Iterative Deepening and IDA*

Alan Mackworth

UBC CS 322 - Search 6
January 21, 2013

Textbook § 3.7.3
Lecture Overview

Recap from last week

• Iterative Deepening
Search with Costs

• Sometimes there are costs associated with arcs.

Def.: The cost of a path is the sum of the costs of its arcs

\[\text{cost}(\langle n_0, \ldots, n_k \rangle) = \sum_{i=1}^{k} \text{cost}(\langle n_{i-1}, n_i \rangle) \]

• In this setting we often don't just want to find any solution
 – we usually want to find the solution that minimizes cost

Def.: A search algorithm is optimal if
when it finds a solution, it is the best one:
 it has the lowest path cost
Lowest-Cost-First Search (LCFS)

• Expands the path with the lowest cost on the frontier.

• The frontier is implemented as a priority queue ordered by path cost.

• How does LCFS differ from Dijkstra’s shortest path algorithm?
 - The two algorithms are very similar
 - But Dijkstra’s algorithm
 - computes shortest distance from one node to all other nodes
 - works with nodes not with paths
 - stores one bit per node (infeasible for infinite/very large graphs)
 - checks for cycles
Heuristic search

Def.: A search heuristic $h(n)$ is an estimate of the cost of the optimal (cheapest) path from node n to a goal node.
Best-First Search (LCFS)

• Expands the path with the lowest h value on the frontier.

• The frontier is implemented as a priority queue ordered by h.

• **Greedy**: expands path that appears to lead to the goal quickest
 - Can get trapped
 - Can yield arbitrarily poor solutions
 - But with a perfect heuristic, it moves straight to the goal
A*

- Expands the path with the **lowest cost + h** value on the frontier

- The frontier is implemented as a **priority queue** ordered by
 \[f(p) = \text{cost}(p) + h(p) \]
Admissibility of a heuristic

Def.: Let $c(n)$ denote the cost of the optimal path from node n to any goal node. A search heuristic $h(n)$ is called **admissible** if $h(n) \leq c(n)$ for all nodes n, i.e. if for all nodes it is an **underestimate** of the cost to any goal.

- E.g. Euclidean distance in routing networks
- General construction of heuristics: relax the problem, i.e. ignore some constraints
 - Can only make it easier
 - Saw lots of examples on Wednesday:
 Routing network, grid world, 8 puzzle, Infinite Mario
Admissibility of A*

- A* is **complete** (finds a solution, if one exists) and **optimal** (finds the optimal path to a goal) if:
 - *the branching factor is finite*
 - *arc costs are* $> \varepsilon > 0$
 - *h is admissible.*

- This property of A* is called **admissibility of A***
Why is A* admissible: complete

If there is a solution, A* finds it:
- \(f_{\text{min}} := \) cost of optimal solution path \(s \) (unknown but finite)
- Lemmas for prefix \(pr \) of \(s \) (exercise: prove at home)
 - Has cost \(f(pr) \leq f_{\text{min}} \) (due to admissibility)
 - Always one such \(pr \) on the frontier (prove by induction)
- A* only expands paths with \(f(p) \leq f_{\text{min}} \)
 - Expands paths \(p \) with minimal \(f(p) \)
 - Always a \(pr \) on the frontier, with \(f(pr) \leq f_{\text{min}} \)
 - Terminates when expanding \(s \)
- Number of paths \(p \) with cost \(f(p) \leq f_{\text{min}} \) is finite
 - Let \(c_{\text{min}} > 0 \) be the minimal cost of any arc
 - \(k := f_{\text{min}} / c_{\text{min}} \). All paths with length \(> k \) have cost \(> f_{\text{min}} \)
 - Only \(b^k \) paths of length \(k \). Finite \(b \Rightarrow \text{finite} \)
Why is A* admissible: optimal

New Proof (by contradiction)

– Assume hypothesis (for contradiction):
 First solution s’ that A* expands is suboptimal: i.e. cost(s’) > f_min

– Since s’ is a goal, h(s’) = 0, and f(s’) = cost(s’) > f_min

– A* selected s’ ⇒ all other paths p on the frontier had f(p) ≥ f(s’) > f_min

– But we know that a prefix pr of optimal solution path s is on the frontier, with f(pr) ≤ f_min
 ⇒ Contradiction!

