Uninformed Search Strategies

Alan Mackworth

UBC CS 322 - Search 2
January 11, 2013

Textbook §3.5

Today's Lecture

Lecture 4 (2-Search1) Recap

« Uninformed search + criteria to compare search algorithms
— Depth first
- Breadth first

Recap

Search is a key computational
mechanism in many Al agents

We will study the basic principles of search on the simple
deterministic goal-driven search agent model

Generic search approach:
— Define a search space graph
— Initialize the frontier with an empty path
— incrementally expand frontier until goal state is reached

Frontier:
— The set of paths which could be explored next

The way in which the frontier is expanded defines the
search strategy

Search Space: example

LQE%

(&
S

-

S

)

(.

* Operators —left, right, suck

e Successor states in the graph describe the effect of each
action applied to a given state

 Possible Goal — no dirt

Problem Solving by Graph Searching

tart frontier
sta
node]

hve

s

| unexplored nodes
é ’

explored nodes

Bogus version of Generic Search Algorithm

Input: a graph
a set of start nodes
Boolean procedure goal(n) that tests if n is a goal node
frontier:= [<g>: g is a goal node];
While frontier is not empty:
select and remove path <n_,....,n.> from frontier;
If goal(n,)
return <n,....,n,>;
Find a neighbor n of n,
add <n> to frontier;

end

* There are several bugs in this version here:
help me find them!

Bogus version of Generic Search Algorithm

Input: a graph
a set of start nodes
Boolean procedure goal(n) that tests if n is a goal node

frontier:= [<g>: g is a goal node];

While frontier is not empty:
select and remove path <n_,....,n.> from frontier;
If goal(n,)
return <n,....,n,>;

Find|a neighbor nfof n,

add |<n>|to frontier;

end

« Start at the start node(s)
» Add all neighbours of n, to the frontier
« Add path(s) to frontier, NOT just the node(s)

Generic Search Algorithm

Input: a graph
a set of start nodes
Boolean procedure goal(n) testing if n is a goal node

frontier:= [<s>: s is a start node];
While frontier is not empty:
select and remove path <n,...,n,> from frontier;
If goal(n,)
Then return <n,,....,n,>;
Else

For every neighbor n of n,
add <n,,....,n,, n> to frontier;

end

Today's Lecture

* Lecture 4 Recap
Uninformed search + criteria to compare search algorithms
- Depth-first
- Breadth-first

Depth-first search (DFS)
O

o N
ARI R
S BR® RO R
7 REROROY
C ’QROO
O w O OO0

 Frontier: shaded nodes

Depth-first search (DFS)
O

S N
oW R

A biRe RS R

7 R 6 RORIY

I S S S

* Frontier: shaded nodes
« Which node will be expanded next?

(expand = “remove path ending at node from frontier & put its
successors on’) !

Depth-first search (DFS)
O
TR R
A BR® SR
bt & i
58°d 4L

« Say, node in red box is a goal

 How many more nodes will be expanded?

1 2 3 [a

Depth-first search (DFS)
O

S N
gad R
A bRe R R
bdhd » SHAt
588 8k

e Say, node in red box is a goal

« How many more nodes will be expanded?

« 3: you only return once the goal is being expanded!

* Not when a goal is put onto the frontier!

DFS as an instantiation of the

Generic Search Algorithm
O

PO
Input: a graph R @\ Q R
a set of start nodes /Gg @R‘ RO R
Boolean procedure goal(n) %D R @/@2‘ O RQ R
| .t_estlngllfr.\ is a goal node. o & ’ ® RO O
frontier:= [<s>: s is a start node];
While frontier is not empty: © W O O O
select and remove path <n,,....,n,> from frontier;
If goal(n,)
Then return <n,,....,n,>;

