td>
<td>mild</td>
<td>0.20</td>
</tr>
<tr>
<td>sunny</td>
<td>cold</td>
<td>0.10</td>
</tr>
<tr>
<td>cloudy</td>
<td>hot</td>
<td>0.05</td>
</tr>
<tr>
<td>cloudy</td>
<td>mild</td>
<td>0.35</td>
</tr>
<tr>
<td>cloudy</td>
<td>cold</td>
<td>0.20</td>
</tr>
</tbody>
</table>

\[
P(\text{Weather}=\text{sunny}) = P(\text{Weather}=\text{sunny}, \text{Temperature} = \text{hot}) + P(\text{Weather}=\text{sunny}, \text{Temperature} = \text{mild}) + P(\text{Weather}=\text{sunny}, \text{Temperature} = \text{cold})
\]

\[
= 0.10 + 0.20 + 0.10 = 0.40
\]
Marginalization

- Given the joint distribution, we can compute distributions over smaller sets of variables through **marginalization**:

\[
P(X=x) = \sum_{z \in \text{dom}(Z)} P(X=x, Z = z)
\]

- We also write this as \(P(X) = \sum_{z \in \text{dom}(Z)} P(X, Z = z) \).

- You can marginalize out any of the variables

<table>
<thead>
<tr>
<th>Weather</th>
<th>Temperature</th>
<th>(\mu(w))</th>
</tr>
</thead>
<tbody>
<tr>
<td>sunny</td>
<td>hot</td>
<td>0.10</td>
</tr>
<tr>
<td>sunny</td>
<td>mild</td>
<td>0.20</td>
</tr>
<tr>
<td>sunny</td>
<td>cold</td>
<td>0.10</td>
</tr>
<tr>
<td>cloudy</td>
<td>hot</td>
<td>0.05</td>
</tr>
<tr>
<td>cloudy</td>
<td>mild</td>
<td>0.35</td>
</tr>
<tr>
<td>cloudy</td>
<td>cold</td>
<td>0.20</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Weather</th>
<th>(\mu(w))</th>
</tr>
</thead>
<tbody>
<tr>
<td>sunny</td>
<td>0.40</td>
</tr>
<tr>
<td>cloudy</td>
<td>0.60</td>
</tr>
</tbody>
</table>
Marginalization

- We can also marginalize out more than one variable at once

\[P(X=x) = \sum_{z_1 \in \text{dom}(Z_1), \ldots, z_n \in \text{dom}(Z_n)} P(X=x, Z_1 = z_1, \ldots, Z_n = z_n) \]

Marginalizing out variables

Wind and Temperature, i.e. those are the ones being removed from the distribution.
Marginalization

- We can also get marginals for more than one variable

\[P(X=x, Y=y) = \sum_{z_1 \in \text{dom}(Z_1), \ldots, z_n \in \text{dom}(Z_n)} P(X=x, Y=y, Z_1 = z_1, \ldots, Z_n = z_n) \]
Learning Goals For Today’s Class

• Define and give examples of random variables, their domains and probability distributions
• Calculate the probability of a proposition f given $\mu(w)$ for the set of possible worlds
• Define a joint probability distribution (JPD)
• Given a JPD
 – Marginalize over specific variables
 – Compute distributions over any subset of the variables

• Heads up: study these concepts, especially marginalization
 – If you don’t understand them well you will get lost quickly
Lecture Overview

• Reasoning Under Uncertainty
 – Motivation
 – Introduction to Probability
 • Random Variables and Possible World Semantics
 • Probability Distributions and Marginalization
 • Time-permitting: Conditioning
Conditioning

• Conditioning: revise beliefs based on new observations
 – Build a probabilistic model (the joint probability distribution, JPD)
 • Takes into account all background information
 • Called the prior probability distribution
 • Denote the prior probability for hypothesis h as $P(h)$
 – Observe new information about the world
 • Call all information we received subsequently the evidence e
 – Integrate the two sources of information
 • to compute the conditional probability $P(h|e)$
 • This is also called the posterior probability of h.

• Example
 – Prior probability for having a disease (typically small)
 – Evidence: a test for the disease comes out positive
 • But diagnostic tests have false positives
 – Posterior probability: integrate prior and evidence
Example for conditioning

- You have a prior for the joint distribution of weather and temperature, and the marginal distribution of temperature.

