
Logic: semantics, proof procedures,
soundness and completeness

Alan Mackworth

UBC CS 322 – Logic 2

March 1, 2013

P & M Textbook §5.2

Lecture Overview

•  Recap: Propositional Definite Clause Logic (PDCL)
-  Syntax

-  Semantics

•  More on PDCL Semantics

•  Proof procedures
-  Soundness, Completeness, example

-  Bottom-up proof procedure

•  Pseudocode and example

•  Time-permitting: Soundness

•  Time-permitting: Completeness

2

3

Course Overview
Environment

Problem Type

Logic

Planning

Deterministic Stochastic

 Constraint
Satisfaction Search

Arc
Consistency

Search

Search

 Logics

 STRIPS

Variables +
Constraints

Variable
Elimination

Bayesian
Networks

Decision
Networks

 Markov Processes

Static

Sequential

Representation
Reasoning
Technique

Uncertainty

Decision
Theory

Course Module

Variable
Elimination

Value
Iteration

Planning

Static problems,
but with richer
representation

As CSP (using
arc consistency)

Representation and Reasoning System (RRS)

Propositional definite clause logic (PDCL) is one such
Representation and Reasoning System

4

Definition (RRS)
A Representation and Reasoning System (RRS) consists of:

•  syntax: specifies the symbols used, and how they can
be combined to form legal sentences

•  semantics: specifies the meaning of the symbols
•  reasoning theory or proof procedure: a (possibly

nondeterministic) specification of how an answer can
be produced.

Example: Electrical Circuit

Propositional Definite Clauses: Syntax
Definition (atom)
An atom is a symbol starting with a lower case letter

Definition (body)
A body is an atom or is of the form b1 ∧ b2 where b1

 and b2 are bodies.

Definition (definite clause)
A definite clause is an atom

or is a rule of the form h ← b where h is an atom
(‘head’) and b is a body. (Read this as ‘h if b’.)

Definition (KB)
A knowledge base (KB) is a set of definite clauses

Examples: p1. live_l1

Examples: p. ok_w1 ∧live_w0. p1∧p2∧p3∧p4.

Examples: p. p1 ← p2∧p3∧p4.
 live_w0 ← live_w1∧up_s2

Example: {p2. p3. p4. p1 ← p2∧p3∧p4. live_l1}

atoms

rules

definite
clauses,
KB

Lecture Overview

•  Recap: Propositional Definite Clause Logic (PDCL)
-  Syntax

-  Semantics

•  More on PDCL Semantics

•  Proof procedures
-  Soundness, Completeness, example

-  Bottom-up proof procedure

•  Pseudocode and example

•  Time-permitting: Soundness

•  Time-permitting: Completeness

8

Propositional Definite Clauses: Semantics
Semantics allows you to relate the symbols in the logic
to the domain you’re trying to model.

Definition (interpretation)
An interpretation I assigns a truth value to each atom.

Definition (truth values of statements)
•  A body b1 ∧ b2 is

true in I if and only if b1 is true in I and b2 is true in I.
•  A rule h ← b is

false in I if and only if b is true in I and h is false in I.

PDC Semantics: Example

10

a1 a2 a1 ∧ a2
I1 F F F
I2 F T F
I3 T F F
I4 T T T

 Truth values under different interpretations
 F=false, T=true

h b ¬b ¬b ∨ h h ← b
I1 F F T T T
I2 F T F F F
I3 T F T T T
I4 T T F T T

h ← b (“h if b”) is only false
if b is true and h is false

PDC Semantics: Example for models

 p ← q
 KB = q
 r ← s

11

 Which of the interpretations below are models of KB?

p q r s p ← q q r ← s Model of KB

I1 T T T T T T T
I2 F F F F T F T
I3 T T F F T T T
I4 F T T F F T T
I5 T T F T T T F

Definition (model)
A model of a knowledge base KB is an interpretation in
which every clause in KB is true.

yes

yes

yes

yes

no

no

no

no

yes no

PDC Semantics: Example for models

12

p q r s p ← q q r ← s Model of KB

I1 T T T T T T T yes
I2 F F F F T F T no
I3 T T F F T T T yes
I4 F T T F F T T no
I5 T T F T T T F no

 p ← q
 KB = q
 r ← s

 Which of the interpretations below are models of KB?

