Logic: Intro & Propositional Definite Clause Logic

Alan Mackworth

UBC CS 322 - Logic 1 February 27, 2013

P & M Textbook §5.1

Lecture Overview

Recap: CSP planning

- Intro to Logic
- Propositional Definite Clause Logic: Syntax
- Propositional Definite Clause Logic: Semantics

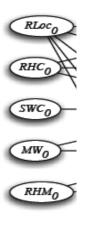
What is the difference between CSP and Planning?

- CSP: static
 - Find a single total variable assignment that satisfies all constraints
- Planning: sequential
 - Find a sequence of actions to get from start to goal
 - CSPs don't even have the concept of actions
 - Some similarities to CSP:
 - Use of variables/values
 - Can solve planning as CSP. But the CSP corresponding to a planning instance can be very large
 - Make CSP variable for each STRIPS variable at each time step
 - Make CSP variable for each STRIPS action at each time step

CSP Planning: Solving the problem

Map STRIPS Representation into CSP for horizon 0,1, 2, 3, ...

Solve CSP for horizon h = 0, 1, 2, 3, ... until solution found at the lowest possible horizon



h = 0 Is there a solution for this horizon?

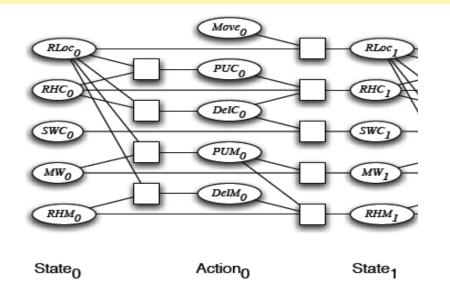
If yes, DONE! If no, continue ...

State₀

CSP Planning: Solving the problem

Map STRIPS Representation into CSP for horizon 0,1, 2, 3, ...

Solve CSP for horizon h=0, 1, 2, 3, ... until solution found at the lowest possible horizon



h = 1
Is there a
solution
for this horizon?

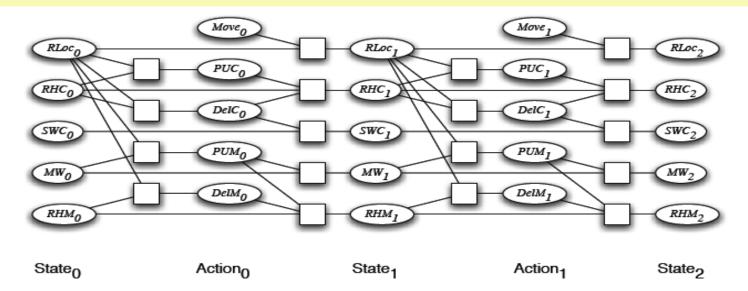
If yes, DONE! If no, continue ...

N.B. Notice the use of k-ary constraints, k= 1,2,3,4, ..., so need GAC to solve CSP at each step, not just AC for binary constraints.

CSP Planning: Solving the problem

Map STRIPS Representation into CSP for horizon 0,1, 2, 3, ...

Solve CSP for horizon h=0, 1, 2, 3, ... until solution found at the lowest possible horizon



h = 2: Is there a solution for this horizon? If yes, DONE! If no....continue

Solving Planning as CSP: pseudo code

```
for horizon h=0,1,2,...
map STRIPS into a CSP csp with horizon h
solve that csp
if solution to the csp exists then
return solution
end for
```

Solve each of the CSPs based on systematic search

- Not SLS! SLS cannot determine that no solution exists!

