Logic: Top-down proof procedure, Datalog, Big Picture

Alan Mackworth

UBC CS 322 - Logic 4 March 8, 2013

Textbook §5.2, §12.3

Lecture Overview

Recap: Bottom-up proof procedure is sound and complete

- Top-down Proof Procedure
- Datalog
- Logics: Big Picture

Definition (logical consequence)

If KB is a set of clauses and g is a conjunction of atoms, g is a logical consequence of KB, written KB \ g, if g is true in every model of KB

Example: KB = { $h \leftarrow a, a, a \leftarrow c$ }. Then KB \models ?

	а	С	h	h← a	а	a ← c	Model of KB	
I ₁	F	F	F	Т	F	Т	no	
I ₂	F	F	Т	Т	F	Т	no	
I ₃	F	Т	F	Т	F	F	no	Wł
I ₄	F	Т	Т	Т	F	F	no	are
5	Т	F	F	F	Т	Т	no	
6	T	F		Т	Т	Т	yes	
I ₇	Τ	Т	F	F	Т	Т	no	
8	\mathbf{T}	Т	(\mathbf{T})	Т	Т	Т	yes	

Which atoms are entailed?

Definition (logical consequence)

If KB is a set of clauses and g is a conjunction of atoms, g is a logical consequence of KB, written KB \ g, if g is true in every model of KB

Example: KB = { $h \leftarrow a, a, a \leftarrow c$ }. Then KB \models ?

	а	С	h	h ← a	а	a ← c	Model of KB	
I_1	F	F	F	Т	F	Т	no	
I_2	F	F	Т	Т	F	Т	no	
I ₃	F	Т	F	Т	F	F	no	Which atoms
I_4	F	Т	Т	Т	F	F	no	are entailed?
I_5	Т	F	F	F	Т	Т	no	
I ₆	T	F		Т	Т	Т	yes	KB ⊧ a and
I_7	Т	Т	F	F	Т	Т	no	KB ⊧ N
I ₈	\mathbf{T}	Т	(\mathbf{L})	Т	Т	Т	yes	

Definition (logical consequence)

If KB is a set of clauses and g is a conjunction of atoms, g is a logical consequence of KB, written KB + g, if g is true in every model of KB

Example: KB = { $h \leftarrow a, a, a \leftarrow c$ }. Then KB $\models a$ and KB $\models h$.

C := {}; repeat select clause $h \leftarrow b_1 \land ... \land b_m$ in KB such that $b_i \in C$ for all i, and $h \notin C$; C := C \cup {h}

until no more clauses can be selected. KB \vdash_{BU} g if and only if g \in C

What does BU derive for the KB above?

Definition (logical consequence)

If KB is a set of clauses and g is a conjunction of atoms, g is a logical consequence of KB, written KB \ g, if g is true in every model of KB

Example: KB = { $h \leftarrow a, a, a \leftarrow c$ }. Then KB $\models a$ and KB $\models h$.

 $C := \{\};$

BU proof procedure

repeat

```
select clause h ← b<sub>1</sub> ∧ … ∧ b<sub>m</sub> in KB
such that b<sub>i</sub> ∈ C for all i, and h ∉ C;
C := C ∪ {h}
```

until no more clauses can be selected. KB \vdash_{BU} g if and only if g \in C

What does BU derive for the KB above? Trace: {a}, {a,h}. Thus KB +_{BU} a and KB +_{BU} h. Exactly the logical consequences!

Summary for bottom-up proof procedure BU

- Proved last time
 - BU is sound: it derives only atoms that logically follow from KB
 - BU is complete: it derives all atoms that logically follow from KB
- Together:

it derives exactly the atoms that logically follow from KB !

- That's why the results for F and FBU matched for the example above
- And, it is efficient!
 - Outer loop linear in the number of clauses in KB
 - Each clause is used maximally once by BU

Learning Goals Up To Here

- PDCL syntax & semantics
 - Verify whether a logical statement belongs to the language of propositional definite clauses
 - Verify whether an interpretation is a model of a PDCL KB.
 - Verify when a conjunction of atoms is a logical consequence of a knowledge base
- Bottom-up proof procedure
 - Define/read/write/trace/debug the Bottom Up (BU) proof procedure
 - Prove that the BU proof procedure is sound and complete

Lecture Overview

- Recap: Bottom-up proof procedure is sound and complete
 - **Top-down Proof Procedure**
- Datalog
- Logics: Big Picture

Bottom-up vs. Top-down Bottom-up KB → C

g is proved if $g \in C$

When does BU look at the query g?