Definition (model)
A model of a knowledge base KB is an interpretation in
which every clause in KB is true.

Lecture Overview

•  Recap: Propositional Definite Clause Logic (PDCL)
-  Syntax

-  Semantics

•  More on PDCL Semantics

•  Proof procedures
-  Soundness, Completeness, example

-  Bottom-up proof procedure

•  Pseudocode and example

•  Time-permitting: Soundness

•  Time-permitting: Completeness

13

PDCL Semantics: Logical Consequence

Definition (model)
A model of a knowledge base KB is an interpretation in
which every clause in KB is true.
Definition (logical consequence)
If KB is a set of clauses and g is a conjunction of atoms,

g is a logical consequence of KB, written KB ⊧ g,
if g is true in every model of KB

•  We also say that g logically follows from KB,
or that KB entails g

•  In other words, KB ⊧ g if there is no interpretation in
which KB is true and g is false

PDCL Semantics: Logical Consequence

Definition (model)
A model of a knowledge base KB is an interpretation in
which every clause in KB is true.
Definition (logical consequence)
If KB is a set of clauses and g is a conjunction of atoms,

g is a logical consequence of KB, written KB ⊧ g,
if g is true in every model of KB

 p ← q
 KB = q
 r ← s

 Which of the following are true?

KB ⊧ p KB ⊧ q KB ⊧ r KB ⊧ s

PDCL Semantics: Logical Consequence

Definition (model)
A model of a knowledge base KB is an interpretation in
which every clause in KB is true.
Definition (logical consequence)
If KB is a set of clauses and g is a conjunction of atoms,

g is a logical consequence of KB, written KB ⊧ g,
if g is true in every model of KB

 p ← q
 KB = q
 r ← s

If KB is true, then q is true. Thus KB ⊧ q.

If KB is true then both q and p ← q are true,
so p is true (“p if q”). Thus KB ⊧ p.

There is a model where r is false, likewise for s
(but there is no model where s is true and r is false)

Motivation for Proof Procedure

•  We want a proof procedure that can find all and only the
logical consequences of a knowledge base

•  Why?

17

User’s View of Semantics

1.  Choose a task domain: intended interpretation.
2.  Associate an atom with each proposition you want to

represent.
3.  Tell the system clauses that are true in the intended

interpretation: axiomatizing the domain.
4.  Ask questions about the intended interpretation.

–  If KB ⊧ g, then g must be true in all models, so it is true in the
intended interpretation, which is a model.

–  The user can interpret the answer using their intended
interpretation of the symbols.

18

Computer’s view of semantics

•  The computer doesn’t have access to the intended
interpretation.
–  All it knows is the knowledge base.

•  The computer can determine if a formula is a logical
consequence of KB.
–  If KB ⊧ g then g must be true in the intended interpretation.
–  Otherwise, there is a model of KB in which g is false.

This could be the intended interpretation.

19

Role of semantics
In user’s mind:
•  l2_broken: light l2 is

broken

•  sw3_up: switch is up
•  power: there is power in

 the building
•  unlit_l2: light l2 isn't lit
•  lit_l1: light l1 is lit

In computer:
•  l2_broken ← sw3_up
∧ power ∧ unlit_l2.

•  sw3_up.
•  power ← lit_l1.

•  unlit_l2.
•  lit_l1.

20

Conclusion: l2_broken
-  The computer doesn’t know the meaning of the symbols
-  The user can interpret the symbols using their meaning

Lecture Overview

•  Recap: Propositional Definite Clause Logic (PDCL)
-  Syntax

-  Semantics

•  More on PDCL Semantics

•  Proof procedures
-  Soundness, Completeness, example

-  Bottom-up proof procedure

•  Pseudocode and example

•  Time-permitting: Soundness

•  Time-permitting: Completeness

21

Proofs
•  A proof is a mechanically derivable demonstration that a

formula logically follows from a knowledge base.
•  Given a proof procedure P, KB ⊦P g means g can be

derived from knowledge base KB with the proof procedure.
•  Recall KB ⊧ g means g is true in all models of KB.

