Announcements

• Recap: stochastic local search (SLS)
• Types of SLS algorithms
• Algorithm configuration
• AI in the news: Watson and Siri
Announcements & Reminders

• Assignment 2 is due next Friday, February 15, 1:00pm
 – Don’t leave it to the last minute

• Reminder: midterm is Wednesday, March 6, 3:00 – 3:50pm
 – Set of short questions to be provided: subset on midterm.

• Final exam is scheduled for Thursday, April 18, 8:30am
 – Will schedule extra review session(s) after classes end, before exam
Practice exercises

• Who has used them?

• Try Exercise 5 for SLS practice in Alspace.
Lecture Overview

• Announcements

Recap: stochastic local search (SLS)
• Types of SLS algorithms
• Algorithm configuration
• AI in the news: Watson and Siri
Comparing runtime distributions

- SLS algorithms are randomized
 - The time taken until they solve a problem is a random variable
- Runtime distributions
 - x axis: runtime (or number of steps, typically log scale)
 - y axis: proportion (or number) of runs solved in that runtime

Fraction of solved runs, i.e. $P(\text{solved by this time})$

Graph

- Slow, but does not stagnate
 - 57% solved after 80 steps, then stagnate
 - Crossover point: if we run longer than 80 steps, green is the best algorithm
- If we run less than 10 steps, red is the best algorithm
 - 28% solved after 10 steps, then stagnate
Pro’s and Con’s of SLS

• Typically no guarantee to find a solution even if one exists
 – Most SLS algorithms can sometimes stagnate
 • Not clear whether problem is infeasible or the algorithm stagnates
 • Very hard to analyze theoretically
 – Some exceptions: guaranteed to find global minimum as time $\to \infty$
 • In particular random sampling and random walk:
 strictly positive probability of making N lucky choices in a row

• Anytime algorithms
 – maintain the node with best h found so far (the “incumbent”)
 – given more time, can improve their incumbent

• Generality: can optimize arbitrary functions with n inputs
 – Example: constraint optimization
 – Example: RNA secondary structure design

• Generality: dynamically changing problems
SLS generality: Constraint Optimization Problems

• Constraint Satisfaction Problems
 – Hard constraints: need to satisfy all of them
 – All models are equally good

• Constraint Optimization Problems
 – Hard constraints: need to satisfy all of them
 – Soft constraints: need to satisfy them as well as possible
 – Can have weighted constraints
 • Minimize $h(n) = \text{sum of weights of constraints unsatisfied in } n$
 • Hard constraints have a very large weight
 • Some soft constraints can be more important than other soft constraints \rightarrow larger weight
 – All local search methods we will discuss work just as well for constraint optimization
 • all they need is an evaluation function h
Exam scheduling

- **Hard constraints:**
 - Cannot have an exam in too small a room
 - Cannot have multiple exams in the same room in the same time slot
 - ...

- **Soft constraints**
 - Student should not have to write two exams at the same time (important)
 - Students should not have multiple exams on the same day
 - It would be nice if students had their exams spread out
 - ...
SLS generality: optimization of arbitrary functions

- SLS is even more general
 - SLS’s generality doesn’t stop at constraint optimization
 - We can optimize arbitrary functions $f(x_1, \ldots, x_n)$ that we can evaluate for any complete assignment of their n inputs
 - The function’s inputs correspond to our possible worlds, i.e. to the SLS search states

- Example: RNA secondary structure design
Example: SLS for RNA secondary structure design

- RNA strand made up of four bases: cytosine (C), guanine (G), adenine (A), and uracil (U)
- 2D/3D structure RNA strand folds into is important for its function
- Predicting structure for a strand is “easy”: $O(n^3)$
- But what if we want a strand that folds into a certain structure?
 - Local search over strands
 - Search for one that folds into the right structure
 - Evaluation function for a strand
 - Run $O(n^3)$ prediction algorithm
 - Evaluate how different the result is from our target structure
 - Only defined implicitly, but can be evaluated by running the prediction algorithm

Best algorithm to date: Local search algorithm RNA-SSD developed at UBC [Andronescu, Fejes, Hutter, Condon, and Hoos, Journal of Molecular Biology, 2004]
SLS generality: dynamically changing problems

• The problem may change over time
 – Particularly important in scheduling
 – E.g., schedule for airline:
 • Thousands of flights and thousands of personnel assignments
 • A storm can render the schedule infeasible

• Goal: Repair the schedule with minimum number of changes
 – Often easy for SLS starting from the current schedule
 – Other techniques usually:
 • Require more time
 • Might find solution requiring many more changes
Lecture Overview

• Announcements
• Recap: stochastic local search (SLS)
 Types of SLS algorithms
• Algorithm configuration
• AI in the news: Watson and Siri
Many different types of local search