In every loop iteration Never

At the end At the beginning

Bottom-up vs. Top-down

• **Key Idea of top-down:** search backward from a query g to determine if it can be derived from *KB*.

Top-down Ground Proof Procedure

Idea: search backward from a query

An answer clause is of the form: $yes \leftarrow a_1 \land ... \land a_m$ where $a_1, ..., a_m$ are atoms

We express the query as an answer clause

- E.g. query $q_1 \land \ldots \land q_k$ is expressed as $yes \leftarrow q_1 \land \ldots \land q_k$

Basic operation: SLD Resolution of an answer clause $yes \leftarrow c_1 \land \dots \land c_{i-1} \land c_i \land c_{i+1} \dots \land c_m$

on an atom c_i with another clause

 $\mathbf{C}_{i} \leftarrow \mathbf{b}_{1} \land \dots \land \mathbf{b}_{p}$

yields the clause

 $yes \leftarrow c_1 \land \dots \land c_{i-1} \land b_1 \land \dots \land b_p \land c_{i+1} \dots \land c_m$

Rules of derivation in top-down and bottom-up

Top-down: SLD Resolution

$$\begin{array}{ccc} yes \leftarrow c_1 \wedge \ldots \wedge c_{i-1} \wedge c_i \wedge c_{i+1} \ldots \wedge c_m & c_i \leftarrow b_1 \wedge \ldots \wedge b_p \\ yes \leftarrow c_1 \wedge \ldots \wedge c_{i-1} \wedge b_1 \wedge \ldots \wedge b_p \wedge c_{i+1} \ldots \wedge c_m \end{array}$$

Bottom-up: Generalized modus ponens

Example for (successful) SLD derivation

Query: ?a

$$\gamma_0$$
: yes \leftarrow a
 γ_1 : yes \leftarrow e \land f

γ₃: yes ←

Done. The question was "Can we derive a?"

The answer is "Yes, we can"

SLD Derivations

• An answer is an answer clause with m = 0.

yes ← .

- A successful derivation from KB of query $\mathbf{?q}_1 \land \dots \land \mathbf{q}_k$ is a sequence of answer clauses $\gamma_0, \gamma_1, \dots, \gamma_n$ such that
 - γ_0 is the answer clause yes $\leftarrow q_1 \land ... \land q_k$.
 - γ_i is obtained by resolving γ_{i-1} with a clause in KB, and
 - γ_n is an answer yes ←
- An unsuccessful derivation from KB of query $?q_1 \land ... \land q_k$
 - We get to something like yes ← b₁ ∧ ... ∧ b_k, where there is no clause in KB with any of the b_i as its head

Top-down Proof Procedure for PDCL

To solve the query $? q_1 \land \dots \land q_k$:

```
ac:= yes \leftarrow body, where body is q_1 \land ... \land q_k

repeat

select q_i \in body;

choose clause C \in KB, C is q_i \leftarrow b_c;

replace q_i in body by b_c

until ac is an answer (fail if no clause with q_i as head)
```

select: any choice will work
 ("Don't care non-determinism")
choose: truly non-deterministic, must pick the right one
 ("Don't know non-determinism")

Example for failing SLD derivation

Query: ?a

$$\begin{array}{l} \gamma_0 : \text{ yes } \leftarrow \text{ a} \\ \gamma_1 : \text{ yes } \leftarrow \text{ e } \land \text{ f} \\ \gamma_2 : \text{ yes } \leftarrow \text{ e } \land \text{ k} \\ \gamma_3 : \text{ yes } \leftarrow \text{ k} \end{array}$$

"Can we derive a?" "This time we failed"

There is no rule with k as its head, thus ... fail

Correspondence between BU and TD proofs

If the following is a top-down (TD) derivation in a given KB, what would be the bottom-up (BU) derivation of the same query?

TD derivation yes ← a. yes ← b ∧ f. yes \leftarrow b \land g \land h. yes \leftarrow c \land d \land g \land h. yes \leftarrow d \land g \land h. yes ← g ∧ h. yes ← h. yes ← .

BU derivation {}

Correspondence between BU and TD proofs

If the following is a top-down (TD) derivation in a given KB, what would be the bottom-up (BU) derivation of the same query?

