GAC Algorithm and Domain Splitting for CSPs

Alan Mackworth

UBC CS 322 - CSP 4

February 1, 2013

Textbook §4.6

Lecture Overview

Arc consistency

- Recap
- GAC algorithm
- Complexity analysis
- Domain splitting

Arc Consistency

Definitions:

An arc <x, r(x,y)> is arc consistent if for each value x in dom(X) there is some value y in dom(Y) such that r(x,y) is satisfied.

A network is arc consistent if all its arcs are arc consistent.

Arc Consistency

Arc Consistency

Which arcs need to be reconsidered?

• When we reduce the domain of a variable X to make an arc $\langle X,c \rangle$ arc consistent, which arcs do we need to reconsider?

- You $d\delta$ not need to reconsider other arcs
 - If arc $\langle Y, c \rangle$ was arc consistent before, it will still be arc consistent
 - If an Earc $\langle X,c' \rangle$ was arc consistent before, it will still be arc consistent
 - Nothing changes for arcs of constraints not involving X

Lecture Overview

- Arc consistency
 - Recap
 - GAC algorithm
 - Complexity analysis
 - Domain splitting

Arc consistency algorithm (for binary constraints)

11: return $\{D_X | X \text{ is a variable}\}$

Arc Consistency Algorithm: Interpreting Outcomes

Three possible outcomes (when all arcs are arc consistent):

- Each domain has a single value, e.g. http://www.cs.ubc.ca/~mack/CS322/Alspace/simple-network.xml (Download the file and load it as a local file in Alspace consistency applet) And "Scheduling Problem 1" in Alspace. We have a (unique) solution.
- 2. At least one domain is empty, e.g. http://www.cs.ubc.ca/~mack/CS322/AIspace/simple-infeasible.xml (All values are ruled out for this variable.) No solution!
- Some domains have more than one value, e.g. built-in example "Simple Problem 2" or "Scheduling Problem 2" There may be one solution, many solutions, or none. Need to solve this new CSP (usually simpler) problem: same constraints, domains have been reduced

Arc Consistency Algorithm: Complexity

- Worst-case complexity of arc consistency procedure on a problem with N variables
 - let *d* be the max size of a variable domain
 - let c be the number of constraints
 - How often will we prune the domain of variable V? O(d) times
 - How many arcs will be put on the ToDoArc (TDA) list when pruning domain of variable V?
 - O(degree of variable V)
 - In total, across all variables: sum of degrees of all variables = ...
 2*number of constraints, i.e. 2*c
 - Together: we will only put O(dc) arcs on the ToDoArc list (2c arcs originally on TDA)
 - Checking consistency is O(d²) for each of them
- Overall complexity: O(cd³)
- Compare to O(d^N) of DFS! Arc consistency is MUCH faster.

Lecture Overview

- Arc consistency
 - Recap
 - GAC algorithm
 - Complexity analysis
 - Domain splitting

Can we have an arc consistent network with non-empty domains that has no solution?

YES

NO

- Example: vars A, B, C with domain {1, 2} and constraints A ≠ B, B ≠ C, A ≠ C
- Or see Alspace CSP applet Simple Problem 2

Domain splitting (or case analysis)

- Arc consistency ends: Some domains have more than one value → may or may not have a solution
 - A. Apply Depth-First Search with Pruning or
 - B. Split the problem in a number of disjoint cases:

CSP with dom(X) = { x_1 , x_2 , x_3 , x_4 } becomes

 CSP_1 with dom(X) = {x₁, x₂} and CSP_2 with dom(X) = {x₃, x₄}

• Solution to CSP is the union of solutions to CSP_i

Whiteboard example for domain splitting

- ...

Domain splitting

- Each smaller CSP is easier to solve
 - Arc consistency might already solve it
- For each subCSP, which arcs have to be on the ToDoArcs list when we get the subCSP by splitting the domain of X?

arcs <Z, r(Z,X)>

All arcs

Domain splitting in action

• Trace it on "simple problem 2"

How many CSPs do we need to keep around at a time? With depth m and 2 children at each split: O(2m). It's a DFS.

Learning Goals for today's class

- Define/read/write/trace/debug the arc consistency algorithm. Compute its complexity and assess its possible outcomes
- Define/read/write/trace/debug domain splitting and its integration with arc consistency

• Coming up: local search, Section 4.8