Logic: semantics, proof procedures, soundness and completeness

Alan Mackworth

UBC CS 322 - Logic 2 March 1, 2013

P & M Textbook §5.2

Lecture Overview

Recap: Propositional Definite Clause Logic (PDCL)

- Syntax
- Semantics
- More on PDCL Semantics
- Proof procedures
 - Soundness, Completeness, example
 - Bottom-up proof procedure
 - Pseudocode and example
 - Time-permitting: Soundness
 - Time-permitting: Completeness

Representation and Reasoning System (RRS)

Definition (RRS)

A Representation and Reasoning System (RRS) consists of:

- syntax: specifies the symbols used, and how they can be combined to form legal sentences
- semantics: specifies the meaning of the symbols
- reasoning theory or proof procedure: a (possibly nondeterministic) specification of how an answer can be produced.

Propositional definite clause logic (PDCL) is one such Representation and Reasoning System

Example: Electrical Circuit

light_11. light_12. ok_11. ok_12. ok_cb1. ok_cb2. live_outside.

 $live_l1 \leftarrow live_w_0.$ $live_w_0 \leftarrow live_w_1 \land up_s_2.$ $live_w_0 \leftarrow live_w_2 \land down_s_2.$ $live_w_1 \leftarrow live_w_3 \land up_s_1.$ $live_w_2 \leftarrow live_w_3 \land down_s_1.$ $live_w_2 \leftarrow live_w_4.$ $live_w_4 \leftarrow live_w_3 \land up_s_3.$ $live_p_1 \leftarrow live_w_3.$ $live_w_3 \leftarrow live_w_5 \land ok_cb_1.$ $live_p_2 \leftarrow live_w_6.$ $live_w_6 \leftarrow live_w_5 \land ok_cb_2.$ $live_w_5 \leftarrow live_outside.$ $lit_l_1 \leftarrow light_l_1 \land live_l_1 \land ok_l_1.$ $lit_l_2 \leftarrow light_l_2 \land live_l_2 \land ok_l_2.$

Propositional Definite Clauses: Syntax

Definition (atom)

Examples: p_1 . live_ l_1

An **atom** is a symbol starting with a lower case letter

Definition (body) | Examples: p. ok_w₁ \land live_w0. p₁ \land p₂ \land p₃ \land p₄. A **body** is an atom or is of the form $b_1 \wedge b_2$ where b_1 and b_2 are bodies.

Definition (definite clause)

A definite clause is an atom

Examples: p. $p_1 \leftarrow p_2 \land p_3 \land p_4$. live_w₀ \leftarrow live_w₁ \land up_s₂

or is a rule of the form $h \leftarrow b$ where h is an atom ('head') and b is a body. (Read this as 'h if b'.)

Definition (KB) | Example: { p_2 . p_3 . p_4 . $p_1 \leftarrow p_2 \land p_3 \land p_4$. live_l₁}

A knowledge base (KB) is a set of definite clauses

Lecture Overview

- Recap: Propositional Definite Clause Logic (PDCL)
 - Syntax
 - Semantics
- More on PDCL Semantics
- Proof procedures
 - Soundness, Completeness, example
 - Bottom-up proof procedure
 - Pseudocode and example
 - Time-permitting: Soundness
 - Time-permitting: Completeness

Propositional Definite Clauses: Semantics

Semantics allows you to relate the symbols in the logic to the domain you're trying to model.

Definition (interpretation)

An interpretation I assigns a truth value to each atom.

Definition (truth values of statements)

- A body b₁ ∧ b₂ is true in I if and only if b₁ is true in I and b₂ is true in I.
- A rule h ← b is false in I if and only if b is true in I and h is false in I.

PDC Semantics: Example

Truth values under different interpretations F=false, T=true

	a ₁	a_2	a ₁ ∧ a ₂		h	b	¬b	¬b v h	h ← b
I ₁	F	F	F	I ₁	F	F	Т	Т	Т
I ₂	F	Т	F	I ₂	F	Т	F	F	F
I 3	Т	F	F	 I ₃	Т	F	Т	Т	Т
4	Т	Т	Т	 I ₄	Т	Т	F	Т	Т

 $h \leftarrow b$ ("h if b") is only false if b is true and h is false

PDC Semantics: Example for models

Definition (model) A **model** of a knowledge base KB is an interpretation in which every clause in KB is true.