– QED

Summary: any prefix of optimal solution is expanded before suboptimal solution would be expanded
Select the most appropriate algorithms for specific problems
- Depth-First Search vs. Breadth-First Search
vs. Least-Cost-First Search vs. Best-First Search vs. A*
Define/read/write/trace/debug different search algorithms
- With/without cost
- Informed/Uninformed
Construct heuristic functions for specific search problems
Formally prove A* completeness and optimality
- Define optimal efficiency
Learning Goals for last week, continued

- Apply basic properties of search algorithms:
 - completeness, optimality, time and space complexity

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Complete</th>
<th>Optimal</th>
<th>Time</th>
<th>Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>DFS</td>
<td>N</td>
<td>N</td>
<td>$O(b^m)$</td>
<td>$O(mb)$</td>
</tr>
<tr>
<td></td>
<td>(Y if finite & no cycles)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BFS</td>
<td>Y</td>
<td>Y</td>
<td>$O(b^m)$</td>
<td>$O(b^m)$</td>
</tr>
<tr>
<td>LCFS</td>
<td>Y</td>
<td>Y</td>
<td>$\tilde{O}(b^m)$</td>
<td>$O(b^m)$</td>
</tr>
<tr>
<td>(when arc costs available)</td>
<td>Costs > 0</td>
<td>Costs ≥ 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Best First</td>
<td>N</td>
<td>N</td>
<td>$\tilde{O}(b^m)$</td>
<td>$O(b^m)$</td>
</tr>
<tr>
<td>(when h available)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A*</td>
<td>Y</td>
<td>Y</td>
<td>$\tilde{O}(b^m)$</td>
<td>$O(b^m)$</td>
</tr>
<tr>
<td>(when arc costs and h available)</td>
<td>Costs > 0</td>
<td>Costs ≥ 0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Lecture Overview

- Recap from last week

Iterative Deepening
Iterative Deepening DFS (IDS): Motivation

Want low space complexity but completeness and optimality
Key Idea: re-compute elements of the frontier rather than saving them

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Complete</th>
<th>Optimal</th>
<th>Time</th>
<th>Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>DFS</td>
<td>N</td>
<td>N</td>
<td>$O(b^m)$</td>
<td>$O(mb)$</td>
</tr>
<tr>
<td>(Y if finite & no cycles)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BFS</td>
<td>Y</td>
<td>Y</td>
<td>$O(b^m)$</td>
<td>$O(b^m)$</td>
</tr>
<tr>
<td>LCFS</td>
<td>Y</td>
<td>Y</td>
<td>$\tilde{O}(b^m)$</td>
<td>$O(b^m)$</td>
</tr>
<tr>
<td>(when arc costs available)</td>
<td>Costs > 0</td>
<td>Costs ≥ 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Best First</td>
<td>N</td>
<td>N</td>
<td>$\tilde{O}(b^m)$</td>
<td>$O(b^m)$</td>
</tr>
<tr>
<td>(when h available)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A*</td>
<td>Y</td>
<td>Y</td>
<td>$\tilde{O}(b^m)$</td>
<td>$O(b^m)$</td>
</tr>
<tr>
<td>(when arc costs and h available)</td>
<td>Costs > 0 h admissible</td>
<td>Costs ≥ 0 h admissible</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Iterative Deepening DFS (IDS) in a Nutshell

- Use DFS to look for solutions at depth 1, then 2, then 3, etc
 - For depth D, ignore any paths with longer length
 - Depth-bounded depth-first search
(Time) Complexity of IDS

- That sounds wasteful!
- Let’s analyze the time complexity
- For a solution at depth m with branching factor b

<table>
<thead>
<tr>
<th>Depth</th>
<th>Total # of paths at that level</th>
<th>#times created by BFS (or DFS)</th>
<th>#times created by IDS</th>
<th>Total #paths for IDS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>b</td>
<td>1</td>
<td>m</td>
<td>mb</td>
</tr>
<tr>
<td>2</td>
<td>b^2</td>
<td>1</td>
<td>$m-1$</td>
<td>$(m-1) b^2$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$m-1$</td>
<td>b^{m-1}</td>
<td>1</td>
<td>2</td>
<td>$2 b^{m-1}$</td>
</tr>
<tr>
<td>m</td>
<td>b^m</td>
<td>1</td>
<td>1</td>
<td>b^m</td>
</tr>
</tbody>
</table>
(Time) Complexity of IDS

Solution at depth \(m \), branching factor \(b \)

Total # of paths generated:

\[
\begin{align*}
\text{Total # of paths} &= b^m + 2 b^{m-1} + 3 b^{m-2} + \ldots + mb \\
&= b^m (1 b^0 + 2 b^{-1} + 3 b^{-2} + \ldots + m b^{1-m}) \\
&= b^m \left(\sum_{i=1}^{m} i b^{1-i} \right) = b^m \left(\sum_{i=1}^{m} i (b^{-1})^{i-1} \right) \\
&\leq b^m \left(\sum_{i=0}^{\infty} i (b^{-1})^{i-1} \right) = b^m \left(\frac{1}{1 - b^{-1}} \right)^2 = b^m \left(\frac{b}{b - 1} \right)^2 \in O(b^m)
\end{align*}
\]