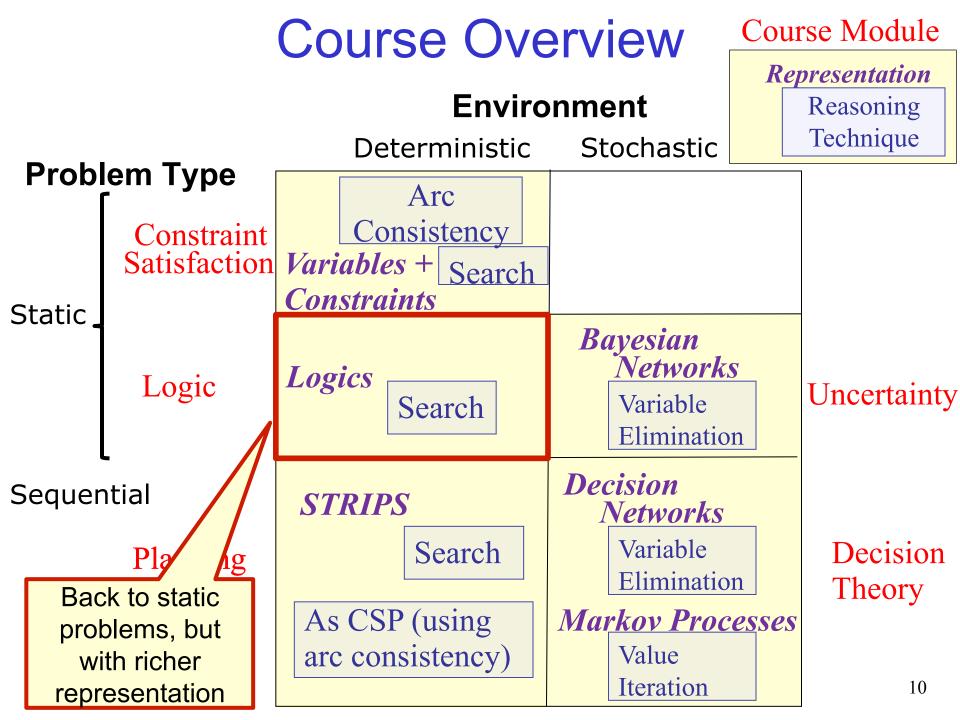
Learning Goals for Planning

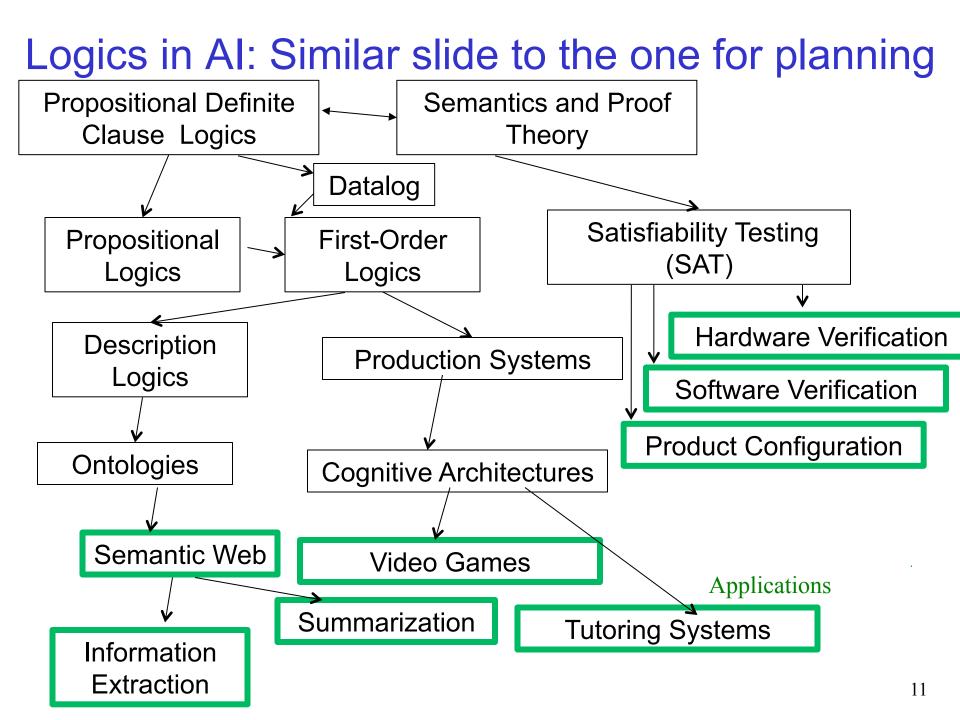
STRIPS

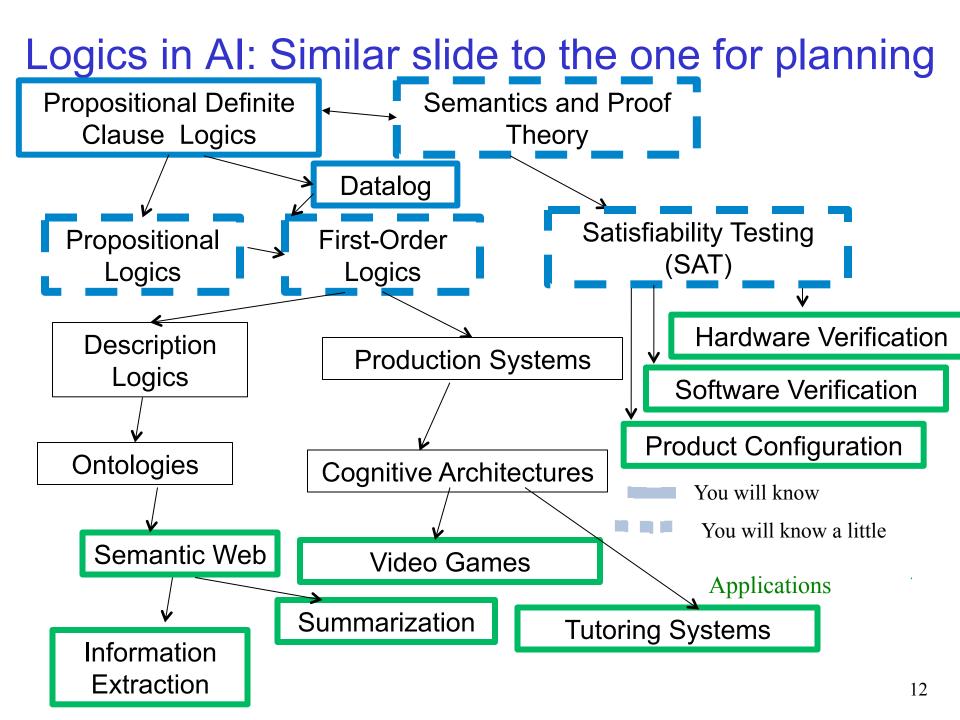
- Represent a planning problem with the STRIPS representation
- Explain the STRIPS assumption
- Forward planning
 - Solve a planning problem by search (forward planning). Specify states, successor function, goal test and solution.
 - Construct and justify a heuristic function for forward planning
- CSP planning
 - Translate a planning problem represented in STRIPS into a corresponding CSP problem (and vice versa)
 - Solve a planning problem with CSP by expanding the horizon

Lecture Overview

- Recap: CSP planning
 - Intro to Logic
- Propositional Definite Clause Logic: Syntax
- Propositional Definite Clause Logic: Semantics







What you already know about logic...

- From programming: Some logical operators
- If ((amount > 0) && (amount < 1000)) || !(age < 30)

You know what they mean in a "procedural" way

Logic is the language of mathematics. To define formal structures (e.g., sets, graphs) and to prove statements about them

$$\forall (x) triangle(x) \longrightarrow [A = B = C \longleftrightarrow \alpha = \beta = \gamma]$$

We use logic as a Representation and Reasoning System that can be used to formalize a domain and to reason about it

Logic: a framework for representation & reasoning

- When we represent a domain about which we have only partial (but certain) information, we need to represent....
 - Objects, properties, sets, groups, actions, events, time, space, ...
- All these can be represented as
 - Objects
 - Relationships between objects
- Logic is the language to express knowledge about the world this way
- <u>http://en.wikipedia.org/wiki/John McCarthy</u> (1927 2011)
 Logic and AI, The Advice Taker, LISP, situation calculus,...
 Coined "Artificial Intelligence". Dartmouth W'shop (1956)

Why Logics?