PDC Semantics: Example for models

Definition (model) A **model** of a knowledge base KB is an interpretation in which every clause in KB is true.

Lecture Overview

- Recap: Propositional Definite Clause Logic (PDCL)
 - Syntax
 - Semantics
 - More on PDCL Semantics
- Proof procedures
 - Soundness, Completeness, example
 - Bottom-up proof procedure
 - Pseudocode and example
 - Time-permitting: Soundness
 - Time-permitting: Completeness

PDCL Semantics: Logical Consequence

Definition (model)

A **model** of a knowledge base KB is an interpretation in which every clause in KB is true.

Definition (logical consequence)

If KB is a set of clauses and g is a conjunction of atoms, g is a logical consequence of KB, written KB F g, if g is true in every model of KB

- We also say that g logically follows from KB, or that KB entails g
- In other words, KB + g if there is no interpretation in which KB is true and g is false

PDCL Semantics: Logical Consequence

Definition (model)

A **model** of a knowledge base KB is an interpretation in which every clause in KB is true.

Definition (logical consequence) If KB is a set of clauses and g is a conjunction of atoms, g is a logical consequence of KB, written KB ⊧ g, if g is true in every model of KB

$$KB = \begin{cases} p \leftarrow q \\ q \\ r \leftarrow s \end{cases}$$

Which of the following are true?

PDCL Semantics: Logical Consequence

Definition (model)

A **model** of a knowledge base KB is an interpretation in which every clause in KB is true.

Definition (logical consequence)

If KB is a set of clauses and g is a conjunction of atoms, g is a logical consequence of KB, written KB [§] g, if g is true in every model of KB

$$KB = \begin{cases} p \leftarrow q \\ q \\ r \leftarrow s \end{cases}$$

If KB is true, then q is true. Thus KB ⊧ q.

If KB is true then both q and $p \leftarrow q$ are true, so p is true ("p if q"). Thus KB \models p.

There is a model where r is false, likewise for s (but there is no model where s is true and r is false)

Motivation for Proof Procedure

- We want a proof procedure that can find all and only the logical consequences of a knowledge base
- Why?

User's View of Semantics

- 1. Choose a task domain: intended interpretation.
- 2. Associate an atom with each proposition you want to represent.
- 3. Tell the system clauses that are true in the intended interpretation: axiomatizing the domain.
- 4. Ask questions about the intended interpretation.
 - If KB + g, then g must be true in all models, so it is true in the intended interpretation, which is a model.
 - The user can interpret the answer using their intended interpretation of the symbols.

Computer's view of semantics

- The computer doesn't have access to the intended interpretation.
 - All it knows is the knowledge base.
- The computer can determine if a formula is a logical consequence of KB.
 - If KB ⊧ g then g must be true in the intended interpretation.
 - Otherwise, there is a model of KB in which g is false.
 This could be the intended interpretation.

Role of semantics

In user's mind:

- I2_broken: light I2 is broken
- sw3_up: switch is up
- power: there is power in the building
- unlit_I2: light I2 isn't lit
- lit_l1: light l1 is lit

Conclusion: I2_broken

- The computer doesn't know the meaning of the symbols
- The user can interpret the symbols using their meaning

In computer:

- I2_broken ← sw3_up
 ∧ power ∧ unlit_l2.
- sw3_up.
- power \leftarrow lit_l1.
- unlit_l2.
- lit_l1.

Lecture Overview

- Recap: Propositional Definite Clause Logic (PDCL)
 - Syntax
 - Semantics
- More on PDCL Semantics
 - **Proof procedures**
 - Soundness, Completeness, example
 - Bottom-up proof procedure
 - Pseudocode and example
 - Time-permitting: Soundness
 - Time-permitting: Completeness

Proofs

- A proof is a mechanically derivable demonstration that a formula logically follows from a knowledge base.
- Given a proof procedure P, KB + g means g can be derived from knowledge base KB with the proof procedure.
- Recall KB ⊨ g means g is true in all models of KB.
- Example: simple proof procedure S
 - Enumerate all interpretations
 - For each interpretation I, check whether all clauses in KB hold
 - If all clauses are true, I is a model
 - KB \vdash_{S} g if g holds in all such models

