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Abstract

Visual dialog is a task of answering a series of inter-dependent questions given an
input image, and often requires to resolve visual references among the questions.
This problem is different from visual question answering (VQA), which relies on
spatial attention (a.k.a. visual grounding) estimated from an image and question
pair. We propose a novel attention mechanism that exploits visual attentions in the
past to resolve the current reference in the visual dialog scenario. The proposed
model is equipped with an associative attention memory storing a sequence of
previous (attention, key) pairs. From this memory, the model retrieves the previ-
ous attention, taking into account recency, which is most relevant for the current
question, in order to resolve potentially ambiguous references. The model then
merges the retrieved attention with a tentative one to obtain the final attention for
the current question; specifically, we use dynamic parameter prediction to combine
the two attentions conditioned on the question. Through extensive experiments
on a new synthetic visual dialog dataset, we show that our model significantly
outperforms the state-of-the-art (by ≈ 16 % points) in situations, where visual ref-
erence resolution plays an important role. Moreover, the proposed model achieves
superior performance (≈ 2 % points improvement) in the Visual Dialog dataset [1],
despite having significantly fewer parameters than the baselines.

1 Introduction

In recent years, advances in the design and optimization of deep neural network architectures have led
to tremendous progress across many areas of computer vision (CV) and natural language processing
(NLP). This progress, in turn, has enabled a variety of multi-modal applications spanning both
domains, including image captioning [2–4], language grounding [5, 6], image generation from
captions [7, 8], and visual question answering (VQA) on images [9–21] and videos [22–24].

The VQA task, in particular, has received broad attention because its formulation requires a universal
understanding of image content. Most state-of-the-art methods [10, 13, 15] address this inherently
challenging problem through an attention mechanism [3] that allows to visually ground linguistic
expressions; they identify the region of visual interest referred to by the question and predict the
answer based on the visual information in that region.

More recently, Visual Dialog [1] has been introduced as a generalization of the VQA task. Unlike
VQA, where every question is asked independently, a visual dialog system needs to answer a sequence
of questions about an input image. The sequential and inter-dependent property of questions in a
dialog presents additional challenges. Consider the simple image and partial dialog in Figure 1. Some
questions (e.g., #1: ‘How many 9’s are there in the image?’) contain the full information needed to
attend to the regions within the image and answer the question accurately. Other questions (e.g., #6:
‘What is the number of the blue digit?’) are ambiguous on their own and require knowledge obtained
from the prior questions (1, 2, 3, and 5 in particular) in order to resolve attention to the specific region
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# Question Answer
1 How many 9’s are there in the image? four
2 How many brown digits are there among them? one
3 What is the background color of the digit at the left of it? white
4 What is the style of the digit? flat
5 What is the color of the digit at the left of it? blue
6 What is the number of the blue digit? 4
7 Are there other blue digits? two

Figure 1: Example from MNIST Dialog. Each pair consists of an image (left) and a set of sequential
questions with answers (right).

the expression (‘the blue digit’) is referring to. This process of visual reference resolution1 is the key
component required to localize attention accurately in the presence of ambiguous expressions and
thus plays a crucial role in extending VQA approaches to the visual dialog task.

We perform visual reference resolution relying on a novel attention mechanism that employs an
associative memory to obtain a visual reference for an ambiguous expression. The proposed model
utilizes two types of intermediate attentions: tentative and retrieved ones. The tentative attention is
calculated solely based on the current question (and, optionally, the dialog history), and is capable of
focusing on an appropriate region when the question is unambiguous. The retrieved attention, used
for visual reference resolution, is the most relevant previous attention available in the associative
memory. The final attention for the current question is obtained by combining the two attention maps
conditioned on the question; this is similar to neural module networks [12, 14], which dynamically
combine discrete attention modules, based on a question, to produce the final attention. For this task,
our model adopts a dynamic parameter layer [9] that allows us to work with continuous space of
dynamic parametrizations, as opposed to the discrete set of parametrizations in [12, 14].