- "Natural" to express knowledge about the world
- (more natural than a "flat" set of variables & constraints)
- E.g. "Every 322 student who works hard passes the course"
 - student(s) ∧ registered(s, c) ∧ course_name(c, 322)
 ∧ works_hard(s) ⇒ passes(s,c)
 - *student(sam)*
 - registered(sam, c1)
 - course_name(c1, 322)
 - Query: passes(sam, c1) ?
- Compact representation
 - Compared to, e.g., a CSP with a variable for each student
 - It is easy to incrementally add knowledge
 - It is easy to check and debug knowledge
 - Provides language for asking complex queries
 - Well understood formal properties

Logic: A general framework for reasoning

- Let's think about how to represent a world about which we have only partial (but certain) information
- Our tool: propositional logic
- General problem:
 - tell the computer how the world works
 - tell the computer some facts about the world
 - ask a yes/no question about whether other facts must be true

Representation and Reasoning System (RRS)

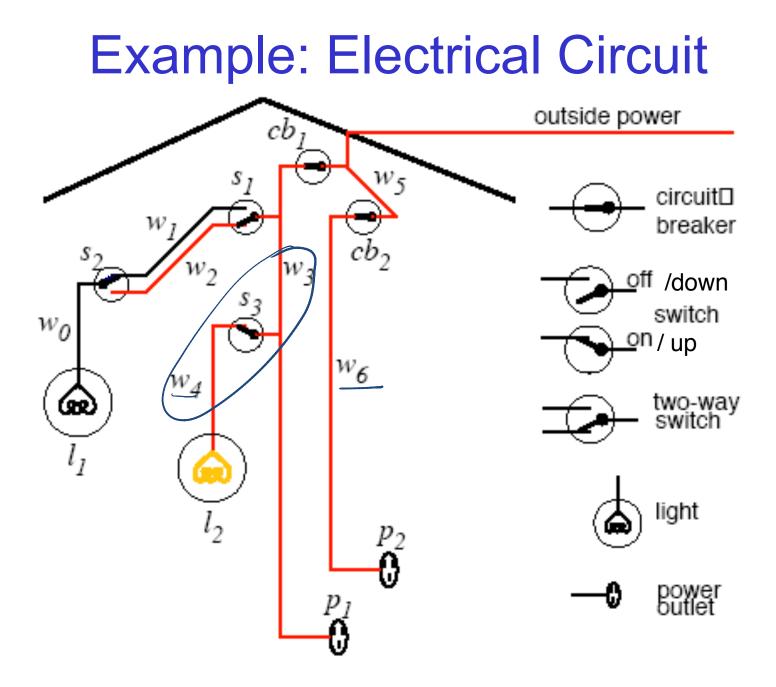
Definition (RRS)

A Representation and Reasoning System (RRS) consists of:

- syntax: specifies the symbols used, and how they can be combined to form legal sentences
- semantics: specifies the meaning of the symbols
- reasoning theory or proof procedure: a (possibly nondeterministic) specification of how an answer can be produced.
- We have seen several representations and reasoning procedures:
 - State space graph + search
 - CSP + search/arc consistency
 - STRIPS + search/arc consistency

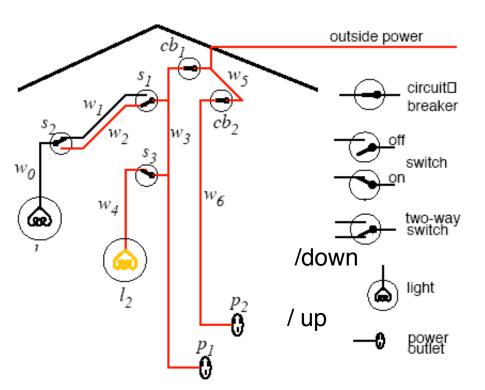
Using a Representation and Reasoning System

- 1. Begin with a task domain.
- Distinguish those things you want to talk about (the ontology)
- 3. Choose symbols in the computer to denote propositions
- 4. Tell the system knowledge about the domain
- 5. Ask the system whether new statements about the domain are true or false



light_11. light_12. ok_11. ok_12. ok_cb1. ok_cb2. live_outside.

