Branch & Bound (B&B) and Constraint Satisfaction Problems (CSPs)

Alan Mackworth

UBC CS 322 - CSP 1 January 25, 2013

P&M textbook § 3.7.4 & 4.0-4.2

Lecture Overview

- Branch & Bound
- Wrap up of search module
- Constraint Satisfaction Problems (CSPs)

Recap: state space graph vs search tree

State space graph.

Search tree.

Nodes in this tree correspond to paths in the state space graph

(if multiple start nodes: forest)

May contain cycles!

Cannot contain cycles!

Multiple Path Pruning

- If we only want one path to the solution:
 - Can prune new path p (e.g. sabcn) to node n we already reached on a previous path p' (e.g. san)
- To guarantee optimality, either:
- If cost(p) < cost(p')</pre>
 - Remove all paths from frontier with prefix p', or
 - Replace prefixes in those paths (replace p' with p)
- Or prove that your algorithm always finds optimal path first

Prove that your algorithm always find the optimal path first

- "Whenever search algorithm A expands a path p ending in node n, this is the lowest-cost path from a start node to n (if all costs ≥ 0)"
 - This is true for

Least Cost Search First

A*

Both of them

None of them

- In general, true only for Least Cost First Search (LCFS)
- Counterexample for A* below: A* expands the upper path first
 - But can recover LCFS's guarantee with monotone heuristic:
 h is monotone if for all arcs (m,n): |h(m) h(n)| ≤ cost(m,n),
 generalization of admissibility where n is a goal node only with h(n)=0.

Iterative Deepening DFS (IDS)

- Depth-bounded depth-first search: DFS on a leash
- For depth bound d, ignore any paths with longer length
- Progressively increase the depth bound d
- 1, 2, 3, ..., until you find the solution at depth m
- Space complexity: O(bm)
- At every depth bound, it's just a DFS
- •Time complexity: O(b^m)
- Overhead of small depth bounds is very small compared to work at greater depths
- Optimal: yes
- Complete: yes
- Same idea works for f-value-bounded DFS: IDA*

Lecture Overview

Recap

Branch & Bound

- Wrap up of search module
- Constraint Satisfaction Problems (CSPs)

Heuristic DFS

- Other than IDA*, can we use heuristic information in DFS?
 - When we expand a node, we put all its neighbours on the frontier
 - In which order? Matters because DFS uses a LIFO stack
 - Can use heuristic guidance: h or f
 - Perfect heuristic f: would solve problem without any backtracking

- Heuristic DFS is very frequently used in practice
 - Simply choose promising branches first
 - Based on any kind of information available (no requirement for admissibility)
- Can we combine this with IDA*? Yes No
 - DFS with an f-value bound (using admissible heuristic h), putting neighbours onto frontier in a smart order (using some heuristic h')
 - Can, of course, also choose h' = h

Branch-and-Bound Search

- One more way to combine DFS with heuristic guidance
- Follows exactly the same search path as depth-first search
 - But to ensure optimality, it does not stop at the first solution found
- It continues, after recording upper bound on solution cost
 - upper bound: UB = cost of the best solution found so far
 - Initialized to ∞ or any overestimate of optimal solution cost
- When a path p is selected for expansion:
 - Compute lower bound LB(p) = f(p) = cost(p) + h(p)
 - If LB(p) ≥UB, remove p from frontier without expanding it (pruning)
 - Else expand p, adding all of its neighbors to the frontier
 - Requires admissible h

Branch-and-Bound Analysis

- Complete?
- YES
- NO
- IT DEPENDS
- Same as DFS: can't handle cycles/infinite graphs.
- But complete if initialized with some finite UB
- Optimal?