Contributions We make the following contributions. (1) We introduce a novel attention process
that, in addition to direct attention, resolves visual references by modeling the sequential dependency
of the current question on previous attentions through an associative attention memory; (2) We
perform a comprehensive analysis of the capacity of our model for the visual reference resolution task
using a synthetic visual dialog dataset (MNIST dialog) and obtain superior performance compared to
all baseline models. (3) We test the proposed model in a visual dialog benchmark (VisDial [1]) and
show state-of-the-art performance with significantly fewer parameters.

2 Related Work

Visual Dialog Visual dialogs were recently proposed in [1] and [25], focusing on different aspects
of a dialog. While the conversations in the former contain free-form questions about arbitrary objects,
the dialogs in the latter aim at object discovery through a series of yes/no questions. Reinforcement
learning (RL) techniques were built upon those works in [26] and [27]. Das et al. [26] train two agents
by playing image guessing games and show that they establish their own communication protocol
and style of speech. In [27], RL is directly used to improve the performance of agents in terms of the
task completion rate of goal-oriented dialogs. However, the importance of previous references has
not yet been explored in the visual dialog task.

Attention for Visual Reference Resolution While visual dialog is a recent task, VQA has been
studied extensively and attention models have been known to be beneficial for answering independent
questions [10–16]. However, none of those methods incorporate visual reference resolution, which is
neither necessary nor possible in VQA but essential in visual dialog. Beyond VQA, attention models
are used to find visual groundings of linguistic expressions in a variety of other multi-modal tasks,
such as image captioning [3, 4], VQA in videos [22], and visual attributes prediction [28]. Common
to most of these works, an attention is obtained from a single embedding of all linguistic inputs.
Instead, we propose a model that embeds each question in a dialog separately and calculates the
current question’s attention by resolving its sequential dependencies through an attention memory and
a dynamic attention combination process. We calculate an attention through a dynamic composition

1We coin this term by borrowing nomenclature, partially, from NLP, where coreference resolution attempts
to solve the corresponding problem in language; the visual in visual reference resolution implies that we want to
do both resolve and visually ground the reference used in the question.

2



(a) RNNquestion 𝑞

(d) fc
𝒄𝑡

(b) HRNNhistory 𝐻

(c) CNNimage 𝐼

(e) attention

process

𝒇
attention 

memory

𝒇𝑡
att

𝒌𝑡
mem

𝜶𝑡

𝒄𝑡

(f) fc
(g) answer 

decoder

𝒆𝑡 (h) key

generation

𝑦𝑡

𝒄𝑡

𝒌𝑡

Figure 2: Architecture of the proposed network. The gray box represents the proposed attention
process. Refer to Section 3 for the detailed description about individual modules (a)-(f).

process taking advantage of a question’s semantic structure, which is similar to [12] and [14].
However, the proposed method still differs in that our attention process is designed to deal with
ambiguous expressions in dialogs by dynamically analyzing the dependencies of questions at each
time step. In contrast, [12] and [14] obtain the attention for a question based on its compositional
semantics that is completely given at the time of the network structure prediction.

Memory for Question Answering Another line of closely related works is the use of a memory
component to question answering models. Memory networks with end-to-end training are first
introduced in [29], extending the original memory network [30]. The memories in these works are
used to store some factoids in a given story and the supporting facts for answering questions are
selectively retrieved through memory addressing. A memory network with an episodic memory was
proposed in [31] and applied to VQA by storing the features at different locations of the memory [32].
While these memories use the contents themselves for addressing, [33] proposes associative memories
that have a key-value pair at each entry and use the keys for addressing the value to be retrieved.
Finally, the memory component is also utilized for visual dialog in [1] to actively select the previous
question in the history. Memories in these previous memory networks store given factoids to retrieve
a supporting fact. In contrast, our attention memory stores previous attentions, which represent
grounded references for previous questions, to resolve the current reference based on the sequential
dependency of the referring expressions. Moreover, we adopt an associative memory to use the
semantics of QA pairs for addressing.

