
Iterative Deepening and IDA*

Alan Mackworth

UBC CS 322 – Search 6

January 21, 2013

Textbook § 3.7.3

Lecture Overview

•  Recap from last week

•  Iterative Deepening

Slide 2

Search with Costs
•  Sometimes there are costs associated with arcs.

•  In this setting we often don't just want to find any solution
–  we usually want to find the solution that minimizes cost

()),cost(,,cost
1

10 ∑
=

−=
k

i
iik nnnn …

Def.: The cost of a path is the sum of the costs of its arcs

Def.: A search algorithm is optimal if
 when it finds a solution, it is the best one:
 it has the lowest path cost

3

•  Expands the path with the lowest cost on the frontier.

•  The frontier is implemented as a priority queue ordered by
path cost.

•  How does LCFS differ from Dijkstra’s shortest path
algorithm?
-  The two algorithms are very similar
-  But Dijkstra’s algorithm

-  computes shortest distance from one node to all other nodes
-  works with nodes not with paths
-  stores one bit per node (infeasible for infinite/very large graphs)
-  checks for cycles

Lowest-Cost-First Search (LCFS)

4

Heuristic search
Def.:
A search heuristic h(n) is an estimate of the cost of the optimal
(cheapest) path from node n to a goal node.

Estimate: h(n1)

5

Estimate: h(n2)

Estimate: h(n3)
n3

n2

n1

•  Expands the path with the lowest h value on the frontier.

•  The frontier is implemented as a priority queue ordered by
h.

•  Greedy: expands path that appears to lead to the goal
quickest
-  Can get trapped
-  Can yield arbitrarily poor solutions
-  But with a perfect heuristic, it moves straight to the goal

Best-First Search (LCFS)

6

•  Expands the path with the lowest cost + h value on the
frontier

•  The frontier is implemented as a priority queue ordered by
f(p) = cost(p) + h(p)

A*

7

Admissibility of a heuristic

•  E.g. Euclidean distance in routing networks
•  General construction of heuristics: relax the problem,

i.e. ignore some constraints
-  Can only make it easier
-  Saw lots of examples on Wednesday:

Routing network, grid world, 8 puzzle, Infinite Mario

8

Def.:
Let c(n) denote the cost of the optimal path from node n to any

goal node. A search heuristic h(n) is called
admissible if h(n) ≤ c(n) for all nodes n, i.e. if for all nodes it
is an underestimate of the cost to any goal.

•  A* is complete (finds a solution, if one exists) and
optimal (finds the optimal path to a goal) if:

•  the branching factor is finite
•  arc costs are
•  h is admissible.

•  This property of A* is called admissibility of A*

Admissibility of A*

9

> ε > 0

If there is a solution, A* finds it:
-  fmin:= cost of optimal solution path s (unknown but finite)

-  Lemmas for prefix pr of s (exercise: prove at home)
-  Has cost f(pr) ≤ fmin (due to admissibility)
-  Always one such pr on the frontier (prove by induction)

-  A* only expands paths with f(p) ≤ fmin
-  Expands paths p with minimal f(p)
-  Always a pr on the frontier, with f(pr) ≤ fmin
-  Terminates when expanding s

-  Number of paths p with cost f(p) ≤ fmin is finite
-  Let cmin > 0 be the minimal cost of any arc
-  k := fmin / cmin. All paths with length > k have cost > fmin
-  Only bk paths of length k. Finite b ⇒ finite

Why is A* admissible: complete

Why is A* admissible: optimal
New Proof (by contradiction)

–  Assume hypothesis (for contradiction):
First solution s’ that A* expands is suboptimal: i.e. cost(s’) > fmin

–  Since s’ is a goal, h(s’) = 0, and f(s’) = cost(s’) > fmin

–  A* selected s’ ⇒ all other paths p on the frontier
 had f(p) ≥ f(s’) > fmin

–  But we know that a prefix pr of optimal solution path s is on the
frontier, with f(pr) ≤ fmin
⇒ Contradiction!

–  QED
Summary: any prefix of optimal solution is expanded before suboptimal

solution would be expanded

11

•  Select the most appropriate algorithms for specific
problems

–  Depth-First Search vs. Breadth-First Search
vs. Least-Cost-First Search vs. Best-First Search vs. A*

•  Define/read/write/trace/debug different search algorithms
-  With/without cost

-  Informed/Uninformed
•  Construct heuristic functions for specific search problems

•  Formally prove A* completeness and optimality
-  Define optimal efficiency

12

Learning Goals for last week

•  Apply basic properties of search algorithms:
–  completeness, optimality, time and space complexity

13

Learning Goals for last week, continued

Complete Optimal Time Space

DFS N
(Y if finite & no

cycles)

N O(bm) O(mb)

BFS Y Y O(bm) O(bm)
LCFS

(when arc costs available)
Y

Costs > 0
Y

Costs ≥ 0
O(bm)

Best First

(when h available)
N N O(bm)

A*
(when arc costs and h

available)

