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Lecture Overview 

•  Recap: Propositional Definite Clause Logic (PDCL) 
-  Syntax 

-  Semantics 

•  More on PDCL Semantics 

•  Proof procedures 
-  Soundness, Completeness, example 

-  Bottom-up proof procedure 

•  Pseudocode and example 

•  Time-permitting: Soundness  

•  Time-permitting: Completeness 
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Representation and Reasoning System (RRS) 

Propositional definite clause logic (PDCL) is one such  
Representation and Reasoning System 
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Definition (RRS) 
A Representation and Reasoning System (RRS) consists of:  

•  syntax: specifies the symbols used, and how they can 
be combined to form legal sentences  

•  semantics: specifies the meaning of the symbols 
•  reasoning theory or proof procedure: a (possibly 

nondeterministic) specification of how an answer can 
be produced. 



Example: Electrical Circuit 



Propositional Definite Clauses: Syntax 
Definition (atom) 
An atom is a symbol starting with a lower case letter 

Definition (body) 
A body is an atom or is of the form b1 ∧ b2  where b1 

  and b2 are bodies. 

Definition (definite clause) 
A definite clause is an atom  

or is a rule of the form h ← b  where h  is an atom 
(‘head’) and b is a body. (Read this as ‘h if b’.) 

Definition (KB) 
A knowledge base (KB) is a set of definite clauses 

Examples: p1.  live_l1 

Examples: p.  ok_w1 ∧live_w0.  p1∧p2∧p3∧p4. 

Examples: p.  p1 ← p2∧p3∧p4.  
  live_w0 ← live_w1∧up_s2 

Example: {p2. p3. p4. p1 ← p2∧p3∧p4. live_l1} 



atoms 

rules 

definite 
clauses,  
KB 



Lecture Overview 

•  Recap: Propositional Definite Clause Logic (PDCL) 
-  Syntax 

-  Semantics 

•  More on PDCL Semantics 

•  Proof procedures 
-  Soundness, Completeness, example 

-  Bottom-up proof procedure 

•  Pseudocode and example 

•  Time-permitting: Soundness  

•  Time-permitting: Completeness 
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Propositional Definite Clauses: Semantics 
Semantics allows you to relate the symbols in the logic  
to the domain you’re trying to model. 

Definition (interpretation) 
An interpretation I assigns a truth value to each atom. 

Definition (truth values of statements) 
•  A body b1 ∧ b2 is  

true in I if and only if b1 is true in I and b2 is true in I. 
•  A rule h ← b is  

false in I if and only if b is true in I and h is false in I. 



PDC Semantics: Example 
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a1 a2 a1 ∧ a2 
I1 F F F 
I2 F T F 
I3 T F F 
I4 T T T 

      Truth values under different interpretations 
 F=false, T=true 

h b ¬b ¬b ∨ h h ← b 
I1 F F T T T 
I2 F T F F F 
I3 T F T T T 
I4 T T F T T 

h ← b (“h if b”) is only false  
if b is true and h is false 
 



PDC Semantics: Example for models 

               p ← q 
 KB =      q 
               r  ← s 
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  Which of the interpretations below are models of KB? 

p q r s p ← q  q r ← s Model of KB 

I1 T T T T T T T 
I2 F F F F T F T 
I3 T T F F T T T 
I4 F T T F F T T 
I5 T T F T T T F 

Definition (model) 
A model of a knowledge base KB is an interpretation in 
which every clause in KB is true. 

yes 

yes 

yes 

yes 

no 

no 

no 

no 

yes no 



PDC Semantics: Example for models 
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p q r s p ← q  q r ← s Model of KB 

I1 T T T T T T T yes 
I2 F F F F T F T no 
I3 T T F F T T T yes 
I4 F T T F F T T no 
I5 T T F T T T F no 

               p ← q 
 KB =      q 
               r  ← s 
 
 

  Which of the interpretations below are models of KB? 

Definition (model) 
A model of a knowledge base KB is an interpretation in 
which every clause in KB is true. 
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PDCL Semantics: Logical Consequence 

Definition (model) 
A model of a knowledge base KB is an interpretation in 
which every clause in KB is true. 
Definition (logical consequence) 
If KB is a set of clauses and g is a conjunction of atoms, 

g is a logical consequence of KB, written KB ⊧ g,  
if g is true in every model of KB 

•  We also say that g logically follows from KB,  
or that KB entails g 

•  In other words, KB ⊧ g if there is no interpretation in 
which KB is true and g is false 



PDCL Semantics: Logical Consequence 

Definition (model) 
A model of a knowledge base KB is an interpretation in 
which every clause in KB is true. 
Definition (logical consequence) 
If KB is a set of clauses and g is a conjunction of atoms, 

g is a logical consequence of KB, written KB ⊧ g,  
if g is true in every model of KB 

               p ← q 
 KB =      q 
               r  ← s 
 
 

  Which of the following are true? 