3 Visual Dialog Model with Attention Memory-based Reference Resolution

Visual dialog is the task of building an agent capable of answering a sequence of questions presented
in the form of a dialog. Formally, we need to predict an answer yt ∈ Y , where Y is a set of discrete
answers or a set of natural language phrases/sentences, at time t given input image I , current question
qt, and dialog history H = {hτ | hτ = (qτ , yτ ) , 0 ≤ τ < t}.
We utilize the encoder-decoder architecture recently introduced in [1], which is illustrated in Figure 2.
Specifically, we represent a triplet (q,H, I) with et by applying three different encoders, based on
recurrent (RNN with long-short term memory units), hierarchical recurrent (HRNN)2 and convolu-
tional (CNN) neural networks, followed by attention and fusion units (Figure 2 (a)-(f)). Our model
then decodes the answer yt from the encoded representation et (Figure 2 (g)). Note that, to obtain the
encoded representation et, the CNN image feature map f computed from I undergoes a soft spatial
attention process guided by the combination of qt and H as follows:

ct = fc(RNN(qt),HRNN(H)) (1)

fatt
t = [αt(ct)]

> · f =

N∑
n=1

αt,n(ct) · fn, (2)

where fc (Figure 2 (d)) denotes a fully connected layer, αn(ct) is the attention map conditioned on a
fused encoding of qt and H , n is the location index in the feature map, and N is the size of the spatial
grid of the feature map. This attention mechanism is the critical component that allows the decoder
to focus on relevant regions of the input image; it is also the main focus of this paper.

2The questions and the answers of a history are independently embedded using LSTMs and then fused by a
fc layer with concatenation to form QA encodings. The fused QA embedding at each time step is finally fed to
another LSTM and the final output is used for the history encoding.
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Figure 3: Attention process for visual dialog task. (a) The tentative and relevant attentions are first
obtained independently and then dynamically combined depending on the question embedding. (b)
Two boxes represent memory containing attentions and corresponding keys. Question embedding ct
is projected byWmem and compared with keys using inner products, denoted by crossed circles, to
generate address vector βt. The address vector is then used as weights for computing a weighted
average of all memory entries, denoted by Σ within circle, to retrieve memory entry (αmem

t ,kmem
t ).

We make the observation that, for certain questions, attention can be resolved directly from ct. This
is called tentative attention and denoted by αtent

t . This works well for questions like #1 in Figure 1,
which are free from dialog referencing. For other questions like #6, resolving reference linguistically
would be difficult (e.g., linguistic resolution may look like: ‘What number of the digit to the left
to the left of the brown 9’). That said, #6 is straightforward to answer if the attention utilized to
answer #5 is retrieved. This process of visual reference resolution gives rise to attention retrieval
αmem
t from the memory. The final attention αt(ct) is computed using dynamic parameter layer,

where the parameters are conditioned on ct. To summarize, an attention is composed of three steps in
the proposed model: tentative attention, relevant attention retrieval, and dynamic attention fusion as
illustrated in Figure 3a. We describe the details of each step below.

3.1 Tentative Attention

We calculate the tentative attention by computing similarity, in the joint embedding space, of the
encoding of the question and history, ct, and each feature vector, fn, in the image feature grid f :

st,n =
(
Wtent

c ct
)> (

Wtent
f fn

)
(3)

αtent
t = softmax ({st,n, 1 < n < N}) , (4)

where Wtent
c and Wtent

f are projection matrices for the question and history encoding and the image
feature vector, respectively, and st,n is an attention score for a feature at the spatial location n.

3.2 Relevant Attention Retrieval from Attention Memory

As a reminder, in addition to the tentative attention, our model obtains the most relevant previous
attention using an attention memory for visual reference resolution.

Associative Attention Memory The proposed model is equipped with an associative mem-
ory, called an attention memory, to store previous attentions. The attention memory Mt =
{(α0,k0) , (α1,k1) , . . . , (αt−1,kt−1)} stores all the previous attention maps ατ with their corre-
sponding keys kτ for associative addressing. Note that α0 is NULL attention and set to all zeros. The
NULL attention can be used when no previous attention reference is required for the current reference
resolution.
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The most relevant previous attention is retrieved based on the key comparison as illustrated in
Figure 3b. Formally, the proposed model addresses the memory given the embedding of the current
question and history ct using

mt,τ = (Wmemct)
>
kτ and βt = softmax ({mt,τ , 0 < τ < t− 1}) , (5)

where Wmem projects the question and history encoding onto the semantic space of the memory
keys. The relevant attention αmem

t and key kmem
t are then retrieved from the attention memory using

the computed addressing vector βt by

αmem
t =

t−1∑
τ=0

βt,τατ and kmem
t =

t−1∑
τ=0

βt,τkτ . (6)

This relevant attention retrieval allows the proposed model to resolve the visual reference by indirectly
resolving coreferences [34–36] through the memory addressing process.