<table>
<thead>
<tr>
<th>Weather</th>
<th>Temperature</th>
<th>$P(W,T)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>sunny</td>
<td>hot</td>
<td>0.10</td>
</tr>
<tr>
<td>sunny</td>
<td>mild</td>
<td>0.20</td>
</tr>
<tr>
<td>sunny</td>
<td>cold</td>
<td>0.10</td>
</tr>
<tr>
<td>cloudy</td>
<td>hot</td>
<td>0.05</td>
</tr>
<tr>
<td>cloudy</td>
<td>mild</td>
<td>0.35</td>
</tr>
<tr>
<td>cloudy</td>
<td>cold</td>
<td>0.20</td>
</tr>
</tbody>
</table>

- Now, you look outside and see that it’s sunny.
 - Your knowledge of the weather affects your degree of belief in the temperature.
 - The **conditional probability distribution** for temperature given that it’s sunny is:
 - We will see how to compute this.

| T | $P(T|W=sunny)$ |
|-----|----------------|
| hot | 0.25 |
| mild| 0.50 |
| cold| 0.25 |
Example for conditioning

- You have a prior for the joint distribution of weather and temperature, and the marginal distribution of temperature:

<table>
<thead>
<tr>
<th>Possible world</th>
<th>Weather</th>
<th>Temperature</th>
<th>$\mu(w)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>w_1</td>
<td>sunny</td>
<td>hot</td>
<td>0.10</td>
</tr>
<tr>
<td>w_2</td>
<td>sunny</td>
<td>mild</td>
<td>0.20</td>
</tr>
<tr>
<td>w_3</td>
<td>sunny</td>
<td>cold</td>
<td>0.10</td>
</tr>
<tr>
<td>w_4</td>
<td>cloudy</td>
<td>hot</td>
<td>0.05</td>
</tr>
<tr>
<td>w_5</td>
<td>cloudy</td>
<td>mild</td>
<td>0.35</td>
</tr>
<tr>
<td>w_6</td>
<td>cloudy</td>
<td>cold</td>
<td>0.20</td>
</tr>
</tbody>
</table>

- Now, you look outside and see that it’s sunny:
 - You are now certain that you’re in world w_1, w_2, or w_3
 - To get the conditional probability, you simply renormalize to sum to 1
 - $0.10 + 0.20 + 0.10 = 0.40$
Example for conditioning

- You have a prior for the joint distribution of weather and temperature, and the marginal distribution of temperature.

<table>
<thead>
<tr>
<th>Possible world</th>
<th>Weather</th>
<th>Temperature</th>
<th>$\mu(w)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>w_1</td>
<td>sunny</td>
<td>hot</td>
<td>0.10</td>
</tr>
<tr>
<td>w_2</td>
<td>sunny</td>
<td>mild</td>
<td>0.20</td>
</tr>
<tr>
<td>w_3</td>
<td>sunny</td>
<td>cold</td>
<td>0.10</td>
</tr>
<tr>
<td>w_4</td>
<td>cloudy</td>
<td>hot</td>
<td>0.05</td>
</tr>
<tr>
<td>w_5</td>
<td>cloudy</td>
<td>mild</td>
<td>0.35</td>
</tr>
<tr>
<td>w_6</td>
<td>cloudy</td>
<td>cold</td>
<td>0.20</td>
</tr>
</tbody>
</table>

- Now, you look outside and see that it’s sunny.
 - You are certain that you’re in world w_1, w_2, or w_3.
 - To get the conditional probability, you simply renormalize to sum to 1.
 - $0.10 + 0.20 + 0.10 = 0.40$
Semantics of Conditioning

- Evidence e (“$W=$sunny”) rules out possible worlds incompatible with e.
 - Now we formalize what we did in the previous example

<table>
<thead>
<tr>
<th>Possible world</th>
<th>Weather W</th>
<th>Temperature T</th>
<th>$µ(w)$</th>
<th>$µ_e(w)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>w_1</td>
<td>sunny</td>
<td>hot</td>
<td>0.10</td>
<td></td>
</tr>
<tr>
<td>w_2</td>
<td>sunny</td>
<td>mild</td>
<td>0.20</td>
<td></td>
</tr>
<tr>
<td>w_3</td>
<td>sunny</td>
<td>cold</td>
<td>0.10</td>
<td></td>
</tr>
<tr>
<td>w_4</td>
<td>cloudy</td>
<td>hot</td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>w_5</td>
<td>cloudy</td>
<td>mild</td>
<td>0.35</td>
<td></td>
</tr>
<tr>
<td>w_6</td>
<td>cloudy</td>
<td>cold</td>
<td>0.20</td>
<td></td>
</tr>
</tbody>
</table>

What is $P(e)$?
- Recall: $e =$ “$W=$sunny”