Y
Costs > 0 
h admissible

Y
Costs ≥ 0
h admissible

O(bm)

O(bm)

O(bm)

O(bm)

Lecture Overview

•  Recap from last week

•  Iterative Deepening

14

Want low space complexity but completeness and optimality
Key Idea: re-compute elements of the frontier

 rather than saving them

15

Iterative Deepening DFS (IDS): Motivation

Complete Optimal Time Space

DFS N
(Y if finite & no

cycles)

N O(bm) O(mb)

BFS Y Y O(bm) O(bm)
LCFS

(when arc costs available)
Y

Costs > 0
Y

Costs ≥ 0
O(bm)

Best First

(when h available)
N N O(bm)

A*
(when arc costs and h

available)

Y
Costs > 0 
h admissible

Y
Costs ≥ 0
h admissible

O(bm)

O(bm)

O(bm)

O(bm)

 depth = 1

depth = 2

depth = 3

. . .

Iterative Deepening DFS (IDS) in a Nutshell

•  Use DFS to look for solutions at depth 1, then 2, then 3, etc
–  For depth D, ignore any paths with longer length

–  Depth-bounded depth-first search

(Time) Complexity of IDS

Depth Total # of paths
at that level

#times created by
BFS (or DFS)

#times created
by IDS

Total #paths  
for IDS

1 b 1
2 b2 1
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.
m-1 bm-1 1
m bm 1

17

m

m-1

2
1

mb
(m-1) b2

2 bm-1
bm

•  That sounds wasteful!
•  Let’s analyze the time complexity
•  For a solution at depth m with branching factor b

Solution at depth m, branching factor b
Total # of paths generated:
 bm + 2 bm-1 + 3 bm-2 + ...+ mb
= bm (1 b0 + 2 b-1 + 3 b-2 + ...+ m b1-m)

))(()(
1

11

1

1 ∑∑
=

−−

=

− ==
m

i

im
m

i

im bibibb

(Time) Complexity of IDS

r
r

i

i

−
=∑

∞

= 1
1

0
 Geometric progression: for |r|<1:

)(mbO∈

2
0

1

0)1(
1
r

irr
dr
d

i

i

i

i

−
==∑∑

∞

=

−
∞

=

))((
0

11∑
∞

=

−−≤
i

im bib
2

11
1

⎟
⎠

⎞
⎜
⎝

⎛
−

=
−b

bm
2

1
⎟
⎠

⎞
⎜
⎝

⎛
−

=
b
bbm

Further Analysis of Iterative Deepening DFS (IDS)

•  Space complexity

–  DFS scheme, only explore one branch at a time

•  Complete?

–  Only finite # of paths up to depth m, doesn’t explore longer paths

•  Optimal?

–  Proof by contradiction

19

O(b+m) O(bm) O(bm) O(mb)

Yes No

Yes No

Search methods so far

20

Complete Optimal Time Space

DFS N
(Y if finite & no

cycles)

N O(bm) O(mb)

BFS Y Y O(bm) O(bm)
IDS Y Y O(bm) O(mb)

LCFS
(when arc costs available)

Y
Costs > 0

Y
Costs >=0

O(bm)

Best First
(when h available)

N N O(bm)

A*
(when arc costs and h

available)

Y
Costs > 0 
h admissible

Y
Costs >=0
h admissible

O(bm)

O(bm)

O(bm)

O(bm)

(Heuristic) Iterative Deepening: IDA*

•  Like Iterative Deepening DFS
–  But the depth bound is measured in terms of the f value

•  If you don’t find a solution at a given depth
–  Increase the depth bound:

to the minimum of the f-values that exceeded the previous bound

21

Analysis of Iterative Deepening A* (IDA*)
•  Complete and optimal? Same conditions as A*

–  h is admissible
–  all arc costs
–  finite branching factor

•  Time complexity:

•  Space complexity:

–  Same argument as for Iterative Deepening DFS

22

O(b+m) O(bm) O(bm) O(mb)

> ε > 0

O(bm)

Search methods so far
Complete Optimal Time Space

DFS N
(Y if no cycles)

N O(bm) O(mb)

BFS Y Y O(bm) O(bm)
IDS Y Y O(bm) O(mb)

LCFS
(when arc costs available)

Y
Costs > 0

Y
Costs >=0

O(bm)

Best First
(when h available)

N N O(bm)

A*
(when arc costs and h

available)

Y
Costs > 0 
h admissible

Y
Costs >=0
h admissible

O(bm)

IDA* Y (same cond.
as A*)

Y O(mb)

O(bm)

O(bm)

O(bm)

O(bm)

•  Define/read/write/trace/debug different search algorithms
-  New: Iterative Deepening,

 Iterative Deepening A*

•  Apply basic properties of search algorithms:
–  completeness, optimality, time and space complexity

Announcements:

–  Practice exercises on course home page
•  Heuristic search
•  Please use these! (Only takes 5 min. if you understood things…)

–  Assignment 1 is out: see Connect.

24

Learning Goals for today’s class