Incorporating Sequential Dialog Structure While the associative addressing is effective in re-
trieving the most relative attention based on the question semantics, we can improve the performance
by incorporating sequential structure of the questions in a dialog. Considering that more recent
attentions are more likely to be referred again, we add an extra term to Eq. (5) that allows preference
for sequential addressing, i.e., m′t,τ = (Wmemct)

>
kτ + θ (t− τ) where θ is a learnable parameter

weighting the relative time distance (t− τ) from the current time step.

3.3 Dynamic Attention Combination

After obtaining both attentions, the proposed model combines them. The two attention maps αtent
t

and αmem
t are first stacked and fed to a convolution layer to locally combine the attentions. After

generating the locally combined attention features, it is flattened and fed to a fully connected (fc)
layer with softmax generating the final attention map. However, a fc layer with fixed weights would
always result in the same type of combination although the merging process should, as we argued
previously, depend on the question. Therefore, we adopt the dynamic parameter layer introduced
in [9] to adapt the weights of the fc layer conditioned on the question at test time. Formally, the final
attention map αt(ct) for time t is obtained by

αt(ct) = softmax
(
WDPL (ct) · γ(αtent

t ,αmem
t )

)
, (7)

whereWDPL(ct) are the dynamically determined weights and γ(αtent
t ,αmem

t ) is the flattened output
of the convolution obtained from the stacked attention maps. As in [9], we use a hashing technique to
predict the dynamic parameters without explosive increase of network size.

3.4 Additional Components and Implementation

In addition to the attended image feature, we find other information useful for answering the question.
Therefore, for the final encoding et at time step t, we fuse the attended image feature embedding fatt

t
with the context embedding ct, the attention map αt and the retrieved key kmem

t from the memory,
by a fc layer after concatenation (Figure 2f).

Finally, when we described the associative memory in Section 3, we did not specify the memory key
generation procedure. In particular, after answering the current question, we append the computed
attention map to the memory. When storing the current attention into memory, the proposed model
generates a key kt by fusing the context embedding ct with the current answer embedding at through
a fc layer (Figure 2h). Note that an answer embedding at is obtained using LSTM.

Learning Since all the modules of the proposed network are fully differentiable, the entire network
can be trained end-to-end by standard gradient-based learning algorithms.

4 Experiments
We conduct two sets of experiments to verify the proposed model. To highlight the model’s ability
to resolve visual references, we first perform experiment with a synthetic dataset that is explicitly
designed to contain ambiguous expressions and strong inter-dependency among questions in the
visual dialog. We then show that the model also works well in the real VisDial [1] benchmark.
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Basemodel +H +SEQ Accuracy
I – – 20.18

Q – – 36.58
X – 37.58

LF [1] X – 45.06
HRE [1] X – 49.10
MN [1] X – 48.51

ATT – – 62.62
X – 79.72

AMEM

– – 87.53
X – 89.20
– X 90.05
X X 96.39 2 4 6 8 10

dialog step ID

0.6

0.7

0.8

0.9

1.0

ac
cu

ra
cy

ATT ATT+H AMEM AMEM+H+SEQ

Figure 4: Results on MNIST Dialog. Answer prediction accuracy [%] of all models for all questions
(left) and accuracy curves of four models at different dialog steps (right). +H and +SEQ represent the
use of history embeddings in models and addressing with sequential preference, respectively.

4.1 MNIST Dialog Dataset

Experimental Setting We create a synthetic dataset, called MNIST Dialog3, which is designed for
the analysis of models in the task of visual reference resolution with ambiguous expressions. Each
image in MNIST Dialog contains a 4× 4 grid of MNIST digits and each MNIST digit in the grid
has four randomly sampled attributes, i.e., color = {red,blue, green,purple,brown}, bgcolor =
{cyan, yellow,white, silver, salmon}, number = {x|0 ≤ x ≤ 9} and style = {flat, stroke}, as
illustrated in Figure 1. Given the generated image from MNIST Dialog, we automatically generate
questions and answers about a subset of the digits in the grid that focus on visual reference resolution.
There are two types of questions: (i) counting questions and (ii) attribute questions that refer to a
single target digit. During question generation, the target digits for a question is selected based on a
subset of the previous targets referred to by ambiguous expressions, as shown in Figure 1. For ease
of evaluation, we generate a single word answer rather than a sentence for each question and there
are a total of 38 possible answers ( 1

38 chance performance). We generated 30K / 10K / 10K images
for training / validation / testing, respectively, and three ten-question dialogs for each image.

