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Announcements & Reminders 

•  Assignment 2 is due next Friday, February 15, 1:00pm 

–  Don’t leave it to the last minute 

•  Reminder: midterm is Wednesday, March 6, 3:00 – 3:50pm 
–  Set of short questions to be provided: subset on midterm. 

•  Final exam is scheduled for Thursday, April 18, 8:30am 
–  Will schedule extra review session(s) after classes end, before 

exam 
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Practice exercises 

•  Who has used them? 
 
•  Try Exercise 5 for SLS practice in AIspace. 
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Comparing runtime distributions 
•  SLS algorithms are randomized 

–  The time taken until they solve a problem is a random variable 

•  Runtime distributions 
–  x axis: runtime (or number of steps, typically log scale) 
–  y axis: proportion (or number) of runs solved in that runtime 

Fraction of  
solved runs, i.e. 
 
P(solved by 
    this time) 

# of steps 

      28% solved  
after 10 steps, 
then stagnate 

      57% solved  
after 80 steps, 
then stagnate 

      Slow, but does 
not stagnate       Crossover point: 

if we run longer than 80 
steps, green is the  
best algorithm 

       If we run less than 
10 steps, red is the 
best algorithm 



Pro’s and Con’s of SLS 
•  Typically no guarantee to find a solution even if one exists 

–  Most SLS algorithms can sometimes stagnate 
•  Not clear whether problem is infeasible or the algorithm stagnates 
•  Very hard to analyze theoretically 

–  Some exceptions: guaranteed to find global minimum as time → ∞ 
•  In particular random sampling and random walk:  

strictly positive probability of making N lucky choices in a row 

•  Anytime algorithms 
–  maintain the node with best h found so far (the “incumbent”)  
–  given more time, can improve their incumbent 

•  Generality: can optimize arbitrary functions with n inputs 
–  Example: constraint optimization 
–  Example: RNA secondary structure design 

•  Generality: dynamically changing problems 
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SLS generality: Constraint Optimization Problems 

•  Constraint Satisfaction Problems 
–  Hard constraints: need to satisfy all of them 
–  All models are equally good 

•  Constraint Optimization Problems 
–  Hard constraints: need to satisfy all of them 
–  Soft constraints: need to satisfy them as well as possible 
–  Can have weighted constraints 

•  Minimize h(n) = sum of weights of constraints unsatisfied in n 
•  Hard constraints have a very large weight 
•  Some soft constraints can be more important than other soft 

constraints → larger weight 
–  All local search methods we will discuss work just as well for 

constraint optimization 
•  all they need is an evaluation function h 
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Example for constraint optimization problem 

Exam scheduling  
–  Hard constraints:  

•  Cannot have an exam in too small a room 
•  Cannot have multiple exams in the same room in the same time slot 
•  … 

–  Soft constraints 
•  Student should not have to write two exams at the same time 

(important) 
•  Students should not have multiple exams on the same day 
•  It would be nice if students had their exams spread out  
•  … 
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SLS generality: optimization of arbitrary functions 

•  SLS is even more general 
–  SLS’s generality doesn’t stop at constraint optimization 
–  We can optimize arbitrary functions f(x1, …, xn) that we can 

evaluate for any complete assignment of their n inputs 
–  The function’s inputs correspond to our possible worlds,  

i.e. to the SLS search states 

•  Example: RNA secondary structure design 
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Example: SLS for RNA secondary structure design 
•  RNA strand made up of four bases: cytosine 

(C), guanine (G), adenine (A), and uracil (U) 
•  2D/3D structure RNA strand folds into  

is important for its function 
•  Predicting structure for a  

strand is “easy”: O(n3) 
•  But what if we want a strand that folds  

into a certain structure? 
–  Local search over strands 

•  Search for one that folds  
into the right structure 

–  Evaluation function for a strand 
•  Run O(n3) prediction algorithm 
•  Evaluate how different the result is  

from our target structure 
•  Only defined implicitly, but can be  

evaluated by running the prediction algorithm 

RNA strand 
GUCCCAUAGGAUGUCCCAUAGGA 

Secondary structure 

Easy Hard 

Best algorithm to date: Local search algorithm RNA-SSD developed at UBC 
[Andronescu, Fejes, Hutter, Condon, and Hoos, Journal of Molecular Biology, 2004] 



SLS generality: dynamically changing problems 

•  The problem may change over time 
–  Particularly important in scheduling 
–  E.g., schedule for airline: 

•  Thousands of flights and thousands of personnel assignments 
•  A storm can render the schedule infeasible 

•  Goal: Repair the schedule with minimum number of 
changes 
–  Often easy for SLS starting from the current schedule 
–  Other techniques usually: 

•  Require more time 
•  Might find solution requiring many more changes 
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Many different types of local search 

•  There are many different SLS algorithms 
-  Each could easily be a lecture by itself 
-  We will only touch on each of them very briefly 
-  Only need to know them on a high level 