•  Example: simple proof procedure S

–  Enumerate all interpretations
–  For each interpretation I, check whether all clauses in KB hold

•  If all clauses are true, I is a model
•  KB ⊦S g if g holds in all such models

22

Soundness of a proof procedure

•  Soundness of some proof procedure P: need to prove that

•  Example: simple proof procedure S
–  For each interpretation I, check whether all clauses in KB hold

•  If all clauses are true, I is a model
•  KB ⊦S g if g holds in all such models

•  The simple proof procedure S is sound:

23

Definition (soundness)
A proof procedure P is sound if KB ⊦P g implies KB ⊧ g.

 If g can be derived by the procedure (KB ⊦P g)
 then g is true in all models of KB (KB ⊧ g)

 sound: everything it derives follows logically from KB
(i.e. is true in every model)

 If KB ⊦S g, then it is true in all models, i.e. KB ⊧ g

Completeness of a proof procedure

•  Completeness of some proof procedure P: need to prove that

•  Example: simple proof procedure S
–  For each interpretation I, check whether all clauses in KB hold

•  If all clauses are true, I is a model
•  KB ⊦S g if g holds in all such models

•  The simple proof procedure S is complete:

24

 If g is true in all models of KB (KB ⊧ g)
 then g is derived by the procedure (KB ⊦P g)

If KB ⊧ g , i.e. g is true in all models, then KB ⊦S g

Definition (completeness)
A proof procedure P is complete if KB ⊧ g implies KB ⊦P g.

 complete: everything that logically follows from KB is derived

Another example for a proof procedure
•  Unsound proof procedure U:

–  U derives every atom: for any g, KB ⊦U g

•  Proof procedure U is complete:

•  Proof procedure U is not sound:

25

If KB ⊧ g, then KB ⊦S g (because KB ⊦U g for any g)

Proof by counterexample: KB = {a ← b.}

KB ⊦U a, but not KB ⊧ a

(a is false in some model, e.g. a=false, b=false)

Problem of the simple proof procedure S

•  Simple proof procedure: enumerate all interpretations
–  For each interpretation, check whether all clauses in KB hold

•  If all clauses hold, the interpretation is a model
•  KB ⊦ g if g holds in all such models

•  What’s the problem with this approach?

26

Space complexity Time complexity Not sound Not complete

Problem of the simple proof procedure S

•  Enumerate all interpretations
–  For each interpretation, check whether all clauses

of the knowledge base hold
–  If all clauses hold, the interpretation is a model

•  Very much like the generate-and-test approach for CSPs

•  Sound and complete, but there are a lot of interpretations
–  For n propositions, there are 2n interpretations

27

Lecture Overview

•  Recap: Propositional Definite Clause Logic (PDCL)
-  Syntax

-  Semantics

•  More on PDCL Semantics

•  Proof procedures
-  Soundness, Completeness, example

-  Bottom-up proof procedure

•  Pseudocode and example

•  Time-permitting: Soundness

•  Time-permitting: Completeness

28

Bottom-up proof procedure

•  One rule of derivation, a generalized form of modus ponens:

–  If “h ← b1 ∧ … ∧ bm" is a clause in the knowledge base,
and each bi has been derived, then h can be derived.

•  This rule also covers the case when m = 0.

29

Bottom-up proof procedure

C := {};
repeat

 select clause h ← b1 ∧ … ∧ bm in KB
 such that bi ∈ C for all i, and h ∉ C;

 C := C ∪ {h}
until no more clauses can be selected.

KB ⊦ g if g ∈ C at the end of this procedure.

30

C := {};
repeat

 select clause h ← b1 ∧ … ∧ bm in KB
 such that bi ∈ C for all i, and h ∉ C;

 C := C ∪ {h}
until no more clauses can be selected.

Bottom-up proof procedure: example

31

a ← b ∧ c
a ← e ∧ f
b ← f ∧ k
c ← e
d ← k
e.
f ← j ∧ e
f ← c
j ← c

{}

C := {};
repeat

 select clause h ← b1 ∧ … ∧ bm in KB
 such that bi ∈ C for all i, and h ∉ C;

 C := C ∪ {h}
until no more clauses can be selected.

