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Lecture Overview 

•  Recap from last week 

•  Iterative Deepening 
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Search with Costs 
•  Sometimes there are costs associated with arcs. 

•  In this setting we often don't just want to find any solution 
–  we usually want to find the solution that minimizes cost 
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Def.: The cost of a path is the sum of the costs of its arcs 
 
 
 
 

Def.: A search algorithm is optimal if 
        when it finds a solution, it is the best one: 
        it has the lowest path cost 
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•  Expands the path with the lowest cost on the frontier. 

•  The frontier is implemented as a priority queue ordered by 
path cost. 

•  How does LCFS differ from Dijkstra’s shortest path 
algorithm? 
-  The two algorithms are very similar 
-  But Dijkstra’s algorithm  

-  computes shortest distance from one node to all other nodes 
-  works with nodes not with paths 
-  stores one bit per node (infeasible for infinite/very large graphs) 
-  checks for cycles 

 

Lowest-Cost-First Search (LCFS) 
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Heuristic search 
Def.:  
A search heuristic h(n) is an estimate of the cost of the optimal  
(cheapest) path from node n to a goal node. 

Estimate: h(n1) 
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Estimate: h(n2) 

Estimate: h(n3) 
n3 

n2 

n1 



 

 

•  Expands the path with the lowest h value on the frontier. 

•  The frontier is implemented as a priority queue ordered by 
h. 

•  Greedy: expands path that appears to lead to the goal 
quickest 
-  Can get trapped 
-  Can yield arbitrarily poor solutions 
-  But with a perfect heuristic, it moves straight to the goal 

Best-First Search (LCFS) 
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•  Expands the path with the lowest cost + h value on the 
frontier 

•  The frontier is implemented as a priority queue ordered by 
f(p) = cost(p) + h(p) 

A* 
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Admissibility of a heuristic 

•  E.g.  Euclidean distance in routing networks 
•  General construction of heuristics: relax the problem,  

i.e. ignore some constraints 
-  Can only make it easier 
-  Saw lots of examples on Wednesday: 

Routing network, grid world, 8 puzzle, Infinite Mario 
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Def.:  
Let c(n) denote the cost of the optimal path from node n to any 

goal node. A search heuristic h(n) is called   
admissible  if h(n) ≤ c(n) for all nodes n, i.e. if for all nodes it 
is an underestimate of the cost to any goal. 



 

•  A* is complete (finds a solution, if one exists) and  
optimal (finds the optimal path to a goal) if: 

•  the branching factor is finite 
•  arc costs are   
•  h is admissible. 

•  This property of A* is called admissibility of A* 

Admissibility of A* 
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> ε > 0



 

If there is a solution, A* finds it:  
-   fmin:= cost of optimal solution path s (unknown but finite) 

-   Lemmas for prefix pr of s (exercise: prove at home) 
-  Has cost f(pr) ≤ fmin  (due to admissibility) 
-  Always one such pr on the frontier (prove by induction) 

-  A* only expands paths with f(p) ≤ fmin 
-  Expands paths p with minimal f(p) 
-  Always a pr on the frontier, with f(pr) ≤ fmin  
-  Terminates when expanding s 

-  Number of paths p with cost f(p) ≤ fmin is finite 
-  Let cmin > 0 be the minimal cost of any arc 
-  k := fmin / cmin.   All paths with length > k have cost > fmin  
-  Only bk paths of length k. Finite b ⇒ finite 

 

Why is A* admissible: complete 



Why is A* admissible: optimal 
New Proof (by contradiction) 

–  Assume hypothesis (for contradiction): 
First solution s’ that A* expands is suboptimal: i.e. cost(s’) > fmin  

–  Since s’ is a goal, h(s’) = 0, and f(s’) = cost(s’) > fmin  

–  A* selected s’ ⇒ all other paths p on the frontier  
                            had f(p) ≥ f(s’) > fmin 

–  But we know that a prefix pr of optimal solution path s is on the 
frontier, with f(pr) ≤ fmin  
⇒ Contradiction! 

–  QED 
Summary: any prefix of optimal solution is expanded before suboptimal 

solution would be expanded 
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•  Select the most appropriate algorithms for specific 
problems 

–  Depth-First Search  vs. Breadth-First Search  
vs. Least-Cost-First Search vs. Best-First Search vs. A* 

•  Define/read/write/trace/debug different search algorithms 
-  With/without cost 

-  Informed/Uninformed  
•  Construct heuristic functions for specific search problems 

•  Formally prove A* completeness and optimality 
-  Define optimal efficiency 
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Learning Goals for last week 



•  Apply basic properties of search algorithms:  
–  completeness, optimality, time and space complexity  
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Learning Goals for last week, continued 

Complete Optimal Time Space 

DFS N  
(Y if finite & no 

cycles) 

N O(bm) O(mb) 

BFS Y Y O(bm) O(bm) 
LCFS 

(when arc costs available) 
Y  

Costs > 0 
Y  

Costs ≥ 0 
O(bm) 