•  For more details, see 
-  UBC CS grad course “Empirical Algorithmics” by Holger Hoos 
-  Book “Stochastic Local Search: Foundations and Applications”  

by Holger Hoos & Thomas Stützle, 2004 (in reading room) 
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Simulated Annealing 
•  Annealing: a metallurgical process where metals are 

hardened by being slowly cooled so settle into lowest energy 
state 

•  Analogy:  
–  start with a high ‘temperature’: great tendency to take random steps 
–  Over time, cool down: only take random steps that are not too bad 

•  Details: 
–  At node n, select a random neighbour n’ 
–  If h(n’) < h(n), move to n’   (i.e. accept all improving steps) 
–  Otherwise, adopt it with a probability depending on 

•  How much worse n’ is than n 
•  the current temperature T: high T tends to accept even very bad moves 
•  Probability of accepting worsening move: exp( (h(n) – h(n’) )/ T ) 

–  Temperature reduces over time, according to an annealing schedule 
•  “Finding a good annealing schedule is an art” 
•  E.g. geometric cooling: every step multiply T by some constant < 1 
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Tabu Search 

•  Mark partial assignments as tabu (‘taboo’= forbidden) 

–  Prevents repeatedly visiting the same (or similar) local minima 

–  Maintain a queue of k variable=value assignments that are tabu 

–  E.g., when changing V7’s value from 2 to 4, we cannot change V7 
back to 2 for the next k steps 

–  k is a parameter that needs to be optimized empirically 
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Iterated Local Search 
•  Perform iterative best improvement to get to local minimum 
•  Perform perturbation step to get to different parts of the 

search space 
–  E.g. a series of random steps (random walk) 
–  Or a short tabu search 
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Beam Search 
•  Keep not just 1 assignment, but k assignments at once 

–  A ‘beam’ with k different assignments (k is the ‘beam width’) 

•  The neighbourhood is the union of the k neighbourhoods 
–  At each step, keep only the k best neighbours 
–  Never backtrack 

•  When k=1, this is identical to: 

–  Single node, always move to best neighbour: greedy descent 

•  When k=∞, this is basically: 

–  At step m, the beam contains all nodes m steps away from the start node 
–  Like breadth first search,  

but expanding a whole level of the search tree at once 

•  The value of k lets us limit space and parallelism 

Greedy descent Best first search Breadth first search 

Greedy descent Best first search Breadth first search 
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Stochastic Beam Search 
•  Like beam search, but you probabilistically choose the k 

nodes at the next step (‘generation’) 

•  The probability that neighbour n is chosen depends on h(n) 
–  Neighbours with low h(n) are chosen more frequently 
–  E.g. rank-based: node n with lowest h(n) has highest probability 

•  probability only depends on the order, not the exact differences in h 
–  This maintains diversity amongst the nodes 

 
•  Biological metaphor:  

–  like asexual reproduction: 
each node gives its mutations and the fittest ones survive 
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Genetic Algorithms 
•  Like stochastic beam search, but pairs of nodes are 

combined to create the offspring 

•  For each generation: 
–  Choose pairs of nodes n1 and n2 (‘parents’),  

where nodes with low h(n) are more likely to be chosen from the 
population 

–  For each pair (n1, n2), perform a cross-over:  
create offspring combining parts of their parents 

–  Mutate some values for each offspring 
–  Select from previous population and all offspring which nodes to 

keep in the population 
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Example for Crossover Operator 
•  Given two nodes: 

  X1 = a1,  X2 = a2,  …,  Xm = am 
  X1 = b1;  X2 = b2,  …,  Xm = bm 

•  Select i at random, form two offspring: 
 X1 = a1,  X2 = a2,  …, Xi = ai,  Xi+1 = bi+1,  …,  Xm = bm 
 X1 = b1,  X2 = b2,  …, Xi = bi,  Xi+1 = ai+1,  …,  Xm = am 
 

•  Many different crossover operators are possible 

•  Genetic algorithms is a large research field 
–  Appealing biological metaphor 
–  Several conferences are devoted to the topic 
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Parameters in stochastic local search 
•  Simple SLS 

–  Neighbourhoods, variable and value selection heuristics, 
percentages of random steps, restart probability 

•  Tabu Search 
–  Tabu length (or interval for randomized tabu length) 

•  Iterated Local Search 
–  Perturbation types, acceptance criteria 
 

•  Genetic algorithms 
–  Population size, mating scheme, cross-over operator, mutation rate 

•  Hybridizations of algorithms: many more parameters 
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The Algorithm Configuration Problem 
Definition 

–  Given: 
•  Runnable algorithm A, its parameters and their domains 
•  Benchmark set of instances B 
•  Performance metric m 

–  Find: 
•  Parameter setting (‘configuration’) of A optimizing m on B 

UBC Ph.D. thesis (Hutter, 2009): “Automated configuration of 
algorithms for solving hard computational problems” 

Motivation for automated algorithm configuration 
Customize versatile algorithms  
for different application domains 
–  Fully automated 

•  Saves valuable human time 
•  Can improve performance dramatically 24 

Solver  
config 1 

Solver  
config 2 



Generality of Algorithm Configuration 
Arbitrary problems, e.g. 