Bottom-up proof procedure: example

32

a ← b ∧ c
a ← e ∧ f
b ← f ∧ k
c ← e
d ← k
e.
f ← j ∧ e
f ← c
j ← c

{}
{e}
{c,e}
{c,e,f}
{c,e,f,j}
{a,c,e,f,j}

Done.

Lecture Overview

•  Recap: Propositional Definite Clause Logic (PDCL)
-  Syntax

-  Semantics

•  More on PDCL Semantics

•  Proof procedures
-  Soundness, Completeness, example

-  Bottom-up proof procedure

•  Pseudocode and example

•  Time-permitting: Soundness

•  Time-permitting: Completeness

33

Soundness of bottom-up proof procedure BU

C := {};
repeat

 select clause h ← b1 ∧ … ∧ bm in KB
 such that bi ∈ C for all i, and h ∉ C;

 C := C ∪ {h}
until no more clauses can be selected.

For soundness of bottom-up proof procedure BU:
prove

34

Definition (soundness)
A proof procedure P is sound if KB ⊦P g implies KB ⊧ g.

 sound: everything it derives follows logically from KB
(i.e. is true in every model)

 If g ∈ C at the end of BU procedure,
 then g is true in all models of KB (KB ⊧ g)

Soundness of bottom-up proof procedure BU
C := {};
repeat

 select clause h ← b1 ∧ … ∧ bm in KB
 such that bi ∈ C for all i, and h ∉ C;

 C := C ∪ {h}
until no more clauses can be selected.

For soundness of bottom-up proof procedure BU: prove

By contradiction: Suppose there is a g such that KB ⊦ g but not KB ⊧ g.

–  Let h be first atom added to C that’s not true in every model of KB
•  In particular, suppose I is a model of KB in which h isn’t true.

–  There must be a clause in KB of form h ← b1 ∧ … ∧ bm
–  Each bi is true in I. h is false in I. So this clause is false in I.
–  Thus, I is not a model of KB. Contradiction: thus no such g exists

 If g ∈ C at the end of BU procedure,
 then g is true in all models of KB (KB ⊧ g)

Lecture Overview

•  Recap: Propositional Definite Clause Logic (PDCL)
-  Syntax

-  Semantics

•  More on PDCL Semantics

•  Proof procedures
-  Soundness, Completeness, example

-  Bottom-up proof procedure

•  Pseudocode and example

•  Time-permitting: Soundness

•  Time-permitting: Completeness

36

Minimal Model
•  Observe that the C generated at the end of the bottom-up

algorithm is a fixed point
–  Further applications of our rule of derivation will not change C!

•  Lemma: MM is a model of KB.
–  Proof by contradiction. Assume that MM is not a model of KB.

•  Then there must exist some clause of the form h ← b1 ∧ … ∧ bm in KB (with
m ≥ 0) which is false in MM.

•  This can only occur when h is false (and not in C) and each bi is true in MM.
•  Since each bi belonged to C, we would have added h to C as well.
•  But MM is a fixed point, so nothing else gets added. Contradiction!

37

Definition (minimal model)
The minimal model MM is the interpretation in which

every element of BU’s fixed point C is true and
every other atom is false.

Completeness of bottom-up procedure

For completeness of BU, we need to prove:

Direct proof based on Lemma about minimal model:

•  Suppose KB ⊧ g. Then g is true in all models of KB.
•  Thus g is true in the minimal model.
•  Thus g is generated by the bottom up algorithm.
•  Thus KB ⊦BU g.

38

Definition (completeness)
A proof procedure is complete if KB ⊧ g implies KB ⊦ g.

 If g is true in all models of KB (KB ⊧ g)
 then g is derived by the BU procedure (KB ⊦BU g)

 complete: everything that logically follows from KB is derived

Learning Goals Up To Here

•  PDCL syntax & semantics
-  Verify whether a logical statement belongs to the language of

propositional definite clauses
-  Verify whether an interpretation is a model of a PDCL KB.
-  Verify when a conjunction of atoms is a logical consequence of a

knowledge bases

•  Bottom-up proof procedure
•  Define/read/write/trace/debug the Bottom Up (BU) proof procedure
•  Prove that the BU proof procedure is sound and complete