- YES.
- Time complexity: O(b^m)
- Space complexity
 - It's a DFS

O(b+m)

Combining B&B with other schemes

- "Follows the same search path as depth-first search"
 - Let's make that heuristic depth-first search
- Can freely choose order to put neighbours on the stack
 - Could e.g. use a separate heuristic h' that is NOT admissible
- To compute LB(p)
 - Need to compute f value using an admissible heuristic h
- This combination is used a lot in practice

Search methods so far

	Complete	Optimal	Time	Space
DFS	N	N $O(b^m)$		O(mb)
	(Y if no cycles)			
BFS	Y	Y $O(b^m)$		$O(b^m)$
IDS	Y	Y	$O(b^m)$	O(mb)
LCFS	Υ	Υ	$ ilde{O}(b^m)$	$O(b^m)$
(when arc costs available)	Costs > 0	Costs >=0		
Best First	Ν	Z	$ ilde{O}(b^m)$	$O(b^m)$
(when <i>h</i> available)				
A*	Y	Y	$ ilde{O}(b^m)$	$O(b^m)$
(when arc costs and h	Costs > 0	Costs >=0		
available)	<i>h</i> admissible	h admissible		
IDA*	Y (same cond. as A*)	Y	$O(b^m)$	O(mb)
Branch & Bound	N (Y if init. with finite UB)	Υ	O(b ^m)	O(mb)

Lecture Overview

- Recap
- Branch & Bound

Wrap up of search module

Constraint Satisfaction Problems (CSPs)

Direction of Search

- The definition of searching is symmetric:
 - find path from start nodes to goal node or
 - from goal node to start nodes (in reverse graph)
- Restrictions:
 - This presumes an explicit goal node, not a goal test
 - When the graph is dynamically constructed, it can sometimes be impossible to construct the backwards graph
- Branching factors:
 - Forward branching factor: number of arcs out of a node
 - Backward branching factor: number of arcs into a node
- Search complexity is O(b^m)
 - Should use forward search if forward branching factor is less than backward branching factor, and vice versa

Bidirectional search

- You can search backward from the goal and forward from the start simultaneously
 - This wins because 2b^{k/2} is much smaller than b^k
 - Can result in exponential savings in time and space
- The main problem is making sure the frontiers meet
 - Often used with one breadth-first method that builds a set of locations that can lead to the goal
 - In the other direction another method can be used to find a path to these interesting locations

Dynamic Programming

- Idea: for statically stored graphs, build a table of dist(n):
 - The actual distance of the shortest path from node n to a goal g

- How could we implement that?
 - Run Dijkstra's algorithm (LCFS with multiple path pruning) in the backwards graph, starting from the goal
- When it's time to act (forward): always pick neighbour with lowest dist value. But you need enough space to store the graph...

Memory-bounded A*

- Iterative deepening A* and B & B use little memory
- What if we have some more memory (but not enough for regular A*)?
 - Do A* and keep as much of the frontier in memory as possible
 - When running out of memory
 - delete worst path (highest f value) from frontier
 - Back the path up to a common ancestor
 - Subtree gets regenerated only when all other paths have been shown to be worse than the "forgotten" path
- Complete and optimal if solution is at depth manageable for available memory

Algorithms Often Used in Practice

	Selection	Complete	Optimal	Time	Space
DFS	LIFO	N	N	$O(b^m)$	O(mb)
BFS	FIFO	Y	Y	$O(b^m)$	$O(b^m)$
IDS	LIFO	Y	Y	$O(b^m)$	O(mb)
LCFS	min cost	Y **	Y **	$ ilde{O}(b^m)$	$O(b^m)$
Best First	min h	N	N	$ ilde{O}(b^m)$	$O(b^m)$
A*	min f	Y**	Y**	$ ilde{O}(b^m)$	$O(b^m)$
B&B	LIFO + pruning	N (Y if UB finite)	Y	$O(b^m)$	O(mb)
IDA*	LIFO	Y	Y	$O(b^m)$	O(mb)
MBA*	min f	Y**	Y**	$ ilde{O}(b^m)$	$O(b^m)$

^{**} Needs conditions

Learning Goals for search

- Identify real world examples that make use of deterministic, goal-driven search agents
- Assess the size of the search space of a given search problem.
- Implement the generic solution to a search problem.
- Apply basic properties of search algorithms:
 - completeness, optimality, time and space complexity
- Select the most appropriate search algorithms for specific problems.
- Define/read/write/trace/debug different search algorithms
- Construct heuristic functions for specific search problems
- Formally prove A* optimality.
- Define optimally efficient

Learning goals: know how to fill this

	Selection	Complete	Optimal	Time	Space
DFS					
BFS					
IDS					
LCFS					
Best First					
A*					
B&B					
IDA*					

Course Overview

Course Module

Environment

Representation

Reasoning

Technique

Deterministic

inistic Stochastic

Problem Type

Constraint Satisfaction

Static

Logic

Planning

Sequential

Search is everywhere!