Else

For every neighbor n of n,
add <n,,....,n,, n> to frontier;

end
14

DFS as an instantiation of the

Generic Search Algorithm

ﬁf@\

Input: a graph R @\ Q R
a set of start nodes /Gg @R‘ RO R
Boolean procedure goal(n) %D R @/@2‘ O RQ R
testing if n is a goal node
. JrTas OO 0@ @ O OO0
frontier:= [<s>: s is a start node];
While frontier is not empty: © W O O O
select and remove path <n,,....,n,> from frontier; In DFS. the frontier is a
It goal(n,) last-in-first-out stack
Then return <n,,....,n,>;
Else

For every neighbor n of n,
add <n,,....,n,, n> to frontier;

end
15

Analysis of DFS

Def. : A search algorithm is complete if

whenever there is at least one solution, the
algorithm is guaranteed to find it within a finite

amount of time.

s DFS complete? Yes No
O
Q/M
L

16

Analysis of DFS

Def.: A search algorithm is optimal if

when it finds a solution, it is the best one

Is DFS optimal? Yes No

* E.g., goal nodes: red boxes

R
A
e

O
ORO

NI
SR

?O

/q

§Q

P~

O

O

R

17

Analysis of DFS

Def.. The time complexity of a search algorithm is

the worst-case amount of time it will take to run,
expressed in terms of

- maximum path length m

- maximum forward branching factor b.

 Whatis DFS’s time complexity, in terms of mand b ?

/@\

W@ OO
« E.g., single goal node: red box /?Q‘ %‘@‘ RROR%

@?O ?ORO

18

Analysis of DFS

Def.. The time complexity of a search algorithm is

the worst-case amount of time it will take to run,
expressed in terms of

- maximum path length m

- maximum forward branching factor b.

 Whatis DFS’s time complexity, in terms of mand b ?

/@\

O(b™)
R 2, O\ g
W@ OO

« E.g., single goal node: red box C?/?Q‘ %‘@‘ ?\ROR%

@?Q ?ORO

19

Analysis of DFS

Def.: The space complexity of a search algorithm is the

worst-case amount of memory that the algorithm will use
(i.e., the maximal number of nodes on the frontier),
expressed in terms of

— maximum path length m

— maximum forward branching factor 5.

 What is DFS’s space complexity, in terms of m and b ?

Ob™ O(mb) O(bm) Ofb+m) - o

AR R
S BR® RO R
gR O/@%) ORR C%{ O
O O OO0

Analysis of DFS

Def.: The space complexity of a search algorithm is the

worst-case amount of memory that the algorithm will use
(i.e., the maximal number of nodes on the frontier),
expressed in terms of

— maximum path length m

— maximum forward branching factor 5.

 What is DFS’s space complexity, in terms of m and b ?

Ob™ O(mb) O(bm) Ofb+m) - o

- gBd R

O

The longest possible path is m, and for every C? R © /@% O RQ

node in that path must maintain a fringe of size b (© O 9 O RO O
O, O O

® O

Today's Lecture

* Lecture 4 Recap
« Uninformed search + criteria to compare search algorithms
— Depth first
Breadth first

22

Breadth-first search (BFS)

O,
7o R
Sode vd
¢ 606 ndy

568 dh

BFS as an instantiation of the

Generic Search Algorithm
O

ISIEEN
Input: a graph R@ €>\®Q ®R
a set of start nodes /G? R % R
Boolean procedure goal(n) @ 9{ ‘/Q © 'R" x

testing if n is a goal node O O O OO
5874 4y

frontier:= [<s>: s is a start node];
While frontier is not empty: O
select and remove path <n,,....,n > from frontier;
If goal(n,)
Then return <n,,....,n,>;
Else
For every neighbor n of n,
add <n,,....,n,, n> to frontier;

end
24

BFS as an instantiation of the

Generic Search Algorithm

/Q‘/@\

8 R

Input: a graph 5 0 oRo
a set of start nodes / S ﬂ % R
Boolean procedure goal(n) @ 9{ ‘/Q‘ © 'R" R‘

testing if n is a goal node ‘? ?Q ? O RQQ
O O| O O

frontier:= [<s>: s is a start node];
While frontier is not empty: O
select and remove path <n,,....,n,> from frontier; In BFS, the frontier is a
If goal(ny) first-in-first-out queue
Then return <n,,....,n,>;
Else