> live_l1 ←live_wo. live_wo ←live_w1 ∧up_52. live_wo ←live_w2 ∧down_52. live_w1 \leftarrow live_w3 \land up_51. live_w2 ←live_w3 ∧ down_51. live_12 + live_W4. live_w4 ←live_w3 ∧ up_53. live_p1 ←live_w3. live_w3 ←live_w5 ∧ok_cb1. live_p2 ←live_w6. live_w6 \leftarrow live_w5 \land ok_cb2. live_ws ←live_outside. $lit_1 \leftarrow light_1 \land live_1 \land ok_1$. $lit_{l2} \leftarrow light_{l2} \land live_{l2} \land ok_{l2}.$



Propositional Definite Clauses

- A simple representation and reasoning system
- Two kinds of statements:
 - that a proposition is true
 - that a proposition is true if one or more other propositions are true
- Why only propositions?
 - We can exploit the Boolean nature for efficient reasoning
 - Starting point for more complex logics
- To define this RRS, we'll need to specify:
 - syntax
 - semantics
 - proof procedure

Lecture Overview

- Recap: CSP planning
- Intro to Logic

Propositional Definite Clause (PDC) Logic: Syntax

• Propositional Definite Clause (PDC) Logic: Semantics

Propositional Definite Clauses: Syntax

Definition (atom)

Examples: p₁, live_l₁

An **atom** is a symbol starting with a lower case letter

Definition (body)

A **body** is an atom or is of the form $b_1 \wedge b_2$ where b_1

and b_2 are bodies.

Examples: $p_1 \land p_2$, $ok_w_1 \land live_w_0$

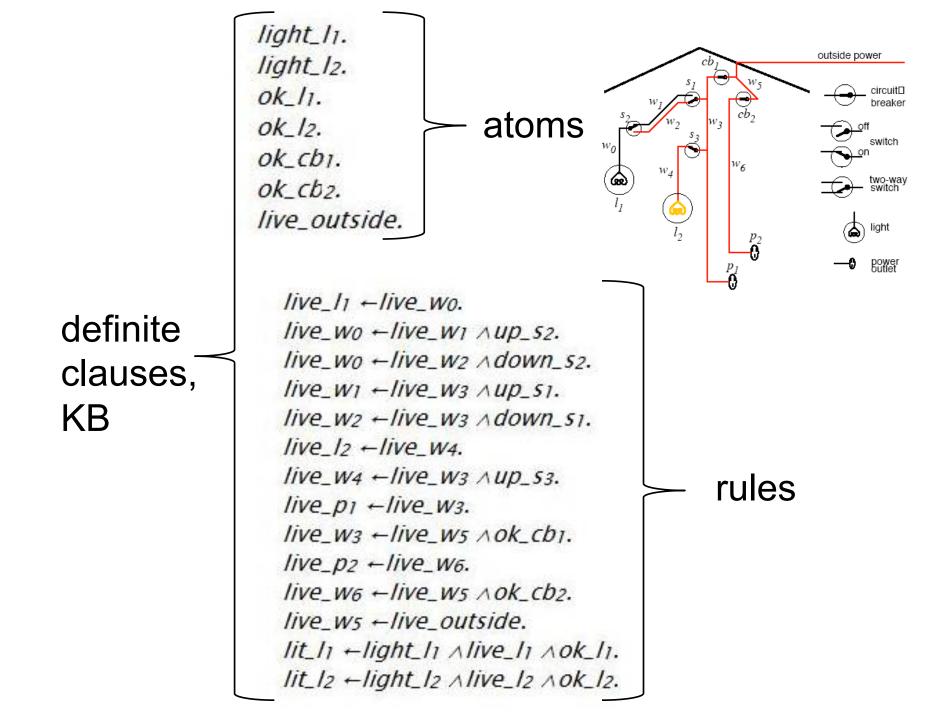
Definition (definite clause) Examples: $p_1 \leftarrow p_2$, live_ $w_0 \leftarrow$ live_ $w_1 \land up_2$

A **definite clause** is an atom or is a rule of the form $h \leftarrow b$ where h is an atom ("head") and b is a body. (Read this as "h if b".)