TD derivation	BU derivation
yes ← a.	{}
yes ← b ∧ f.	{h}
yes ← b∧g∧h.	{g,h}
yes ← c∧d∧g∧h.	{d,g,h}
yes ← d∧g∧h.	{c,d,g,h}
yes ← g∧h.	{b,c,d,g,h}
yes ← h.	{b,c,d,f,g,h}
yes ← .	{a,b,c,d,f,g,h}

Is the Top-down procedure sound and complete?

- Yes, since there is a 1:1 correspondence between topdown and bottom-up proofs
 - The two methods derive exactly the same atoms (if the SLD resolution picks the successful derivations)

It's a depth-first-search. Failing resolutions are paths where the search has to backtrack.

Admissible? Yes No

A: Yes! E.g. number of atoms in the answer clause

Admissible? Yes, you need at least these many SLD steps to get an answer

Inference as Standard Search

- Constraint Satisfaction (Problems):
 - State: assignments of values to a subset of the variables
 - Successor function: assign values to a "free" variable
 - Goal test: set of constraints
 - Solution: possible world that satisfies the constraints
 - Heuristic function: none (all solutions at the same distance from start)
- Planning :
 - State: full assignment of values to features
 - Successor function: states reachable by applying valid actions
 - Goal test: partial assignment of values to features
 - Solution: a sequence of actions
 - Heuristic function: relaxed problem! E.g. "ignore delete lists"
- Inference (Top-down/SLD resolution)
 - State: answer clause of the form yes $\leftarrow q_1 \land ... \land q_k$
 - Successor function: all states resulting from substituting first atom a with b₁ ∧ ... ∧ b_m if there is a clause a ← b₁ ∧ ... ∧ b_m
 - Goal test: is the answer clause empty (i.e. yes ←) ?
 - Solution: the proof, i.e. the sequence of SLD resolutions
 - Heuristic function: number of atoms in the query clause

Lecture Overview

- Recap: Bottom-up proof procedure is sound and complete
- Top-down Proof Procedure

Datalog

• Logics: Big Picture

Representation and Reasoning in complex domains

 Expressing knowledge with propositions can be quite limiting

> up_s_2 up_s_3 ok_cb_1 ok_cb_2 $live_w_1$ $connected_w_1_w_2$

E.g. there is no notion that w_1 is the same in live w_1 and in connected $w_1 w_2$ It is often natural to consider individuals and their properties

$$up(s_2)$$

 $up(s_3)$
 $ok(cb_1)$
 $ok(cb_2)$
 $live(w_1)$
 $connected(w_1, w_2)$

Now there is a notion that w_1 is the same in live(w_1) and in connected(w_1 , w_2)

Datalog: What do we gain?

- An extension of propositional definite clause (PDC) logic
 - We now have variables
 - We now have relationships between variables
 - We can express knowledge that holds for a set of individuals, writing more powerful clauses by introducing variables, such as:

 $live(W) \leftarrow wire(W) \land connected_to(W,W_1) \\ \land wire(W_1) \land live(W_1).$

- We can ask generic queries,
 - E.g. "which wires are connected to w₁?"

? connected_to(W, w₁)

Datalog: a relational rule language

Datalog expands the syntax of PDCL....

A variable is a symbol starting with an upper case letter Examples: X, Y

A constant is a symbol starting with lower-case letter or a sequence of digits.

Examples: alan, w1

A term is either a variable or a constant.

Examples: X, Y, alan, w1

A predicate symbol is a symbol starting with a lower-case letter. Examples: live, connected, part-of, in

Datalog Syntax (cont'd)

An atom is a symbol of the form p or $p(t_1 \dots t_n)$ where p is a predicate symbol and t_i are terms

Examples: sunny, in(alan,X)

A definite clause is either an atom (a fact) or of the form:

$$h \leftarrow b_1 \wedge \ldots \wedge b_m$$

where *h* and the b_i are atoms (Read this as ``*h* if *b*.")

Example: in(X,Z) \leftarrow in(X,Y) \land part-of(Y,Z)

A knowledge base is a set of definite clauses

Datalog Semantics

- Role of semantics is still to connect symbols and sentences in the language with the target domain. Main difference:
 - need to create correspondence both between terms and individuals, as well as between predicate symbols and relations

Datalog: Top Down Proof Procedure

in(alan, r123). part_of(r123,cs_building). in(X,Y) \leftarrow part_of(Z,Y) & in(X,Z).

- Extension of Top-Down procedure for PDCL. How do we deal with variables?
 - Idea:
 - Find clauses with heads that match the query
 - Substitute variable in the clause with the matching constant
 - Example:

• We will not cover the formal details of this process, called *unification*. See P&M Section 12.4.2, p. 511 for the details.