- There are many different SLS algorithms
 - Each could easily be a lecture by itself
 - We will only touch on each of them very briefly
 - Only need to know them on a high level

- For more details, see
 - UBC CS grad course “Empirical Algorithmics” by Holger Hoos
 - Book “Stochastic Local Search: Foundations and Applications” by Holger Hoos & Thomas Stützle, 2004 (in reading room)
Simulated Annealing

- **Annealing**: a metallurgical process where metals are hardened by being slowly cooled so settle into lowest energy state

- Analogy:
 - start with a high ‘temperature’: great tendency to take random steps
 - Over time, cool down: only take random steps that are not too bad

- Details:
 - At node n, select a random neighbour n’
 - If h(n’) < h(n), move to n’ (i.e. accept all improving steps)
 - Otherwise, adopt it with a probability depending on
 - How much worse n’ is than n
 - the current temperature T: high T tends to accept even very bad moves
 - Probability of accepting worsening move: \(\exp((h(n) - h(n')) / T) \)
 - Temperature reduces over time, according to an annealing schedule
 - “Finding a good annealing schedule is an art”
 - E.g. geometric cooling: every step multiply T by some constant < 1
Tabu Search

• Mark partial assignments as tabu (‘taboo’= forbidden)
 – Prevents repeatedly visiting the same (or similar) local minima
 – Maintain a queue of k variable=value assignments that are tabu
 – E.g., when changing \(V_7 \)’s value from 2 to 4, we cannot change \(V_7 \) back to 2 for the next \(k \) steps
 – \(k \) is a parameter that needs to be optimized empirically
Iterated Local Search

- Perform iterative best improvement to get to local minimum
- Perform perturbation step to get to different parts of the search space
 - E.g. a series of random steps (random walk)
 - Or a short tabu search

![Diagram showing the cost function and solution space S with perturbation leading to s' from s* and s*']
Beam Search

- Keep not just 1 assignment, but k assignments at once
 - A ‘beam’ with k different assignments (k is the ‘beam width’)
- The neighbourhood is the union of the k neighbourhoods
 - At each step, keep only the k best neighbours
 - Never backtrack
- When k=1, this is identical to:
 - Single node, always move to best neighbour: greedy descent
- When k=∞, this is basically:
 - At step m, the beam contains all nodes m steps away from the start node
 - Like breadth first search, but expanding a whole level of the search tree at once
- The value of k lets us limit space and parallelism
Stochastic Beam Search

• Like beam search, but you probabilistically choose the k nodes at the next step (‘generation’)

• The probability that neighbour n is chosen depends on h(n)
 - Neighbours with low h(n) are chosen more frequently
 - E.g. rank-based: node n with lowest h(n) has highest probability
 • probability only depends on the order, not the exact differences in h
 - This maintains diversity amongst the nodes

• Biological metaphor:
 - like asexual reproduction:
 each node gives its mutations and the fittest ones survive
Genetic Algorithms

- Like stochastic beam search, but pairs of nodes are combined to create the offspring

For each generation:
- Choose pairs of nodes n_1 and n_2 (‘parents’), where nodes with low $h(n)$ are more likely to be chosen from the population
- For each pair (n_1, n_2), perform a cross-over: create offspring combining parts of their parents
- Mutate some values for each offspring
- Select from previous population and all offspring which nodes to keep in the population
Example for Crossover Operator

• Given two nodes:

\[X_1 = a_1, \ X_2 = a_2, \ldots, \ X_m = a_m \]
\[X_1 = b_1; \ X_2 = b_2, \ldots, \ X_m = b_m \]

• Select i at random, form two offspring:

\[X_1 = a_1, \ X_2 = a_2, \ldots, \ X_i = a_i, \ X_{i+1} = b_{i+1}, \ldots, \ X_m = b_m \]
\[X_1 = b_1, \ X_2 = b_2, \ldots, \ X_i = b_i, \ X_{i+1} = a_{i+1}, \ldots, \ X_m = a_m \]

• Many different crossover operators are possible

• Genetic algorithms is a large research field
 – Appealing biological metaphor
 – Several conferences are devoted to the topic
Lecture Overview

- Announcements
- Recap: stochastic local search (SLS)
- Types of SLS algorithms
 Algorithm configuration
- AI in the news: IBM Watson
Parameters in stochastic local search

- **Simple SLS**
 - Neighbourhoods, variable and value selection heuristics, percentages of random steps, restart probability

- **Tabu Search**
 - Tabu length (or interval for randomized tabu length)

- **Iterated Local Search**
 - Perturbation types, acceptance criteria

- **Genetic algorithms**
 - Population size, mating scheme, cross-over operator, mutation rate