Definition (KB)

Example: { $p_1 \leftarrow p_2$, live_ $w_0 \leftarrow live_w_1 \land up_s_2$ }

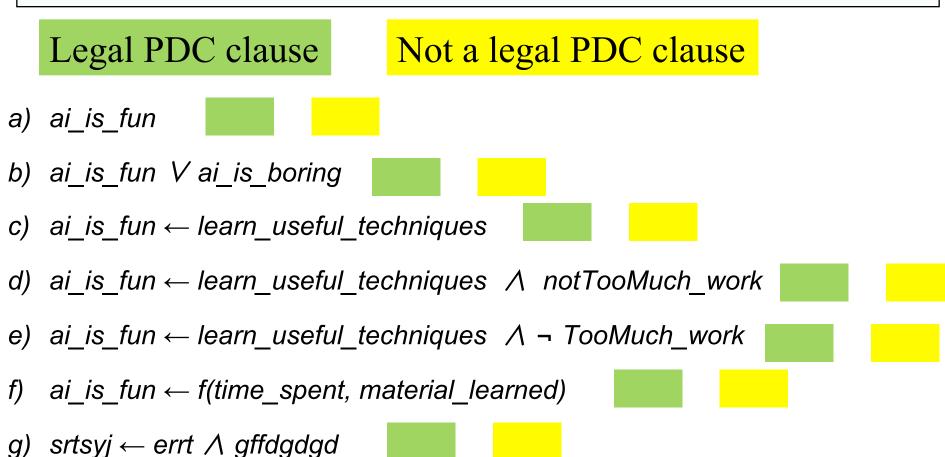
A knowledge base (KB) is a set of definite clauses



PDC Syntax: more examples

Definition (definite clause)

A **definite clause** is an atom or is a rule of the form $h \leftarrow b$ where h is an atom ('head') and b is a body. (Read this as 'h if b.')



PDC Syntax: more examples

Legal PDC clause

Not a legal PDC clause

- a) ai_is_fun
- b) ai_is_fun V ai_is_boring
- c) ai_is_fun ← learn_useful_techniques
- d) ai_is_fun \leftarrow learn_useful_techniques \land notTooMuch_work
- e) ai_is_fun ← learn_useful_techniques ∧ ¬ TooMuch_work
- f) ai_is_fun ← f(time_spent, material_learned)
- g) srtsyj \leftarrow errt \land gffdgdgd

Do any of these statements mean anything? Syntax doesn't answer this question!

Lecture Overview

- Recap: CSP planning
- Intro to Logic
- Propositional Definite Clause (PDC) Logic: Syntax
 - Propositional Definite Clause (PDC) Logic: Semantics

• Semantics allows you to relate the symbols in the logic to the domain you're trying to model.

Definition (interpretation)

An interpretation I assigns a truth value to each atom.

 If our domain has 5 atoms, how many interpretations are there?

• Semantics allows you to relate the symbols in the logic to the domain you're trying to model.

Definition (interpretation)

An interpretation I assigns a truth value to each atom.

- If our domain has 5 atoms, how many interpretations are there?
 - -2 values for each atom, so 2^5 combinations
 - Similar to possible worlds in CSPs

Semantics allows you to relate the symbols in the logic to the domain you're trying to model.

Definition (interpretation)

An interpretation I assigns a truth value to each atom.

We can use the interpretation to determine the truth value of clauses

Definition (truth values of statements)

- A body b₁ ∧ b₂ is true in I if and only if b₁ is true in I and b₂ is true in I.
- A rule h ← b is false in I if and only if b is true in I and h is false in I.