The dimensionality of the word embedding and the hidden state in the LSTMs are set to 32 and 64,
respectively. All LSTMs are single-layered. Since answers are single words, the answer embedding
RNN is replaced with a word embedding layer in both the history embedding module and the memory
key generation module. The image feature extraction module is formed by stacking four 3 × 3
convolutional layers with a subsequent 2× 2 pooling layer. The first two convolutional layers have 32
channels, while there are 64 channels in the last two. Finally, we use 512 weight candidates to hash the
dynamic parameters of the attention combination process. The entire network is trained end-to-end
by minimizing the cross entropy of the predicted answer distribution at every step of the dialogs.

We compare our model (AMEM) with three different groups of baselines. The simple baselines show
the results of using statistical priors, where answers are obtained using image (I) or question (Q)
only. We also implement the late fusion model (LF), the hierarchical recurrent encoder with attention
(HREA) and the memory network encoder (MN) introduced in [1]. Additionally, an attention-based
model (ATT), which directly uses tentative attention, without memory access, is implemented as a
strong baseline. For some models, two variants are implemented: one using history embeddings and
the other one not. These variations give us insights on the effect of using history contexts and are
distinguished by +H. Finally, another two versions of the proposed model, orthogonal to the previous
ones, are implemented with and without the sequential preference in memory addressing (see above),
which is denoted by +SEQ.

Results Figure 4 shows the results on MNIST Dialog. The answer prediction accuracy over all
questions of dialogs is presented in the table on the left. It is noticeable that the models using attention
mechanisms (AMEM and ATT) significantly outperform the previous baseline models (LF, HRE and
MN) introduced in [1], while these baselines still perform better than the simple baseline models. This
signifies the importance of attention in answering questions, consistent with previous works [10–14].

3The dataset is available at http://cvlab.postech.ac.kr/research/attmem
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Figure 5: Memory addressing coefficients with and without sequential preference. Both models
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Figure 6: Characteristics of dynamically predicted weights for attention combination. Dynamic
weights are computed from 1,500 random samples at dialog step 3 and plotted by t-SNE. Each figure
presents clusters formed by different semantics of questions. (left) Clusters generated by different
question types. (middle) Subclusters formed by types of spatial relationships in attribute questions.
(right) Subclusters formed by ways of specifying targets in counting questions; cluster sub_targets
contains questions whose current target digits are included in the targets of the previous question.

Extending ATT to incorporate history embeddings during attention map estimation increases the
accuracy by about 17%, resulting in a strong baseline model.
However, even the simplest version of the proposed model, which does not use history embeddings or
addressing with sequential preference, already outperforms the strong baseline by a large margin. Note
that this model still has indirect access to the history through the attention memory, although it does
not have direct access to the encodings of past question/answer pairs when computing the attention.
This signifies that the use of the attention memory is more helpful in resolving the current reference
(and computing attention), compared to a method that uses more traditional tentative attention
informed by the history encoding. Moreover, the proposed model with history embeddings further
increases the accuracy by 1.7%. The proposed model reaches >96% accuracy when the sequential
structure of dialogs is taken into account by the sequential preference in memory addressing.
We also present the accuracies of the answers at each dialog step for four models that use attentions in
Figure 4 (right). Notably, the accuracy of ATT drops very fast as the dialog progresses and reference
resolution is needed. Adding history embeddings to the tentative attention calculation somewhat
reduces the degradation. The use of the attention memory gives a very significant improvement,
particularly at later steps in the dialog when complex reference resolution is needed.