Soundness of a proof procedure

Definition (soundness)

A proof procedure P is sound if KB \vdash_P g implies KB \models g.

sound: everything it derives follows logically from KB (i.e. is true in every model)

- Soundness of some proof procedure P: need to prove that
 If g can be derived by the procedure (KB + g)
 then g is true in all models of KB (KB + g)
- Example: simple proof procedure S
 - For each interpretation I, check whether all clauses in KB hold
 - If all clauses are true, I is a model
 - KB $+_{s}$ g if g holds in all such models
- The simple proof procedure S is sound:
 If KB +_Sg, then it is true in all models, i.e. KB + g

Completeness of a proof procedure

Definition (completeness)

A proof procedure P is complete if KB \models g implies KB \models_P g.

complete: everything that logically follows from KB is derived

- Completeness of some proof procedure P: need to prove that If g is true in all models of KB (KB + g) then g is derived by the procedure (KB + g)
- Example: simple proof procedure S
 - For each interpretation I, check whether all clauses in KB hold
 - If all clauses are true, I is a model
 - KB $+_{s}$ g if g holds in all such models
- The simple proof procedure S is complete:
 If KB \neq g , i.e. g is true in all models, then KB \neq g

Another example for a proof procedure

- Unsound proof procedure U:
 - U derives every atom: for any g, KB \vdash_U g
- Proof procedure U is complete:
 If KB + g, then KB +_Sg (because KB +_Ug for any g)
- Proof procedure U is not sound: Proof by counterexample: KB = {a ← b.}

KB \vdash_{U} a, but not KB \models a

(a is false in some model, e.g. a=false, b=false)

Problem of the simple proof procedure S

- Simple proof procedure: enumerate all interpretations
 - For each interpretation, check whether all clauses in KB hold
 - If all clauses hold, the interpretation is a model
 - KB + g if g holds in all such models
- What's the problem with this approach?

Space complexity

Time complexity

Not sound

Not complete

Problem of the simple proof procedure S

- Enumerate all interpretations
 - For each interpretation, check whether all clauses of the knowledge base hold
 - If all clauses hold, the interpretation is a model
- Very much like the generate-and-test approach for CSPs
- Sound and complete, but there are a lot of interpretations
 For n propositions, there are 2ⁿ interpretations

Lecture Overview

- Recap: Propositional Definite Clause Logic (PDCL)
 - Syntax
 - Semantics
- More on PDCL Semantics
- Proof procedures
 - Soundness, Completeness, example
 - Bottom-up proof procedure
 - Pseudocode and example
 - Time-permitting: Soundness
 - Time-permitting: Completeness

Bottom-up proof procedure

- One rule of derivation, a generalized form of modus ponens:
 - If " $h \leftarrow b_1 \land \dots \land b_m$ " is a clause in the knowledge base, and each b_i has been derived, then h can be derived.
- This rule also covers the case when m = 0.

Bottom-up proof procedure

 $C := \{\};$ repeat
select clause $h \leftarrow b_1 \land \dots \land b_m$ in KB
such that $b_i \in C$ for all i, and $h \notin C$; $C := C \cup \{h\}$ until no more clauses can be selected.

KB + g if $g \in C$ at the end of this procedure.

Bottom-up proof procedure: example

 $C := \{\};$ repeat
select clause $h \leftarrow b_1 \land \dots \land b_m \text{ in KB}$ such that $b_i \in C$ for all i, and $h \notin C$; $C := C \cup \{h\}$ until no more clauses can be selected.

a←b∧c	1) L
a ← e ∧ f	U
b←f∧k	
c ← e	
d ← k	
е.	
f←j∧e	
f← c	
i ← c	

Bottom-up proof procedure: example

 $C := \{\};$ repeat
select clause $h \leftarrow b_1 \land \dots \land b_m \text{ in KB}$ such that $b_i \in C$ for all i, and $h \notin C$; $C := C \cup \{h\}$ until no more clauses can be selected.

a←b∧c	۲,
a ← e ∧ f	U {e}
b ← f ∧ k	(ce)
c ← e	(0,0) {c e f}
$d \leftarrow k$	(0,0,1) {c e f i}
e.	lo,c,fil
f←j∧e	<i>լ</i> ۵,0,0,1, <u>၂</u>
f← c	Done
i←c	Done.