Tracing Datalog proofs in Alspace

 You can trace the example from the last slide in the Alspace Deduction Applet at <u>http://aispace.org/deduction/</u> using file <u>http://cs.ubc.ca/~mack/CS322/in-part-of.pl</u>

• Question 4 of assignment 3 asks you to use this applet

Datalog: queries with variables

```
in(alan, r123).
part_of(r123,cs_building).
in(X,Y) ← part_of(Z,Y) & in(X,Z).
```

```
Query: in(alan, X1).
yes(X1) \leftarrow in(alan, X1).
```

What would the answer(s) be?

Datalog: queries with variables

```
in(alan, r123).
part_of(r123,cs_building).
in(X,Y) ← part_of(Z,Y) & in(X,Z).
```

```
Query: in(alan, X1).
yes(X1) \leftarrow in(alan, X1).
```

What would the answer(s) be? yes(r123). yes(cs_building).

You can trace the SLD derivation for this query in the Alspace Deduction Applet, using file <u>http://cs.ubc.ca/~mack/CS322/in-part-of.pl</u>

One important Datalog detail

- In its SLD resolution proof, Datalog always chooses the first clause with a matching head it finds in KB
- What does that mean for recursive function definitions?
 - The clause(s) defining your base case(s) have to appear first in KB
 - Otherwise, you can get infinite recursions
 - This is similar to recursion in imperative and functional programming languages
- Datalog is a subset of Prolog (Programming in Logic)

Learning Goals For Logic

- PDCL syntax & semantics
 - Verify whether a logical statement belongs to the language of propositional definite clauses
 - Verify whether an interpretation is a model of a PDCL KB.
 - Verify when a conjunction of atoms is a logical consequence of a KB
- Bottom-up proof procedure
 - Define/read/write/trace/debug the Bottom Up (**BU**) proof procedure
 - Prove that the BU proof procedure is sound and complete
- Top-down proof procedure
 - Define/read/write/trace/debug the Top-down (SLD) proof procedure (as a search problem)
- Datalog
 - Represent simple domains in Datalog
 - Apply the Top-down proof procedure in Datalog

Lecture Overview

- Recap: Bottom-up proof procedure is sound and complete
- Top-down Proof Procedure
- Datalog
- Logics: Big Picture

Logics: Big picture

- We only covered rather simple logics
 - There are much more powerful representation and reasoning systems based on logics e.g. full first order logic (with negation, disjunction and function symbols), second-order logics, nonmonotonic logics, modal logics, …
- There are many important applications of logic
 - For example, software agents roaming the web on our behalf
 - Based on a more structured representation: the semantic web
 - This is just one example for how logics are used

Example problem: automated travel agent

- Examples for typical queries
 - How much is a typical flight to Mexico for a given date?
 - What's the cheapest vacation package to some place in the Caribbean in a given week?
 - Plus, the hotel should have a white sandy beach and scuba diving
- If webpages are based on basic HTML
 - Humans need to scout for the information and integrate it
 - Computers are not reliable enough (yet?)
 - Natural language processing can be powerful (see Watson and Siri!)
 - But some information may be in pictures (beach), or implicit in the text, so simple approaches like Watson and Siri still don't get all the info.

More structured representation: the Semantic Web

- Beyond HTML pages only made for humans
- Languages and formalisms based on logics that allow websites to include information in a more structured format
 - Goal: software agents that can roam the web and carry out sophisticated tasks on our behalf.
 - This is different than searching content for keywords and popularity!
- For further material, see P&M text, Chapter 13 and the Introduction to the Semantic Web tutorial given at 2011 Semantic Technology Conference <u>http://www.w3.org/People/Ivan/CorePresentations/SWTutorial/</u> (This is the best technical intro; Herman keeps it up to date.)

Examples of ontologies for the Semantic Web

- "Ontology": logic-based representation of the world
- eClassOwl: eBusiness ontology
 - for products and services
 - 75,000 classes (types of individuals) and 5,500 properties
- National Cancer Institute's ontology: 58,000 classes
- Open Biomedical Ontologies Foundry: several ontologies
 - including the Gene Ontology to describe
 - gene and gene product attributes in any organism or protein sequence
 - annotation terminology and data
- OpenCyc project: a 150,000-concept ontology including
 - Top-level ontology
 - describes general concepts such as numbers, time, space, etc
 - Hierarchical composition: superclasses and subclasses
 - Many specific concepts such as "OLED display", "iPhone"