 
Best First 

(when h available) 
N N O(bm) 

A* 
(when arc costs and h 

available) 

Y  
Costs > 0 
h admissible 

Y  
Costs ≥ 0 
h admissible 

O(bm) 

O(bm )

O(bm )

O(bm )



Lecture Overview 

•  Recap from last week 

•  Iterative Deepening 
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Want low space complexity but completeness and optimality 
Key Idea: re-compute elements of the frontier  

            rather than saving them 
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Iterative Deepening DFS (IDS): Motivation 

Complete Optimal Time Space 

DFS N  
(Y if finite & no 

cycles) 

N O(bm) O(mb) 

BFS Y Y O(bm) O(bm) 
LCFS 

(when arc costs available) 
Y  

Costs > 0 
Y  

Costs ≥ 0 
O(bm) 

 
Best First 

(when h available) 
N N O(bm) 

A* 
(when arc costs and h 

available) 

Y  
Costs > 0 
h admissible 

Y  
Costs ≥ 0 
h admissible 

O(bm) 

O(bm )

O(bm )

O(bm )



 depth = 1 
 
 
depth = 2 
 
 
 
 
depth = 3 

. . . 

Iterative Deepening DFS (IDS) in a Nutshell 

•  Use DFS to look for solutions at depth 1, then 2, then 3, etc 
–   For depth D, ignore any paths with longer length 

–   Depth-bounded depth-first search 



(Time) Complexity of IDS 

Depth Total # of paths 
at that level 

#times created by 
BFS (or DFS) 

#times created 
by IDS 

Total #paths  
for IDS 

1 b 1 
2 b2 1 
. 
. 
. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 
m-1 bm-1 1 
m bm 1 
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m 

m-1 

2 
1 

mb 
(m-1) b2  

2 bm-1 
bm 

•  That sounds wasteful! 
•  Let’s analyze the time complexity 
•  For a solution at depth m with branching factor b 



Solution at depth m, branching factor b 
Total # of paths generated: 
   bm + 2 bm-1 + 3 bm-2 + ...+ mb  
= bm (1 b0 + 2 b-1 + 3 b-2 + ...+ m b1-m ) 
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Further Analysis of Iterative Deepening DFS (IDS) 

•  Space complexity 

–  DFS scheme, only explore one branch at a time 

•  Complete? 

–  Only finite # of paths up to depth m, doesn’t explore longer paths 

•  Optimal?  

–  Proof by contradiction 
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O(b+m) O(bm) O(bm) O(mb) 

Yes No 

Yes No 



Search methods so far 
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Complete Optimal Time Space 

DFS N  
(Y if finite & no 

cycles) 

N O(bm) O(mb) 

BFS Y Y O(bm) O(bm) 
IDS Y Y O(bm) O(mb) 

LCFS 
(when arc costs available) 

Y  
Costs > 0 

Y  
Costs >=0 

O(bm) 
 

Best First 
(when h available) 

N N O(bm) 

A* 
(when arc costs and h 

available) 

Y  
Costs > 0 
h admissible 

Y  
Costs >=0 
h admissible 

O(bm) 

  

O(bm )

O(bm )

O(bm )



(Heuristic) Iterative Deepening: IDA* 

•  Like Iterative Deepening DFS 
–  But the depth bound is measured in terms of the f value 

•  If you don’t find a solution at a given depth 
–  Increase the depth bound: 

to the minimum of the f-values that exceeded the previous bound 
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Analysis of Iterative Deepening A* (IDA*) 
•  Complete and optimal?  Same conditions as A* 

–  h is admissible 
–  all arc costs  
–  finite branching factor 

•  Time complexity:  

•  Space complexity: 

–  Same argument as for Iterative Deepening DFS 
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O(b+m) O(bm) O(bm) O(mb) 

> ε > 0

O(bm )



Search methods so far 
Complete Optimal Time Space 

DFS N  
(Y if no cycles) 

N O(bm) O(mb) 

BFS Y Y O(bm) O(bm) 
IDS Y Y O(bm) O(mb) 

LCFS 
(when arc costs available) 

Y  
Costs > 0 

Y  
Costs >=0 

O(bm) 
 

Best First 
(when h available) 

N N O(bm) 

A* 
(when arc costs and h 

available) 

Y  
Costs > 0 
h admissible 

Y  
Costs >=0 
h admissible 

O(bm) 

IDA* Y (same cond. 
as A*) 

Y O(mb) 
 

  
O(bm )

O(bm )

O(bm )

O(bm )



•   Define/read/write/trace/debug different search algorithms 
-  New: Iterative Deepening,  

         Iterative Deepening A* 

•   Apply basic properties of search algorithms:  
–  completeness, optimality, time and space complexity 

 
Announcements:  

–  Practice exercises on course home page 
•  Heuristic search 
•  Please use these! (Only takes 5 min. if you understood things…) 

–  Assignment 1 is out: see Connect. 
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Learning Goals for today’s class 