Constraint Satisfaction Variables + Search Constraints

Logics

Search

Bayesian Networks

Variable Elimination

STRIPS

Search

Decision <u>Networks</u>

Variable Elimination

Markov Processes

Value

Iteration

Uncertainty

Decision Theory

Lecture Overview

- Recap
- Branch & Bound
- Wrap up of search module

Constraint Satisfaction Problems (CSPs)

Course Overview

Course Module

Representation

Reasoning Technique

Environment

Deterministic

Stochastic

Arc Consistency Satisfaction Variables + Search **Constraints**

> Logics Search

Bayesian Networks Variable

Elimination

STRIPS

Search

Decision Networks

> Variable Elimination

Markov Processes

Value

Iteration

Decision Theory

Uncertainty

Main Representational Dimensions (Lecture 2)

Domains can be classified by the following dimensions:

- 1. Uncertainty
 - Deterministic vs. stochastic domains
- 2. How many actions does the agent need to perform?
 - Static vs. sequential domains

An important design choice is:

- 3. Representation scheme
 - Explicit states vs. features (vs. relations)

Explicit State vs. Features (Lecture 2)

How do we model the environment?

- You can enumerate the possible states of the world
- A state can be described in terms of features
 - Assignment to (one or more) variables
 - Often the more natural description
 - 30 binary features can represent $2^{30} = 1,073,741,824$ states

Variables/Features and Possible Worlds

- Variable: a synonym for feature
 - We denote variables using capital letters
 - Each variable V has a domain dom(V) of possible values
- Variables can be of several main kinds:
 - Boolean: |dom(V)| = 2
 - Finite: |dom(V)| is finite
 - Infinite but discrete: the domain is countably infinite
 - Continuous: e.g., real numbers between 0 and 1
- Possible world
 - Complete assignment of values to each variable
 - In contrast, states also include partial assignments

Examples: variables, domains, possible worlds

Crossword Puzzle:

- variables are words that have to be filled in
- domains are English words of correct length
- possible worlds: all ways of assigning words

Crossword 2:

- variables are cells (individual squares)
- domains are letters of the alphabet
- possible worlds: all ways of assigning letters to cells

How many possible worlds?

- Crossword Puzzle:
 - variables are words that have to be filled in
 - domains are English words of correct length
 - possible worlds: all ways of assigning words

- Number of English words? Let's say 150,000
 - Of the right length? Assume for simplicity: 15,000 for each word
- Number of words to be filled in? 63
- How many possible worlds? (assume any combination is ok)

15000*63

 15000^{63}

6315000

How many possible worlds?

Crossword 2:

- variables are cells (individual squares)
- domains are letters of the alphabet
- possible worlds: all ways of assigning letters to cells

- Number of empty cells? 15*15 32 = 193
- Number of letters in the alphabet? 26

•

How many possible worlds? (assume any combination is ok)

193*26

19326

26193

• In general: (domain size) #variables (only an upper bound)

Examples: variables, domains, possible worlds

Sudoku rules are extremely easy: Fill all empty squares so that the numbers 1 to 9 appear once in each row, column and 3x3 box.

Sudoku	Puzzle

9	3	6	2	8	1	4
6						5
3			1			9
5		8		2		7
4			7			6
8						6
1	7	5	9	3	4	2

Sudoku Solution

2	7	1	9	5	4	6		3
5	9	3	6	2	8	1	4	7
4	6	8	1	3	7	2	5	9
7	3	6	4	1	5	8		
1	5	9	8	6	2	3	7	4
8	4	2	3	7	9	5	6	1
9	8	5	2	4	1	7	3	6
6	1		5	9	3	4	2	8
3	2	4	7	8	6	9	1	5

Sudoku

- variables are cells
- domains are numbers between 1 and 9
- possible worlds: all ways of assigning numbers to cells

Examples: variables, domains, possible worlds

Scheduling Problem:

- variables are different tasks that need to be scheduled (e.g., course in a university; job in a machine shop)
- domains are the different combinations of times and locations for each task (e.g., time/room for course; time/machine for job)
- possible worlds: time/location assignments for each task

n-Queens problem

- variable: location of a queen on a chess board
 - there are n of them in total, hence the name
- domains: grid coordinates
- possible worlds: locations of all queens

Constraints

- Constraints are restrictions on the values that one or more variables can take
 - Unary constraint: restriction involving a single variable
 - of course, we could also achieve the same thing by using a smaller domain in the first place
 - k-ary constraint: restriction involving k different variables
 - We will mostly deal with binary constraints
 - Constraints can be specified by
 - 1. listing all combinations of valid domain values for the variables participating in the constraint
 - 2. giving a function that returns true when given values for each variable which satisfy the constraint
- A possible world satisfies a set of constraints
 - if the values for the variables involved in each constraint are consistent with that constraint
 - 1. Elements of the list of valid domain values
 - 2. Function returns true for those values

Examples: variables, domains, constraints

Crossword Puzzle:

- variables are words that have to be filled in
- domains are English words of correct length
- (binary) constraints: two words have the same point where they intersect

Crossword 2:

- variables are cells (individual squares)
- domains are letters of the alphabet
- (k-ary) constraints: sequences of letters form valid English words

Examples: variables, domains, constraints

Sudoku rules are extremely easy: Fill all empty squares so that the numbers 1 to 9 appear once in each row, column and 3x3 box.

Sudoku	Puzzle
--------	--------

9	3	6	2	8	1	4
6						5
3			1			9
3 5		8		2		7
4			7			6
8						3
1	7	5	9	3	4	2

Sudoku Solution

2	7	1	9	5	4	6		3
5	9	3	6	2	8	1	4	7
4	6	8	1	3	7	2	5	9
7	3	6	4	1	5	8		
1	5	9	8	6	2	3	7	4
8	4	2	3	7	9	5	6	1
9	8	5	2	4	1	7	3	6
6	1		5	9	3	4	2	8
3	2	4	7	8	6	9	1	5

Sudoku

- variables are cells
- domains are numbers between 1 and 9
- constraints: rows, columns, boxes contain all different numbers

Examples: variables, domains, constraints

Scheduling Problem:

- variables are different tasks that need to be scheduled (e.g., course in a university; job in a machine shop)
- domains are the different combinations of times and locations for each task (e.g., time/room for course; time/machine for job)
- constraints: tasks can't be scheduled in the same location at the same time; certain tasks can't be scheduled in different locations at the same time; some tasks must come earlier than others; etc.

n-Queens problem

- variable: location of a queen on a chess board
 - there are n of them in total, hence the name
- domains: grid coordinates
- constraints: no queen can attack another

Constraint Satisfaction Problems: Definition

Definition:

A constraint satisfaction problem (CSP) consists of:

- a set of variables
- a domain for each variable
- a set of constraints

Definition:

A model of a CSP is an assignment of values to all of its variables that satisfies all of its constraints.

Constraint Satisfaction Problems: Variants

- We may want to solve the following problems with a CSP:
 - determine whether or not a model exists
 - find a model
 - find all of the models
 - count the number of models
 - find the best model, given some measure of model quality
 - this is now an optimization problem
 - determine whether some property of the variables holds in all models

Constraint Satisfaction Problems: Game Plan

- Even the simplest problem of determining whether or not a model exists in a general CSP with finite domains is NPhard
 - There is no known algorithm with worst case polynomial runtime
 - We can't hope to find an algorithm that is efficient for all CSPs
- However, we can try to:
 - find consistency algorithms that reduce the size of the search space
 - identify special cases for which algorithms are efficient (polynomial)
 - work on approximation algorithms that can find good solutions quickly, even though they may offer no theoretical guarantees
 - find algorithms that are fast on typical cases

Learning Goals for CSP so far

- Define possible worlds in term of variables and their domains
- Compute number of possible worlds on real examples
- Specify constraints to represent real world problems differentiating between:
 - Unary and k-ary constraints
 - List vs. function format
- Verify whether a possible world satisfies a set of constraints (i.e., whether it is a model, a solution)
- Coming up: CSP as search
 - Read Sections 4.3-2
- Get busy with assignment 1