Lecture Overview

- Recap: Propositional Definite Clause Logic (PDCL)
 - Syntax
 - Semantics
- More on PDCL Semantics
- Proof procedures
 - Soundness, Completeness, example
 - Bottom-up proof procedure
 - Pseudocode and example
 - Time-permitting: Soundness
 - Time-permitting: Completeness

Soundness of bottom-up proof procedure BU

Definition (soundness)

A proof procedure P is sound if KB \vdash_P g implies KB \models g.

sound: everything it derives follows logically from KB (i.e. is true in every model)

C := {};

repeat

```
\begin{array}{l} \textbf{select} \text{ clause } h \leftarrow b_1 \wedge \ldots \wedge b_m \text{ in KB} \\ \text{ such that } b_i \in C \text{ for all } i, \text{ and } h \notin C; \end{array}
```

 $C := C \cup \{h\}$

until no more clauses can be selected.

For soundness of bottom-up proof procedure BU:

If $g \in C$ at the end of BU procedure, then g is true in all models of KB (KB \models g)

Soundness of bottom-up proof procedure BU

C := {}; repeat select clause h ← b₁ ∧ ... ∧ b_m in KB such that b_i ∈ C for all i, and h \notin C; C := C ∪ {h} until no more clauses can be selected.

For soundness of bottom-up proof procedure BU: prove If $g \in C$ at the end of BU procedure, then g is true in all models of KB (KB \models g)

By contradiction: Suppose there is a g such that KB + g but not KB + g.

- Let h be first atom added to C that's not true in every model of KB
 - In particular, suppose I is a model of KB in which h isn't true.
- − There must be a clause in KB of form $h \leftarrow b_1 \land ... \land b_m$
- Each b_i is true in I. h is false in I. So this clause is false in I.
- Thus, I is not a model of KB. Contradiction: thus no such g exists

Lecture Overview

- Recap: Propositional Definite Clause Logic (PDCL)
 - Syntax
 - Semantics
- More on PDCL Semantics
- Proof procedures
 - Soundness, Completeness, example
 - Bottom-up proof procedure
 - Pseudocode and example
 - Time-permitting: Soundness

Time-permitting: Completeness

Minimal Model

- Observe that the C generated at the end of the bottom-up algorithm is a fixed point
 - Further applications of our rule of derivation will not change C!

Definition (minimal model)

The minimal model MM is the interpretation in which every element of BU's fixed point C is true and every other atom is false.

• Lemma: MM is a model of KB.

- Proof by contradiction. Assume that MM is not a model of KB.
 - Then there must exist some clause of the form h ← b₁ ∧ ... ∧ b_m in KB (with m ≥ 0) which is false in MM.
 - This can only occur when h is false (and not in C) and each b_i is true in MM.
 - Since each b_i belonged to C, we would have added h to C as well.
 - But MM is a fixed point, so nothing else gets added. Contradiction!

Completeness of bottom-up procedure

Definition (completeness)

A proof procedure is **complete** if KB + g implies KB + g.

complete: everything that logically follows from KB is derived

For completeness of BU, we need to prove: **If** g is true in all models of KB (KB + g) **then** g is derived by the BU procedure (KB +_{BU} g)

Direct proof based on Lemma about minimal model:

- Suppose KB ⊧ g. Then g is true in all models of KB.
- Thus g is true in the minimal model.
- Thus g is generated by the bottom up algorithm.
- Thus KB +_{BU} g.

Learning Goals Up To Here

- PDCL syntax & semantics
 - Verify whether a logical statement belongs to the language of propositional definite clauses
 - Verify whether an interpretation is a model of a PDCL KB.
 - Verify when a conjunction of atoms is a logical consequence of a knowledge bases
- Bottom-up proof procedure
 - Define/read/write/trace/debug the Bottom Up (**BU**) proof procedure
 - Prove that the BU proof procedure is sound and complete