–  SAT, MIP, Timetabling, Probabilistic Reasoning, Protein 
Folding, AI Planning, …. 

Arbitrary parameterized algorithms, e.g. 
–  Local search 

•  Neighbourhoods, restarts, perturbation types, tabu length, etc 
–  Genetic algorithms & evolutionary strategies 

•  Population size, mating scheme, crossover operators, mutation 
rate, hybridizations, etc 

–  Systematic tree search  
(advanced versions of arc consistency + domain splitting) 

•  Branching heuristics, no-good learning, restart strategy, pre-
processing, etc 
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Simple Manual Approach for Configuration 

 
 Start with some configuration 
 repeat 

  Modify a single parameter 
  if results on benchmark set improve  then 

    keep new configuration 
 until no more improvement possible (or “good enough") 
 
 
  →  Manually executed local search 
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The ParamILS Framework 
[Hutter, Hoos & Stützle; AAAI '07 & Hutter, Hoos, Leyton-Brown & Stützle; JAIR'09] 
 

     Iterated Local Search in parameter configuration space: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

27 



Example application for ParamILS:  
solver for mixed integer programming (MIP) 

 

IP: NP-hard constraint optimization problem 
                              MIP = IP with only some integer variables 
                                                     
Commercial state-of-the-art MIP solver IBM ILOG CPLEX: 

–  licensed by > 1000 universities and 1300 corporations, including 
⅓ of the Global 500 

  
Up to 50-fold speedups just by optimizing the parameters! 

Supply chain  
management 

software: 
Oracle, SAP, … 

Transportation/Logistics: 
SNCF, United Airlines,  
UPS, United States  
Postal Service, … 

Production planning  
and optimization: 

Airbus, Dell, Porsche, 
Thyssen Krupp,  

Toyota, Nissan, … 



Learning Goals for local search  
•  Implement local search for a CSP.  

–  Implement different ways to generate neighbors 
–  Implement scoring functions to solve a CSP by local 

search through either greedy descent or hill-climbing. 
•  Implement SLS with 

–  random steps (1-step, 2-step versions) 
–  random restart 

•  Compare SLS algorithms with runtime distributions 
•  Understand principles of types of SLS algorithms 
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IBM’s Watson 
•  Automated AI system participated in real Jeopardy! 

–  Won practice round against two all-time Jeopardy champions 
–  3-day match on air February 14-16, 2011  

•  Jeopardy website with videos: http://www.jeopardy.com/minisites/watson/ 

•  NYTimes article: “What Is I.B.M.’s Watson? 
     http://www.nytimes.com/2010/06/20/magazine/20Computer-t.html 

•  Wired magazine: 
“IBM’s Watson Supercomputer Wins Practice Jeopardy Round” 
http://www.wired.com/epicenter/2011/01/ibm-watson-jeopardy/# 

•  More technical: AI magazine  
“Building Watson: An Overview of the DeepQA Project” 
http://www.stanford.edu/class/cs124/AIMagzine-DeepQA.pdf 

31 



IBM’s Watson: some videos 
•  “IBM and the Jeopardy Challenge”: 

http://www.youtube.com/watch?v=FC3IryWr4c8 
•  “IBM's Supercomputer Beats Miles O'Brien at Jeopardy”: 

http://www.youtube.com/watch?v=otBeCmpEKTs 
•  Video of practice round: 

http://www.engadget.com/2011/01/13/ibms-watson-
supercomputer-destroys-all-humans-in-jeopardy-pract/ 
–  Watson won against Jeopardy champions  

Ken Jennings and Brad Rutter (by a small margin) 
–  Including interview describing some of the underlying AI 

•  But if you’re really interested, see the AI magazine article 

•  "Doctor" Watson To Inform Medical Decisions 
http://www.medicalnewstoday.com/articles/234253.php 
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Watson as an intelligent agent (see lecture 1) 

Natural Language  
Understanding 

+  
Computer Vision 

Speech Recognition 
+ 

Physiological Sensing 
Mining of Interaction Logs 

Knowledge Representation 
Machine Learning 

Reasoning +  
Decision Theory 

+  
Robotics 

+ 
Human Computer 

/Robot 
Interaction 

Natural Language  
Generation 

Mix of knowledge representations.  
Machine learning to rate confidence from each system 
Learned confidence from 10,000s example questions 

Some, fairly simple 

Betting 
strategy! 

State of the art NLP components 
Combination and tuning of over 100 (!) approaches. 



Apple’s Siri 
 
•  Original SIRI is an offshoot of the DARPA-funded project, CALO, based at SRI. It was part 

of DARPA's PAL initiative (Personalized Assistant that Learns). 
•  http://www.apple.com/iphone/features/siri.html 
•  Interact with the calendar. 
•  Search contacts. 
•  Read and write messages (text and email). 
•  Interact with the Maps app and location services. 
•  Forward search phrases to certain pre-defined data providers (Yahoo! Weather, Yahoo! 

Finance, Yelp, Wolfram|Alpha, or Wikipedia). 
•  Dick Tracy’s watch next …. 
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