PDC Semantics: Example

Truth values under different interpretations F=false, T=true

	a ₁	a ₂	a ₁ ∧ a ₂		h	b	h ← b	
I ₁	F	F	F	I ₁	F	F	F T T	Τ
I_2	F	Т	F	I ₂	F	Т	F <mark>F</mark>	Τ
l ₃	Т	F	F	l ₃	Т	F	T F T	F
I ₄	T	Т	Т	I ₄	Т	Т	T T T	Τ

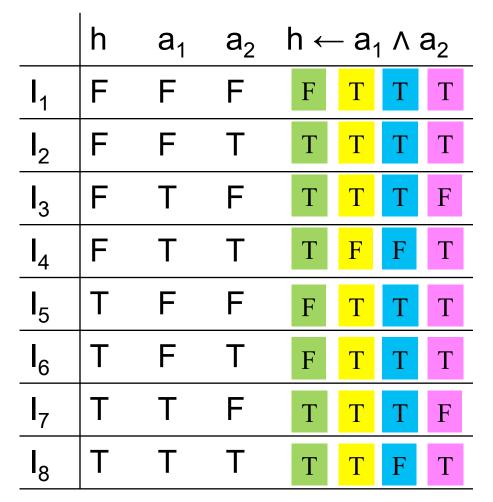
PDC Semantics: Example

Truth values under different interpretations

F=false, T=true

	h	b	h ← b
I ₁	F	F	Т
I ₂	F	Т	F
I ₃	Т	F	Т
I ₄	Т	Т	Т

 $h \leftarrow b$ is only false if b is true and h is false



PDC Semantics: Example for truth values

Truth values under different interpretations

F=false, T=true

	h	b	h ← b
I ₁	F	F	Т
I ₂	F	Т	F
I ₃	Т	F	Т
I ₄	Т	Т	Т

h ← $a_1 \wedge a_2$ Body of the clause: $a_1 \wedge a_2$ Body is only true if both a_1 and a_2 are true in I

	h	a_1	a_2	$h \leftarrow a_1 \wedge a_2$
I ₁	F	F	F	Т
I_2	F	F	Т	Т
I ₃	F	Т	F	Т
I ₄	F	Т	Т	F
I ₅	Т	F	F	Т
I ₆	Т	F	Т	Т
I ₇	Т	Т	F	Т
I ₈	Т	Т	Т	Т

Semantics allows you to relate the symbols in the logic to the domain you're trying to model.

Definition (interpretation)

An interpretation I assigns a truth value to each atom.

We can use the interpretation to determine the truth value of clauses and knowledge bases:

Definition (truth values of statements)

- A body b₁ ∧ b₂ is true in I if and only if b₁ is true in I and b₂ is true in I.
- A rule h ← b is false in I if and only if b is true in I and h is false in I.
- A knowledge base KB is true in I if and only if every clause in KB is true in I.

Definition (interpretation)

An interpretation I assigns a truth value to each atom.

Definition (truth values of statements)

- A body b₁ ∧ b₂ is true in I if and only if b₁ is true in I and b₂ is true in I.
- A rule h ← b is false in I if and only if b is true in I and h is false in I.
- A knowledge base KB is true in I if and only if every clause in KB is true in I.

Definition (model)

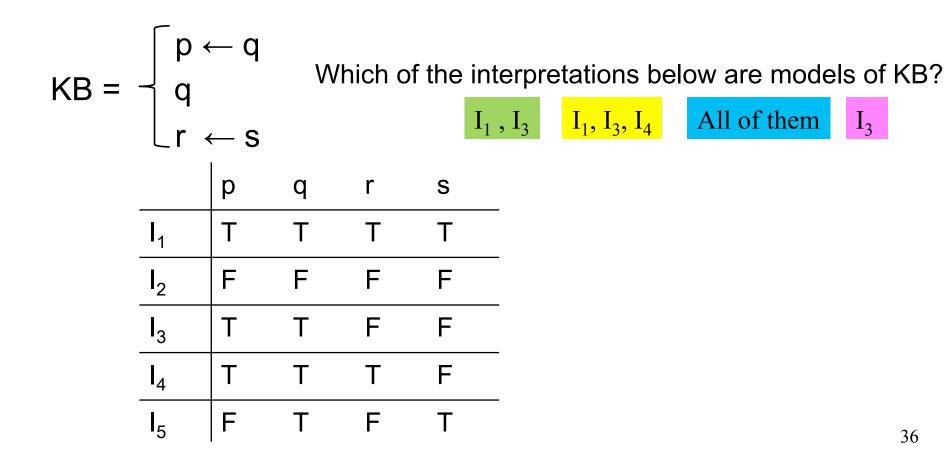
A **model** of a knowledge base KB is an interpretation in which KB is true.