<table>
<thead>
<tr>
<th>$P(W,T)$</th>
<th>$P(e)$</th>
<th>$µ_e(w)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.20</td>
<td>0.40</td>
<td></td>
</tr>
<tr>
<td>0.50</td>
<td>0.80</td>
<td></td>
</tr>
</tbody>
</table>

- We represent the updated probability using a new measure, $µ_e$, over possible worlds

$$µ_e(w) = \begin{cases}
\frac{1}{P(e)} \times µ(w) & \text{if } w \vDash e \\
0 & \text{if } w \nmid e
\end{cases}$$
Semantics of Conditioning

• Evidence e (“W=sunny”) rules out possible worlds incompatible with e.
 – Now we formalize what we did in the previous example

<table>
<thead>
<tr>
<th>Possible world</th>
<th>Weather W</th>
<th>Temperature</th>
<th>μ(w)</th>
<th>μ_e(w)</th>
</tr>
</thead>
<tbody>
<tr>
<td>w_1</td>
<td>sunny</td>
<td>hot</td>
<td>0.10</td>
<td></td>
</tr>
<tr>
<td>w_2</td>
<td>sunny</td>
<td>mild</td>
<td>0.20</td>
<td></td>
</tr>
<tr>
<td>w_3</td>
<td>sunny</td>
<td>cold</td>
<td>0.10</td>
<td></td>
</tr>
<tr>
<td>w_4</td>
<td>cloudy</td>
<td>hot</td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>w_5</td>
<td>cloudy</td>
<td>mild</td>
<td>0.35</td>
<td></td>
</tr>
<tr>
<td>w_6</td>
<td>cloudy</td>
<td>cold</td>
<td>0.20</td>
<td></td>
</tr>
</tbody>
</table>

What is P(e)?
Marginalize out Temperature, i.e. 0.10 + 0.20 + 0.10 = 0.40

• We represent the updated probability using a new measure, \(\mu_e \), over possible worlds

\[
\mu_e(w) = \begin{cases}
\frac{1}{P(e)} \times \mu(w) & \text{if } w \models e \\
0 & \text{if } w \not\models e
\end{cases}
\]
Semantics of Conditioning

• Evidence e ("W=sunny") rules out possible worlds incompatible with e.
 – Now we formalize what we did in the previous example

<table>
<thead>
<tr>
<th>Possible world</th>
<th>Weather</th>
<th>Temperature</th>
<th>$\mu(w)$</th>
<th>$\mu_e(w)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>w_1</td>
<td>sunny</td>
<td>hot</td>
<td>0.10</td>
<td>0.10/0.40=0.25</td>
</tr>
<tr>
<td>w_2</td>
<td>sunny</td>
<td>mild</td>
<td>0.20</td>
<td>0.20/0.40=0.50</td>
</tr>
<tr>
<td>w_3</td>
<td>sunny</td>
<td>cold</td>
<td>0.10</td>
<td>0.10/0.40=0.25</td>
</tr>
<tr>
<td>w_4</td>
<td>cloudy</td>
<td>hot</td>
<td>0.05</td>
<td>0</td>
</tr>
<tr>
<td>w_5</td>
<td>cloudy</td>
<td>mild</td>
<td>0.35</td>
<td>0</td>
</tr>
<tr>
<td>w_6</td>
<td>cloudy</td>
<td>cold</td>
<td>0.20</td>
<td>0</td>
</tr>
</tbody>
</table>

What is $P(e)$?
Marginalize out Temperature, i.e. $0.10 + 0.20 + 0.10 = 0.40$

• We represent the updated probability using a new measure, μ_e, over possible worlds

$$\mu_e(w) = \begin{cases} \frac{1}{P(e)} \times \mu(w) & \text{if } w \models e \\ 0 & \text{if } w \not\models e \end{cases}$$
Conditional Probability

- \(P(e) \): Sum of probability for all worlds in which \(e \) is true
- \(P(h \land e) \): Sum of probability for all worlds in which both \(h \) and \(e \) are true
- \(P(h|e) = P(h \land e) / P(e) \) (Only defined if \(P(e) > 0 \))

\[
\mu_e(w) = \begin{cases} \frac{1}{P(e)} \times \mu(w) & \text{if} \quad w \models e \\ 0 & \text{if} \quad w \not\models e \end{cases}
\]

Definition (conditional probability)
The conditional probability of formula \(h \) given evidence \(e \) is

\[
P(h|e) = \sum_{w \models h} \mu_e(w) = \frac{1}{P(e)} \sum_{w \models h \land e} \mu(w) = \frac{P(h \land e)}{P(e)}
\]