- **Hybridizations of algorithms**: many more parameters
The Algorithm Configuration Problem

Definition

- Given:
 - Runnable algorithm A, its parameters and their domains
 - Benchmark set of instances B
 - Performance metric m

- Find:
 - Parameter setting (‘configuration’) of A optimizing m on B

Motivation for automated algorithm configuration

Customize versatile algorithms for different application domains

- Fully automated
 - Saves valuable human time
 - Can improve performance dramatically
Generality of Algorithm Configuration

Arbitrary problems, e.g.
- SAT, MIP, Timetabling, Probabilistic Reasoning, Protein Folding, AI Planning,

Arbitrary parameterized algorithms, e.g.
- Local search
 - Neighbourhoods, restarts, perturbation types, tabu length, etc
- Genetic algorithms & evolutionary strategies
 - Population size, mating scheme, crossover operators, mutation rate, hybridizations, etc
- Systematic tree search
 (advanced versions of arc consistency + domain splitting)
 - Branching heuristics, no-good learning, restart strategy, pre-processing, etc
Simple Manual Approach for Configuration

Start with some configuration
repeat
 Modify a single parameter
 if results on benchmark set improve then
 keep new configuration
until no more improvement possible (or “good enough”)

→ Manually executed local search
The ParamILS Framework

Iterated Local Search in parameter configuration space:
Example application for ParamILS: solver for mixed integer programming (MIP)

IP: NP-hard constraint optimization problem
\[
\begin{align*}
\min & \quad c^T x \\
\text{s. t.} & \quad Ax \leq b \\
& \quad x_i \in \mathbb{Z} \text{ for } i \in I
\end{align*}
\]

MIP = IP with only some integer variables

Commercial state-of-the-art MIP solver IBM ILOG CPLEX:

- licensed by > 1000 universities and 1300 corporations, including \(\frac{1}{3} \) of the Global 500

Supply chain management software:
Oracle, SAP, ...

Production planning and optimization:
Airbus, Dell, Porsche, Thyssen Krupp, Toyota, Nissan, ...

Transportation/Logistics:
SNCF, United Airlines, UPS, United States Postal Service, ...

Up to 50-fold speedups just by optimizing the parameters!
• Implement local search for a CSP.
 – Implement different ways to generate neighbors
 – Implement scoring functions to solve a CSP by local search through either greedy descent or hill-climbing.
• Implement SLS with
 – random steps (1-step, 2-step versions)
 – random restart
• Compare SLS algorithms with runtime distributions
• Understand principles of types of SLS algorithms
Lecture Overview

- Announcements
- Recap: stochastic local search (SLS)
- Types of SLS algorithms
- Algorithm configuration

AI in the news: Watson and Siri
IBM’s Watson

• Automated AI system participated in real *Jeopardy!*
 – Won practice round against two all-time Jeopardy champions
 – 3-day match on air February 14-16, 2011

IBM’s Watson: some videos

• “IBM and the Jeopardy Challenge”: http://www.youtube.com/watch?v=FC3IryWr4c8
• “IBM's Supercomputer Beats Miles O'Brien at Jeopardy”: http://www.youtube.com/watch?v=otBeCmpEKTs
 – Watson won against Jeopardy champions Ken Jennings and Brad Rutter (by a small margin)
 – Including interview describing some of the underlying AI
 • But if you’re really interested, see the AI magazine article

• "Doctor" Watson To Inform Medical Decisions http://www.medicalnewstoday.com/articles/234253.php
Watson as an intelligent agent (see lecture 1)

Mix of knowledge representations. Machine learning to rate confidence from each system. Learned confidence from 10,000s example questions.

Reasoning + Decision Theory

Agent

Actions

Natural Language Generation

+ Robotics

+ Human Computer /Robot Interaction

State of the art NLP components
Combination and tuning of over 100 (!) approaches.

Knowledge Representation

Machine Learning

prior knowledge

past experiences

goals/values

observations

Natural Language Understanding

+ Computer Vision

+ Speech Recognition

+ Physiological Sensing

Mining of Interaction Logs

Mix of knowledge representations.

Betting strategy!
Apple’s Siri

• Original SIRI is an offshoot of the DARPA-funded project, CALO, based at SRI. It was part of DARPA's PAL initiative (Personalized Assistant that Learns).

• http://www.apple.com/iphone/features/siri.html

• Interact with the calendar.

• Search contacts.

• Read and write messages (text and email).

• Interact with the Maps app and location services.

• Forward search phrases to certain pre-defined data providers (Yahoo! Weather, Yahoo! Finance, Yelp, Wolfram|Alpha, or Wikipedia).

• Dick Tracy’s watch next ….