KB ⊧ p KB ⊧ q KB ⊧ r KB ⊧ s 



PDCL Semantics: Logical Consequence 

Definition (model) 
A model of a knowledge base KB is an interpretation in 
which every clause in KB is true. 
Definition (logical consequence) 
If KB is a set of clauses and g is a conjunction of atoms, 

g is a logical consequence of KB, written KB ⊧ g,  
if g is true in every model of KB 

               p ← q 
 KB =      q 
               r  ← s 
 
 

If KB is true, then q is true. Thus KB ⊧ q. 
 

If KB is true then both q and p ← q are true,  
so p is true (“p if q”). Thus KB ⊧ p. 
 
There is a model where r is false, likewise for s 
(but there is no model where s is true and r is false) 



Motivation for Proof Procedure 

•  We want a proof procedure that can find all and only the 
logical consequences of a knowledge base 

•  Why? 
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User’s View of Semantics 

1.  Choose a task domain: intended interpretation. 
2.  Associate an atom with each proposition you want to 

represent. 
3.  Tell the system clauses that are true in the intended 

interpretation: axiomatizing the domain. 
4.  Ask questions about the intended interpretation. 

–  If KB ⊧ g, then g must be true in all models, so it is true in the 
intended interpretation, which is a model. 

–  The user can interpret the answer using their intended 
interpretation of the symbols. 
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Computer’s view of semantics 

•  The computer doesn’t have access to the intended 
interpretation. 
–  All it knows is the knowledge base. 

•  The computer can determine if a formula is a logical 
consequence of KB. 
–  If KB ⊧ g then g must be true in the intended interpretation. 
–  Otherwise, there is a model of KB in which g is false.  

This could be the intended interpretation. 
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Role of semantics 
In user’s mind: 
•  l2_broken: light l2 is 

broken 

•  sw3_up: switch is up 
•  power: there is power in 

            the building 
•  unlit_l2: light l2 isn't lit 
•  lit_l1: light l1 is lit 

In computer: 
•  l2_broken ← sw3_up 
∧ power ∧ unlit_l2. 

•  sw3_up. 
•  power ← lit_l1. 

 
•  unlit_l2. 
•  lit_l1. 
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Conclusion: l2_broken 
-  The computer doesn’t know the meaning of the symbols 
-  The user can interpret the symbols using their meaning 
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Proofs 
•  A proof is a mechanically derivable demonstration that a 

formula logically follows from a knowledge base. 
•  Given a proof procedure P, KB ⊦P g means g can be 

derived from knowledge base KB with the proof procedure. 
•  Recall KB ⊧ g means g is true in all models of KB. 
  
•  Example: simple proof procedure S 

–  Enumerate all interpretations 
–  For each interpretation I, check whether all clauses in KB hold 

•  If all clauses are true, I is a model 
•  KB ⊦S g if g holds in all such models 
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Soundness of a proof procedure 

 

•  Soundness of some proof procedure P: need to prove that  

•  Example: simple proof procedure S 
–  For each interpretation I, check whether all clauses in KB hold 

•  If all clauses are true, I is a model 
•  KB ⊦S g if g holds in all such models 

•  The simple proof procedure S is sound: 

23 

Definition (soundness) 
A proof procedure P is sound if KB ⊦P g implies KB ⊧ g. 

  If g can be derived by the procedure (KB ⊦P g) 
  then g is true in all models of KB (KB ⊧ g)  

     sound: everything it derives follows logically from KB  
(i.e. is true in every model) 

  If KB ⊦S g, then it is true in all models, i.e. KB ⊧ g 



Completeness of a proof procedure 

 

•  Completeness of some proof procedure P: need to prove that  

•  Example: simple proof procedure S 
–  For each interpretation I, check whether all clauses in KB hold 

•  If all clauses are true, I is a model 
•  KB ⊦S g if g holds in all such models 

•  The simple proof procedure S is complete: 
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  If g is true in all models of KB (KB ⊧ g)  
  then g is derived by the procedure (KB ⊦P g) 
   

If KB ⊧ g , i.e. g is true in all models, then KB ⊦S g 
 

Definition (completeness) 
A proof procedure P is complete if KB ⊧ g implies KB ⊦P g. 

 complete: everything that logically follows from KB is derived 



Another example for a proof procedure 
•  Unsound proof procedure U: 

–  U derives every atom: for any g, KB ⊦U g 

•  Proof procedure U is complete: 

•  Proof procedure U is not sound: 
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If KB ⊧ g, then KB ⊦S g (because KB ⊦U g for any g) 
 
 

Proof by counterexample: KB = {a ← b.} 
 
KB ⊦U a, but not KB ⊧ a  
 
(a is false in some model, e.g. a=false, b=false) 



Problem of the simple proof procedure S 

•  Simple proof procedure: enumerate all interpretations 
–  For each interpretation, check whether all clauses in KB hold 

•  If all clauses hold, the interpretation is a model 
•  KB ⊦ g if g holds in all such models 

•  What’s the problem with this approach? 
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Space complexity Time complexity Not sound Not complete 



Problem of the simple proof procedure S 

•  Enumerate all interpretations 
–  For each interpretation, check whether all clauses  

of the knowledge base hold 
–  If all clauses hold, the interpretation is a model 

•  Very much like the generate-and-test approach for CSPs 

•  Sound and complete, but there are a lot of interpretations 
–  For n propositions, there are 2n interpretations 
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Bottom-up proof procedure 

•  One rule of derivation, a generalized form of modus ponens: 

–  If “h ← b1 ∧  … ∧ bm" is a clause in the knowledge base,  
and each bi  has been derived, then h can be derived. 