Geometric progression: for \(|r|<1\):

\[
\begin{align*}
\sum_{i=0}^{\infty} r^i &= \frac{1}{1 - r} \\
\frac{d}{dr} \sum_{i=0}^{\infty} r^i &= \sum_{i=0}^{\infty} i r^{i-1} = \frac{1}{(1 - r)^2}
\end{align*}
\]
Further Analysis of Iterative Deepening DFS (IDS)

- **Space complexity**
 - $O(b^m)$
 - $O(m^b)$
 - $O(bm)$
 - $O(b+m)$
 - DFS scheme, only explore one branch at a time

- **Complete?**
 - Yes
 - No
 - Only finite # of paths up to depth m, doesn’t explore longer paths

- **Optimal?**
 - Yes
 - No
 - Proof by contradiction
Search methods so far

<table>
<thead>
<tr>
<th>Method</th>
<th>Complete</th>
<th>Optimal</th>
<th>Time</th>
<th>Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>DFS</td>
<td>N</td>
<td>N</td>
<td>$O(b^m)$</td>
<td>$O(mb)$</td>
</tr>
<tr>
<td></td>
<td>(Y if finite & no cycles)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BFS</td>
<td>Y</td>
<td>Y</td>
<td>$O(b^m)$</td>
<td>$O(b^m)$</td>
</tr>
<tr>
<td>IDS</td>
<td>Y</td>
<td>Y</td>
<td>$O(b^m)$</td>
<td>$O(mb)$</td>
</tr>
<tr>
<td>LCFS (when arc costs available)</td>
<td>Y</td>
<td>Y</td>
<td>$\tilde{O}(b^m)$</td>
<td>$O(b^m)$</td>
</tr>
<tr>
<td></td>
<td>Costs > 0</td>
<td>Costs >=0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Best First</td>
<td>N</td>
<td>N</td>
<td>$\tilde{O}(b^m)$</td>
<td>$O(b^m)$</td>
</tr>
<tr>
<td>(when h available)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>Y</td>
<td>Y</td>
<td>$\tilde{O}(b^m)$</td>
<td>$O(b^m)$</td>
</tr>
<tr>
<td>(when arc costs and h available)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Costs > 0</td>
<td>Costs >=0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>h admissible</td>
<td>h admissible</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
(Heuristic) Iterative Deepening: IDA*

• Like Iterative Deepening DFS
 – But the depth bound is measured in terms of the f value

• If you don’t find a solution at a given depth
 – Increase the depth bound:
 to the minimum of the f-values that exceeded the previous bound
Analysis of Iterative Deepening A* (IDA*)

- Complete and optimal? Same conditions as A*
 - h is admissible
 - all arc costs $> \varepsilon > 0$
 - finite branching factor

- Time complexity: $\tilde{O}(b^m)$

- Space complexity:
 - Same argument as for Iterative Deepening DFS

\[O(b^m) \quad O(m^b) \quad O(bm) \quad O(b+m) \]
Search methods so far

<table>
<thead>
<tr>
<th>Method</th>
<th>Complete</th>
<th>Optimal</th>
<th>Time</th>
<th>Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>DFS</td>
<td>N (Y if no cycles)</td>
<td>N</td>
<td>$O(b^m)$</td>
<td>$O(mb)$</td>
</tr>
<tr>
<td>BFS</td>
<td>Y</td>
<td>Y</td>
<td>$O(b^m)$</td>
<td>$O(b^m)$</td>
</tr>
<tr>
<td>IDS</td>
<td>Y</td>
<td>Y</td>
<td>$O(b^m)$</td>
<td>$O(mb)$</td>
</tr>
<tr>
<td>LCFS (when arc costs available)</td>
<td>Y (Costs > 0)</td>
<td>Y (Costs >=0)</td>
<td>$\tilde{O}(b^m)$</td>
<td>$O(b^m)$</td>
</tr>
<tr>
<td>Best First (when h available)</td>
<td>N</td>
<td>N</td>
<td>$\tilde{O}(b^m)$</td>
<td>$O(b^m)$</td>
</tr>
<tr>
<td>A (when arc costs and h available)</td>
<td>Y (Costs > 0, h admissible)</td>
<td>Y (Costs >=0, h admissible)</td>
<td>$\tilde{O}(b^m)$</td>
<td>$O(b^m)$</td>
</tr>
<tr>
<td>IDA (same cond. as A**)</td>
<td>Y (same cond. as A*)</td>
<td>Y</td>
<td>$\tilde{O}(b^m)$</td>
<td>$O(mb)$</td>
</tr>
</tbody>
</table>
Learning Goals for today’s class

• Define/read/write/trace/debug different search algorithms
 – New: Iterative Deepening,
 Iterative Deepening A*

• Apply basic properties of search algorithms:
 – completeness, optimality, time and space complexity

Announcements:

– Practice exercises on course home page
 • Heuristic search
 • Please use these! (Only takes 5 min. if you understood things…)
– Assignment 1 is out: see Connect.