Parameter Analysis When we observed the learned parameter θ for the sequential preference, it is
consistently negative in all experiments; it means that all models prefer recent elements. A closer
look at the addressing coefficients βt with and without the sequential preference reveals that both
variants have a clear preferences for recent elements, as depicted in Figure 5. It is interesting that the
case without the bias term shows a stronger preference for recent information, but its final accuracy is
lower than the version with the bias term. It seems thatWmem without bias puts too much weight on
recent elements, resulting in worse performance. Based on this observation, we learnWmem and θ
jointly to find better coefficients thanWmem alone.

The dynamically predicted weights form clusters with respect to the semantics of the input questions
as illustrated in Figure 6, where 1,500 random samples at step 3 of dialogs are visualized using t-SNE.
In Figure 6 (left), the two question types (attribute and counting) create distinct clusters. Each of
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History: Are there any 9's in the image ? three

How many digits in a yellow background are there among them ? one

What is the color of the digit ? red

What is the color of the digit at the right of it ? blue

What is the style of the blue digit ? flat

Current QA: What is the color of the digit at the right of it ? violet

Retrieved attention
from network

Final attention Manually modified
retrieved attention

Final attention

Predicted answer: violet

Input image

Predicted answer: green

Figure 7: Qualitative analysis on MNIST Dialog. Given an input image and a series of questions
with their visual grounding history, we present the memory retrieved and final attentions for the current
question in the second and third columns, respectively. The proposed network correctly attends to
target reference and predicts correct answer. The last two columns present the manually modified
attention and the final attention obtained from the modified attention, respectively. Experiment shows
consistency of transformation between attentions and semantic interpretability of our model.

these, in turn, contains multiple sub-clusters formed by other semantics, as presented in Figure 6
(middle) and (right). In the cluster of attribute questions, sub-clusters are mainly made by types of
spatial relationship used to specify the target digit (e.g., #3 in Figure 1), whereas sub-clusters in
counting questions are based on whether the target digits of the question are selected from the targets
of the previous question or not (e.g., #1 vs. #2 in Figure 1).
Figure 7 illustrates qualitative results. Based on the history of attentions stored in the attention
memory, the proposed model retrieves the previous reference as presented in the second column.
The final attention for the current question is then calculated by manipulating the retrieved attention
based on the current question. For example, the current question in Figure 7 refers to the right
digit of the previous reference, and the model identifies the target reference successfully (column 3)
as the previous reference (column 2) is given accurately by the retrieved attention. To investigate
consistency with respect to attention manipulation, we move the region of the retrieved attention
manually (column 4) and observe the final attention map calculated from the modified attention
(column 5). It is clear that our reference resolution procedure works consistently even with the
manipulated attention and responds to the question accordingly. This shows a level of semantic
interpretability of our model. See more qualitative results in Section A of our supplementary material.

4.2 Visual Dialog (VisDial) Dataset

Experimental Setting In the VisDial [1] dataset4, the dialogs are collected from MS-COCO [37]
images and their captions. Each dialog is composed of an image, a caption, and a sequence of ten
QA pairs. Unlike in MNIST Dialog, answers to questions in VisDial are in free form text. Since
each dialog always starts with an initial caption annotated in MS-COCO, the initial history is always
constructed using the caption. The dataset provides 100 answer candidates for each question and
accuracy of a question is measured by the rank of the matching ground-truth answer. Note that this
dataset is less focused on visual reference resolution and contains fewer ambiguous expressions
compared to MNIST Dialog. We estimate the portion of questions containing ambiguous expressions
to be 94% and 52% in MNIST Dial and VisDial, respectively5.

While we compare our model with various encoders introduced in [1], we fix the decoder to a
discriminative decoder that directly ranks the answer candidates through their embeddings. Our
baselines include three visual dialog models, i.e., late fusion model (LF), hierarchical recurrent
encoder (HRE) and memory network encoder (MN), and two attention based VQA models (SAN and

4We use recently released VisDial v0.9 with the benchmark splits [1].
5We consider pronouns and definite noun phrases as ambiguous expressions and count them using a POS

tagger in NLTK (http://www.nltk.org/).
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Table 1: Experimental results on VisDial. We show the number of parameters, mean reciprocal
rank (MRR), recall@k and mean rank (MR). +H and ATT indicate use of history embeddings in
prediction and attention mechanism, respectively.