•  This rule also covers the case when m = 0. 
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Bottom-up proof procedure 
 
 
C := {}; 
repeat 

  select clause h ← b1 ∧ … ∧ bm in KB  
                  such that bi ∈ C for all i, and h ∉ C; 

           C := C ∪ {h} 
until no more clauses can be selected. 
 
KB ⊦ g if g ∈ C at the end of this procedure. 

30 



C := {}; 
repeat 

  select clause h ← b1 ∧ … ∧ bm in KB  
                  such that bi ∈ C for all i, and h ∉ C; 

           C := C ∪ {h} 
until no more clauses can be selected. 

 

Bottom-up proof procedure: example 
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a ← b ∧ c 
a ← e ∧ f 
b ← f ∧ k 
c ← e 
d ← k 
e. 
f ← j ∧ e 
f ← c 
j ← c 

 
{} 
 
 



C := {}; 
repeat 

  select clause h ← b1 ∧ … ∧ bm in KB  
                  such that bi ∈ C for all i, and h ∉ C; 

           C := C ∪ {h} 
until no more clauses can be selected. 

 

Bottom-up proof procedure: example 
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a ← b ∧ c 
a ← e ∧ f 
b ← f ∧ k 
c ← e 
d ← k 
e. 
f ← j ∧ e 
f ← c 
j ← c 

 
{} 
{e} 
{c,e} 
{c,e,f} 
{c,e,f,j} 
{a,c,e,f,j} 
 
Done. 
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Soundness of bottom-up proof procedure BU 

 
 

C := {}; 
repeat 

  select clause h ← b1 ∧ … ∧ bm in KB  
                  such that bi ∈ C for all i, and h ∉ C; 

           C := C ∪ {h} 
until no more clauses can be selected. 
 

For soundness of bottom-up proof procedure BU: 
prove 
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Definition (soundness) 
A proof procedure P is sound if KB ⊦P g implies KB ⊧ g. 

     sound: everything it derives follows logically from KB  
(i.e. is true in every model) 

  If g ∈ C at the end of BU procedure,  
  then g is true in all models of KB (KB ⊧ g)  



Soundness of bottom-up proof procedure BU 
C := {}; 
repeat 

  select clause h ← b1 ∧ … ∧ bm in KB  
                  such that bi ∈ C for all i, and h ∉ C; 

             C := C ∪ {h} 
until no more clauses can be selected. 
 

For soundness of bottom-up proof procedure BU: prove 
 

 
By contradiction: Suppose there is a g such that KB ⊦ g but not KB ⊧ g. 

–  Let h be first atom added to C that’s not true in every model of KB 
•  In particular, suppose I is a model of KB in which h isn’t true. 

–  There must be a clause in KB of form h ← b1 ∧ … ∧ bm  
–  Each bi is true in I. h is false in I. So this clause is false in I. 
–  Thus, I is not a model of KB. Contradiction: thus no such g exists 

  If g ∈ C at the end of BU procedure,  
  then g is true in all models of KB (KB ⊧ g)  
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Minimal Model 
•  Observe that the C generated at the end of the bottom-up 

algorithm is a fixed point 
–  Further applications of our rule of derivation will not change C! 

•  Lemma: MM is a model of KB.  
–  Proof by contradiction. Assume that MM is not a model of KB.  

•  Then there must exist some clause of the form h ← b1 ∧ … ∧ bm in KB (with 
m ≥ 0) which is false in MM. 

•  This can only occur when h is false (and not in C) and each bi is true in MM. 
•  Since each bi  belonged to C, we would have added h to C as well. 
•  But MM is a fixed point, so nothing else gets added. Contradiction! 
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Definition (minimal model) 
The minimal model MM is the interpretation in which 

every element of BU’s fixed point C is true and 
every other atom is false.  



Completeness of bottom-up procedure 

For completeness of BU, we need to prove: 
 
 
Direct proof based on Lemma about minimal model: 

 

•  Suppose KB ⊧ g. Then g is true in all models of KB. 
•  Thus g is true in the minimal model. 
•  Thus g is generated by the bottom up algorithm. 
•  Thus KB ⊦BU g. 
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Definition (completeness) 
A proof procedure is complete if KB ⊧ g implies KB ⊦ g. 

  If g is true in all models of KB (KB ⊧ g)  
  then g is derived by the BU procedure (KB ⊦BU g) 
   

 complete: everything that logically follows from KB is derived 



Learning Goals Up To Here 

•  PDCL syntax & semantics 
-  Verify whether a logical statement belongs to the language of 

propositional definite clauses 
-  Verify whether an interpretation is a model of a PDCL KB.  
-  Verify when a conjunction of atoms is a logical consequence of a 

knowledge bases 

•  Bottom-up proof procedure 
•  Define/read/write/trace/debug the Bottom Up (BU) proof procedure 
•  Prove that the BU proof procedure is sound and complete  