Similar to CSPs: a model of a set of clauses is an interpretation that makes all of the clauses true

PDC Semantics: Example for models

Definition (model)

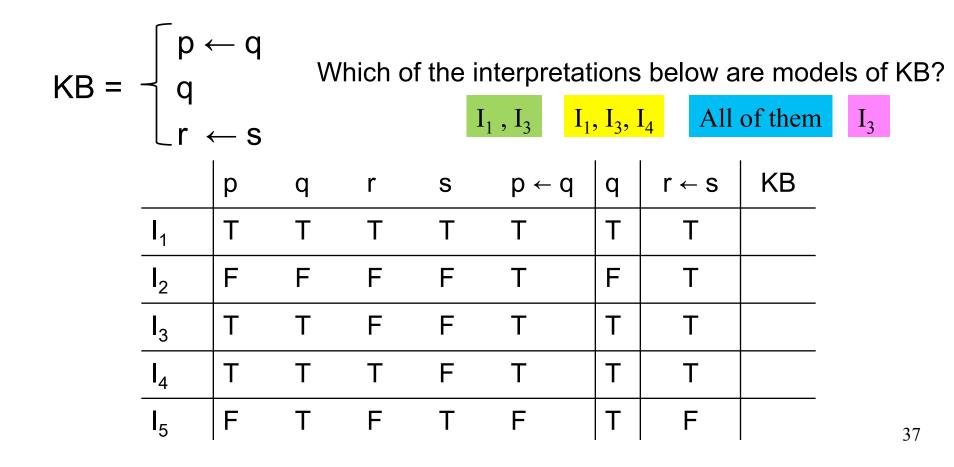
A **model** of a knowledge base KB is an interpretation in which every clause in KB is true.



PDC Semantics: Example for models

Definition (model)

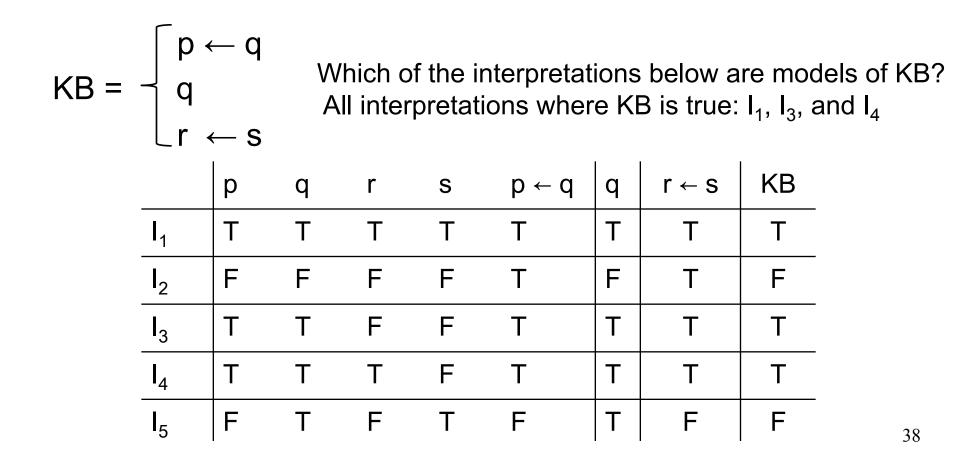
A **model** of a knowledge base KB is an interpretation in which every clause in KB is true.



PDC Semantics: Example for models

Definition (model)

A **model** of a knowledge base KB is an interpretation in which every clause in KB is true.



Next class

• We'll start using all these definitions for automated proofs!