For every neighbor n of n,
add <n,,....,n,, n> to frontier;

end
25

Analysis of BFS

Def. : A search algorithm is complete if

whenever there is at least one solution, the
algorithm is guaranteed to find it within a finite

amount of time.

s BFS complete? Yes No

26

Analysis of BFS

Def. : A search algorithm is complete if

whenever there is at least one solution, the
algorithm is guaranteed to find it within a finite
amount of time.

Is BFS complete? Yes /@?R?g‘\@@;i;ﬂx
FRERS RSN

 Proof sketch? ? ?Q O QQ
O O

O

27

Analysis of BFS

Def.: A search algorithm is optimal if
when it finds a solution, it is the best one

Is BFS optimal? Yes No JO; O

28

Analysis of BFS

Def.: A search algorithm is optimal if
when it finds a solution, it is the best one

Is BFS optimal? Yes JO; O

e Proof sketch?

29

Analysis of BFS

Def.. The time complexity of a search algorithm is

the worst-case amount of time it will take to run,
expressed in terms of

- maximum path length m

- maximum forward branching factor b.

 What is BFS’s time complexity, in terms of mand b ?

/@\
O(™) O@m®) O(bm) O(b+tm) R @\ Q‘ R

/6? @'@‘@ %@

« E.g., single goal node: red box R /C{ R
I PRI

30

Analysis of BFS

Def.. The time complexity of a search algorithm is

the worst-case amount of time it will take to run,
expressed in terms of

- maximum path length m

- maximum forward branching factor b.

 What is BFS’s time complexity, in terms of mand b ?

/@\

O(b™)
R 7 @% !
* E.g., single goal node: red box /C%@%‘(? ?\g

i & Sl G

31

Analysis of BFS

Def.: The space complexity of a search algorithm is the

worst case amount of memory that the algorithm will use
(i.e., the maximal number of nodes on the frontier),
expressed in terms of

— maximum path length m

— maximum forward branching factor 5.

« What is BFS’s space complexity, in terms of mand b ?
O(b™ O@mP") O(bm) O(b+m) Jouy N
RN
5 0R0 26 R
How many nodes at depth m? %9 ?{ OR @ RQ R
OCP CPO §> O ROO
oo O OO0

32

Analysis of BFS

Def.: The space complexity of a search algorithm is the

worst case amount of memory that the algorithm will use
(i.e., the maximal number of nodes on the frontier),
expressed in terms of

— maximum path length m

— maximum forward branching factor 5.

« What is BFS’s space complexity, in terms of mand b ?
O(b™) O(mb’) O(bm) O(btm) Jouy N
AR R
O(b") S ope 8d &
« How many nodes at depth m? 619 '@\ @ R O RQ R
OCP CPO §> O ROO
oo O 0O

33

When to use BFS vs. DFS?

The search graph has cycles or is infinite

BFS DFS
We need the shortest path to a solution
BFS DFS

There are only solutions at great depth
BFS DFS

There are some solutions at shallow depth: the other one

No way the search graph will fit into memory
BFS DFS

34

Real Example: Solving Sudoku

Sudoku Puzzle

E.g. start state on the left

Operators:
fill in an allowed number

Solution: all numbers filled in,
with constraints satisfied

Which method would you
rather use?

BFS DFS

35

BFS

Real Example: Eight Puzzle. DFS or BFS?

* Which method would you rather use?

DFS

36

Learning Goals for today’s class

* Apply basic properties of search algorithms:
- completeness
- optimality
- time and space complexity of search algorithms

« Select the most appropriate search algorithms for specific
problems.
— Depth-First Search vs. Breadth-First Search

37

Coming up ...

 Read Section 3.6, Heuristic Search

38