Model +H ATT # of params MRR R@1 R@5 R@10 MR
Answer prior [1] – – n/a 0.3735 23.55 48.52 53.23 26.50

LF-Q [1] – – 8.3 M (3.6x) 0.5508 41.24 70.45 79.83 7.08
LF-QH [1] X – 12.4 M (5.4x) 0.5578 41.75 71.45 80.94 6.74
LF-QI [1] – – 10.4 M (4.6x) 0.5759 43.33 74.27 83.68 5.87
LF-QIH [1] X – 14.5 M (6.3x) 0.5807 43.82 74.68 84.07 5.78

HRE-QH [1] X – 15.0 M (6.5x) 0.5695 42.70 73.25 82.97 6.11
HRE-QIH [1] X – 16.8 M (7.3x) 0.5846 44.67 74.50 84.22 5.72
HREA-QIH [1] X – 16.8 M (7.3x) 0.5868 44.82 74.81 84.36 5.66

MN-QH [1] X – 12.4 M (5.4x) 0.5849 44.03 75.26 84.49 5.68
MN-QIH [1] X – 14.7 M (6.4x) 0.5965 45.55 76.22 85.37 5.46

SAN-QI [10] – X n/a 0.5764 43.44 74.26 83.72 5.88
HieCoAtt-QI [15] – X n/a 0.5788 43.51 74.49 83.96 5.84

AMEM-QI – X 1.7 M (0.7x) 0.6196 48.24 78.33 87.11 4.92
AMEM-QIH X X 2.3 M (1.0x) 0.6192 48.05 78.39 87.12 4.88
AMEM+SEQ-QI – X 1.7 M (0.7x) 0.6227 48.53 78.66 87.43 4.86
AMEM+SEQ-QIH X X 2.3 M (1.0x) 0.6210 48.40 78.39 87.12 4.92

HieCoAtt) with the same decoder. The three visual dialog baselines are trained with different valid
combinations of inputs, which are denoted by Q, I and H in the model names.

We perform the same ablation study of our model with the one for MNIST Dialog dataset. The conv5
layer in VGG-16 [38] trained on ImageNet [39] is used to extract the image feature map. Similar
to [1], all word embedding layers share their weights and an LSTM is used for embedding the current
question. For the models with history embedding, we use additional LSTMs for the questions, the
answers, and the captions in the history. Based on our empirical observation, we share the parameters
of the question and caption LSTMs while having a separate set of weights for the answer LSTM.
Every LSTM embedding sentences is two-layered, but the history LSTM of HRNN has a single layer.
We employ 64 dimensional word embedding vectors and 128 dimensional hidden state for every
LSTM. Note that the the dimensionality of our word embeddings and hidden state representations in
LSTMs are significantly lower than the baselines (300 and 512 respectively). We train the network
using Adam [40] with the initial learning rate of 0.001 and weight decaying factor 0.0001. Note that
we do not update the feature extraction network based on VGG-16.

Results Table 1 presents mean reciprocal rank (MRR), mean rank (MR), and recall@k of the
models. Note that lower is better for MRs but higher is better for all other evaluation metrics. All
variants of the proposed model outperform the baselines in all metrics, achieving the state-of-the-
art performance. As observed in the experiments on MNIST Dialog, the models with sequential
preference (+SEQ) show better performances compared to the ones without it. However, we do not
see additional benefits from using a history embedding on VisDial, in contrast to MNIST Dialog. The
proposed algorithm also has advantage over existing methods in terms of the number of parameters.
Our full model only requires approximately 15% of parameters compared to the best baseline model
without counting the parameters in the common feature extraction module based on VGG-16. In
VisDial, the attention based VQA techniques with (near) state-of-the-art performances are not as
good as the baseline models of [1] because they treat each question independently. The proposed
model improves the performance on VisDial by facilitating the visual reference resolution process.
Qualitative results for VisDial dataset are presented in Section B of the supplementary material.

5 Conclusion
We proposed a novel algorithm for answering questions in visual dialog. Our algorithm resolves
visual references in dialog questions based on a new attention mechanism with an attention memory,
where the model indirectly resolves coreferences of expressions through the attention retrieval process.
We employ the dynamic parameter prediction technique to adaptively combine the tentative and
retrieved attentions based on the question. We tested on both synthetic and real datasets and illustrated
improvements.
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